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Abstract. In order to analyze the geometry of turbulent structures
in turbulent channel flow, the scalar field obtained by Direct Numerical
Simulations (DNS) is subdivided into numerous finite size regions. In
each of these regions local extremal points of the fluctuating scalar are
determined via gradient trajectory method. Gradient trajectories starting
from every material point in the scalar field φ(x,y,z, t) in the directions
of ascending and descending scalar gradients will always reach a mini-
mum and a maximum point where ∇φ = 0. The ensemble of all material
points belonging to the same pair of extremal points defines a dissipation
element [2]. They can be characterized statistically by two parameters:
namely the linear length connecting the minimum and maximum points
and the absolute value of the scalar difference Δφ at these points, respec-
tively. Because material points are space-filling, dissipation elements are
also space-filling and unique, which means that the turbulent scalar field
can be decomposed into such elements. This allows the reconstruction
of certain statistical quantities of small scale turbulence. Here special
focus will be given to examine if and how critical points and accordingly
dissipation elements are in relationship with the characteristic layers of
a turbulent channel flow.
Keywords: small scale turbulence, dissipation elements.

The analysis is based on 3D direct numerical simulations of a turbulent

channel flow at Reτ = 180 and Reτ = 360 where Reτ = huτ
ν is the friction based

Reynolds number. The code for the DNS was developed at KTH, Stockholm
(for details see [1]) using a spectral method to solve the time-dependent incom-
pressible Navier-Stokes equations with Fourier decomposition in the stream-
wise (x) and spanwise (z) directions and Chebychev decomposition in the wall-
normal (y) direction. All quantities are non-dimensionalized by the centerline
velocity of the flow field uCL and the channel half-height h. Periodic boundary
conditions are employed in the horizontal streamwise and the spanwise direc-
tion. At the walls, where y = ±1, no-slip boundary conditions are used. The
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Figure 1: Normalized length scale distribution from 3D DNS.

simulation domain is Lx × Ly × Lz = 2π× 2× π in units of the channel half-
height. Both simulations were performed with 512× 257× 256 collocation
points.

Figure 1 illustrates the marginal probability density function Pl(l/lm) nor-
malized by the mean dissipation element length lm for different wall-normal
channel layers calculated from 3D DNS. To explore the wall-normal depen-
dency of the pdf we examine its distribution in the classical buffer layer, loga-
rithmic layer and the core region of the channel. It is seen that for the chosen
scalar of kinetic energy k there exists a slight deviation between the shapes of
the pdfs. We observed the same feature for the fluctuation of the u1-velocity.
The over-all pdf, however, shows no significant dependency on the Re number
and the choice of the scalar field in our findings.
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Figure 2: Distribution of extremal points along wall-normal direction.

As pointed out the length of the dissipation element is defined by the linear
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Figure 3: Mean length of dissipation elements along wall-normal direction.

connection of both minimal and maximal points, respectively. Thus, it is inter-
esting to analyze the spatial distribution of the critical points. In figure 2 the
number of minimal and maximal points is compared for the two different Re
numbers as a function of wall-normal direction starting from the wall (y = 0)
to the channel center (y = 1). The plots show that the numbers of minimal and
maximal points are of the same order of magnitude. Maximal generation of
extremal points appears to occur in the buffer layer. In the higher Re number
case significantly more extremal points are generated. Beginning from around
the logarithmic layer an exponential decay can be seen which extends into the
middle of the channel core region. This behavior is more obvious for the higher
turbulent case of Re = 360.

The mean linear length of the dissipation elements connecting the critical
points is plotted in figure 3 against the wall-normal direction. The curves show
a linear increase in the same interval where figure 2 exhibits exponential be-
havior. Apart from a very steep slope in the near-wall region the mean length
of elements seems to grow uniformly in this interval until it reaches a constant
stage in the middle of the channel. The mean element length is smaller for
the high Re number. This finding is a consequence of the fact that in this case
more critical points are generated. As a result the points have shorter distances
to their neighboring points.

References

[1] LUNDBLADH, A., HENNINGSON, D., JOHANSSON, A., An efficient
spectral integration method for the solution of the Navier-Stokes equa-
tions, Tech. Rep., FFA-TN 1992-28, Aeronautical Research Institute of
Sweden, Bromma.

[2] PETERS, N., WANG, L. Dissipation element analysis of scalar fields in
turbulence, C. R. Mechanique, 334 (2006).

Dissipation element analysis of scalar fi elds in wall-bounded turbulent fl ow 11



Abstract. DNS databases for a turbulent channel flow with a passive
scalar at a molecular Prandtl number of 0.71 are used to examine the
limiting forms, at zero separation, of the transport equations for the tur-
bulent kinetic energy and scalar variance structure functions. The results
support the notion that the limits are identical over a significant portion
of the outer region when the Reynolds number is sufficiently large and
the normalization is based on Kolmogorov and Batchelor scales.

Analogy between small-scale velocity and passive scalar fi elds
in a turbulent channel fl ow

ROBERT ANTHONY ANTONIA*, HIROYUKI ABE**

Keywords: Velocity and scalar derivatives, Turbulent channel flow.Keywords:

Recently, the present authors [1,2] examined various properties of small-
scale velocity and scalar fields using DNS databases for a fully developed
turbulent channel flow at several values of the Karman number h+ (h is the
halfwidth of the channel) with passive scalar transport – the time-averaged
heat flux is constant at each wall and the molecular Prandtl number Pr is 0.71.
In particular, attention was given to the question of how best to compare prop-
erties associated with the two fields. Earlier work, e.g. [3], suggested that
an appropriate framework for comparison should be based on the turbulent ki-
netic energy q2 and the scalar variance θ2 , at least when the turbulence is
non-decaying. This idea was adopted [4] when comparing results from Kol-
mogorov’s [5] equation for the second-order velocity structure function with
those of Yaglom’s [6] equation for the second-order scalar structure function.
Indeed, it was confirmed in [2] that there is close agreement between spectra
corresponding to q2 and θ2 in both inner and outer regions of the flow. This
agreement extends, with slightly impaired quality, to spectra which correspond
to the enstrophy and scalar dissipation rates.

In the present work, we focus on the limiting forms, at zero separation, of
the equations, for stationary turbulence, by Kolmogorov and Yaglom, viz.

u3
1,1 = −2νu2

1,11 (1)

u1,1θ,21 = −2
3

κθ,211 (2)

as well as the generalized form of (1), as given in [4], viz.
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Figure 1: Distributions of the ratios u3
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Figure 2: Distributions of Su and ST at h+ = 180, 395 and 640.

u1,1u2
i,1 =−2

3
νu2

i,11. (3)

Results for (1)–(3), normalized by Kolmogorov and Batchelor scales, are plot-
ted in Fig. 1 for h+ = 640. In the outer region, (1)–(3) are closely satisfied,
reflecting the adequacy of local isotropy, while (2) and (3) are essentially iden-
tical.

The derivative skewnesses Su and ST defined as

Su =
u3

1,1(
u2

1,1

)3/2
(4)

and
ST =

u1,1θ,21(
u2

1,1

)1/2 (
θ,21

) (5)
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SMALL-SCALE VELOCITY AND PASSIVE SCALAR FIELDS IN A CHANNEL FLOW 3

have attracted special attention since they are closely associated with the pro-
duction terms in the transport equations of the enstrophy and scalar dissipation
rates. Distributions of ST and Su are shown in Fig. 2 for h+ = 180, 395 and 640.
The two quantities are close to each other over the outer region of the channel
at h+ = 640 and in reasonable agreement with values obtained for box turbu-
lence (see [7] and [8] and references therein). This seems consistent with the
data of [1] which indicated that the morphology associated with the enstrophy
(i.e. tubes) and scalar dissipation rate (i.e. sheets convected by a quasi-uniform
random straining field, as considered by Batchelor [9] and Kraichnan [10]) is
similar for the outer region of the channel and box turbulence. The relation-

ship between ST and Sq

(
= u1,1u2

i,1/
(

u2
1,1

)3/2
)

, which can be inferred from

the spectral similarity between q2 and θ2, will be discussed at the meeting.
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Abstract. A numerical study of an oscillating boundary layer, sub-
jected to rotation at three different latitudes, is here presented. The di-
rect numerical simulation of the laminar problem and the differences in
the wall shear stress among the different cases, obtained by large-eddy
simulations, are discussed. Keywords: Stokes boundary layer, rotation.

Keywords: Stokes boundary layer, rotation.

The Stokes-Ekman layer

STEFANO SALON*, VINCENZO ARMENIO**

The Stokes-Ekman layer is an oscillatory boundary layer subjected to rota-
tion of the frame of reference. The study of the turbulent mixing in a Stokes-
Ekman layer has important implications in oceanography since the combined
effect of a bottom Ekman layer forced by an oscillating current represents the
prototype of a tidal bottom boundary layer ([1, 2, 3]). In the present contribute,
we introduce the problem from the physical and the numerical point of view
and comment some preliminary results as derived from a series of resolved LES
(i.e. the near-wall layer is directly resolved without the use of wall functions).
This work constitutes the third part of a research aimed at understand the char-
acteristics of the oscillating boundary layers in turbulent regime without and
with rotation (for details see [4] and [5]).

The boundary layer under investigation is driven by a harmonic pressure
gradient aligned with the x-direction in a rotating frame of reference, that has
the x-axis oriented eastward, the y-axis northward and the z-axis upward. The
free-stream velocity (u) has a sinusoidal behaviour, and due to the rotation, an
oscillating transverse velocity (v) develops in the flow. Two non-dimensional
numbers are related to this problem:

• the Reynolds number associated to the Stokes flow, ReS = U0δS
ν , where U0

is the maximum amplitude of the outer layer velocity and δS =
√

2ν/ω is
the thickness of the Stokes boundary layer, with ν the kinematic viscosity
of the fluid and ω the angular frequency of the oscillations;

• the Rossby number, defined as the ratio between inertial and Coriolis
forces, Ro = U0

L f , where L = U0/ω is the length scale associated to the
amplitude of the oscillatory motion and f is the Coriolis parameter.

∗Dipartimento OGA, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale - OGS, B.go Grotta
Gigante 42/c, 34010 Sgonico, Italy.
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Figure 1: a) Comparison between the vertical profiles of the mean streamwise
and spanwise velocity of the laminar Stokes-Ekman layer as obtained from the
analytical solution (lines) and the DNS (symbols); see inlet for details of the
phases’ degrees. b) Non-dimensional ensemble-averaged wall shear stress for
the three latitude cases at 15o interval: ML (solid line); PL (dashed line); QE
(dash-dotted line). As a reference, the same quantity evaluated in the purely
oscillating case (OF) is shown.

From [4], we chose ReS = 1790 and, considering a tidal current driving the
boundary layer with a M2-semidiurnal tidal frequency, we obtain for three sig-
nificant latitudes φ the following values for Ro: 1) polar case (PL, φ = 90o),
Ro = 0.96; 2) mid-latitude case (ML, φ = 45o), Ro = 1.36; 3) quasi-equatorial
case (QE, φ = 5o), Ro = 11.04. The governing equations, that include the
full-component Coriolis acceleration, are solved by means of the resolved LES
approach, with the subgrid model formulated according to [6] (see also [4]).
Free-slip and no-slip boundary conditions are imposed respectively at the top
and bottom boundary, while in the horizontal directions, periodic boundary
conditions are taken due to homogeneous turbulence in the streamwise and
spanwise directions. As initial condition for the three cases we use a turbulent
field previously developed for the set of simulations performed in [5]. A do-
main grid of 96×96×320 points respectively in the streamwise, spanwise and
vertical direction is adopted.

As a first step, we validate our numerical approach by simulating the lam-
inar flow of the Stokes-Ekman layer via DNS (i.e. our LES with the subgrid
model switched off), comparing the results obtained with the analytical solu-
tion (A. Scotti, personal communication; [1, 3]). In this case, we adopt the
f -plane approximation and the governing equations provide the vertical de-
pendence of the horizontal velocity components of the flow (u and v) through-
out the cycle of oscillation. The boundary conditions are no-slip at z = 0 and
no-stress at z → ∞. As shown in Fig.1a, the DNS correctly reproduces the
analytical solution.
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THE STOKES-EKMAN LAYER 3

The second step is the analysis of the LES outputs: Fig.1b shows the non-
dimensional ensemble-averaged temporal evolution of the wall shear stress τW
obtained in simulations ML, PL and QE together with the simulation of the
purely oscillating flow (OF, see [4]). The evolution of τW along the cycle of os-
cillation is rather similar among the two non-polar cases and the OF one, while
the PL case shows more differences, both in the shape and in magnitude. As
widely discussed in [4] for OF, for the value of ReS here investigated the onset
of the turbulent activity is observed in ML and QE cases between 30o (210o

in the second semi-cycle) and 45o (225o), when the behaviour of τW rapidly
increases from the sinusoidal shape that characterizes the phases between 340o

(160o) and 30o (210o). This is related to the transition to turbulence and the
rapid increase of the turbulent kinetic energy (not shown) that is similar to
what observed for the non-rotating case. The τw in the PL case still presents
the sinusoidal shape before the transition to turbulence, but this process starts
later than 45o (225o) and the maximum value of is found at 90o (270o), later and
almost halved than that observed in the non-polar and OF cases. A difference
in the maximum values of τW between the two semi-cycles of oscillation can be
seen in the rotating cases, conversely to what observed for OF, and increases
towards the equator. Such a difference is an indicator of the asymmetry be-
tween the two semi-cycles due to the rotation, as already described in [5], and
is related with the increasing value of the horizontal component of the back-
ground rotation. The same asymmetry was observed in the DNS study of [7],
who related it to the ”east/west enhancement/reduction trend” in the turbulence
activity. This aspect becomes even more evident in the QE case, in agreement
with [7] who noticed as the DNS at φ= 10o easterly forced (and corresponding
to our second semi-cycle) was the most turbulent case. The non-zero asym-
metry observed in the PL case seems to be peculiar of the turbulent oscillatory
flow.
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Résumé. Using high resolution numerical simulations and recent ex-
perimental data for lagrangian turbulence, we discuss the statistical pro-
perties of homogenous and isotropic turbulence in the dissipation range.
We compare our results against predictions based on the multifractal
theory, which seems to capture the basic mechanism in the dissipation
range.

Keywords : small scale turbulence, dissipation range.

The aim of this paper is to discuss some recent numerical, experimental and
experimental results on the statistical properties of turbulent fluctuations in the
dissipative range. We deal with the case of homogenous and isotropic turbu-
lence. It is known that, for large Reynolds number Re ≡ UL/ν ( where U is
some characteristic velocity at large scale L and ν is the kinematic viscosity of
the flow), the statistical properties of turbulent flows show anomalous scaling.

The existence of anomalous scaling in the inertial range is usually referred
to as the intermittency problem of fully developed turbulence. There are two
main point of view on the intermittency problem and both views require a brea-
king of scale invariance of the statistical properties of turbulence. The first view
is the multifractal theory [1]. The multifractal approach to turbulence is based
on the assumption that the statistical properties of turbulent flows do exhibit
scaling properties even if there is intermittency. In the multifractal theory, all
the correlation functions should be computed by averaging over the propability
Ph(r) = rF(h) leading to Sp(r) ≡ 〈[δv(r)]p

〉 ∼ rζp , where ζp = in fh[ph + F(h)]
and δv(r) = (ui(�x+�r)−ui(�x)ri/r).

The second view on intermittency disregards the existence of a scaling pro-
perties (if any) in the inertial range and it considers the existence of coherent
structures as the main object one needs to study in order to understand the ori-
gin and the physical meaning of strong fluctuations in the small scale turbulent
velocity field. Some properties of these coherent structures have been discussed
in details in careful designed laboratory experiments and in numerical simula-
tions.

It is difficult to imagine two approaches to the same problem as different as
the one previously described and, indeed, there has been and still there are a
number of discussions where the two views of the problem provide different re-

∗Dip. di Fisica, Univ. di Roma ”Tor Vergata”, via della Ricerca Scientifica 1, 00133, Roma, Italy.
E-mail : roberto.benzi@roma2.infn.it
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in the dissipation range

ROBERTO BENZI*

Abstract.



2 ROBERTO BENZI

FIG. 1 – Lagrangian local scaling exponents κ(p,τ) for p = 4,6, ,8,10.

sults and explanations. One particular case, on which we focus our discussion,
is related to the turbulent fluctuations in the dissipation range.

To study turbulent fluctuations in the dissipation range we need to mea-
sure velocity difference at scale equal or smaller than the Kolmogorov scale
η ≡ (ν/ε3)1/4. Recently, it has been observed that the statistical properties of
a lagrangian particle sampled at relatively short times can provide direct in-
formations on the dissipation range. This observation is crucial as soon as one
realized that both experimentally and numerically it is very efficient to work
with high frequency sampling of lagrangian trajectories with respect to any
eulerian measurements [3, 4, 5, 6, 7, 8, 9] (see also [10] for a recent review).
Neutrally buoyant particles, advected by a turbulent velocity field u(x, t), fol-
low the same path of fluid molecules and evolve according to the dynamics
Ẋ(t) = v(t) ≡ u(X(t), t), where the Lagrangian velocity v equals the Eulerian
one u computed at the particle position X. Such particles constitute a clear-cut
indicator of the underlying turbulent fluctuations. Recently, it has been shown,
by comparing the different numerical studies and different experimental results
[11, 12], that Lagrangian turbulence is universal, intermittent, and well descri-
bed by a suitable generalization of the Eulerian Multifractal formalism to the
Lagrangian domain [13, 14, 15].

Lagrangian Structure Functions (LSF) are defined as :

S (p)
i (τ) = 〈[vi(t + τ)− vi(t)]p

〉 = 〈(δτvi)p
〉, (1)

where i = x,y,z runs over the three velocity components, and the average is
defined over the ensemble of particle trajectories evolving in the flow. From
now on, we will assume isotropy and therefore drop the dependency from the
spatial direction i. The presence of long spatial and temporal correlations sug-
gests, in analogy with critical phenomena, the existence of scaling laws for
time scales larger than the dissipative Kolmogorov time and smaller than the

20 R. Benzi



STATISTICAL PROPERTIES OF SMALL SCALE TURBULENT FLOWS IN THE DISSIPATION RANGE3

typical large-scale time, τη � τ� TL :

S (p)(τ) ∼ τz(p) . (2)

Straightforward dimensional arguments à la Kolmogorov predict z(p) = p/2,
independently of the flow properties. However, it is known that LSF experience
strong variations at changing the time lags τ, as highlighted by the more and
more non-Gaussian tails characterizing the probability density functions of δτv
for smaller and smaller τ’s [3], leading to a breakdown of the dimensional
argument and in the corresponding growth of the Lagrangian flatness by going
to higher and higher frequencies. In [11, 12] it has been shown that, at least
concerning the scaling exponent, κ(4) = z(4)/z(2), entering in the evolution of
the fourth order flatness :

S (4)(τ)
(S (2)(τ))2

∼ (S (2)(τ))κ(4)−2 (3)

the results do not depend on the experimental or numerical large scale set-up,
i.e. the high frequency fluctuations are universal.

It is possible to get a link between Eulerian and Lagrangian MF formalism
via the dimensional relation :

τ∼ r/δru. (4)

The validity of (4) is an important result in favor of the multifractal theory
of turbulence, since it is based upon the assumption of scaling in the inertial
range. In figure (1) we show the local slopes

κ(p,τ) ≡
d log(S (p)(τ)
d log(S (p)(τ))

(5)

for p = 4,6,8,10 as obtained by a recent high resolution numerical simula-
tion performed at large Re and with about 106 lagrangian particles. Note that
each lines has been shown with the corresponding error bars. Two important
points can be highlight by looking at figure (1). The first non trivial point is that
anomalous scaling is observed. The computation of the error bars rules out any
K41 theory. Moreover the anomalous scaling is consistent with the anomalous
scaling in the eulerian framework, i.e. with equation (4). This is again a cru-
cial statement on the intermittency problem. The second non trivial point is the
”dip” observed at relatively small τ close to the Kolmogorov time τη. The dip
is increasing with increasing the order p of the local slope κ(p,τ). The crucial
point about the dip is that a careful analysis shows that the dip is indeed due to
the particle trapping in the coherent structures of the flows [7].
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FIG. 2 – Top : local scaling exponents for fourth order structure functions,
κ(4,kn), in the Shell Model, versus log2(kn). Bottom MF prediction ; the
straight line is a fit for the behaviour of the bottleneck (maximum of inter-
mittency), the slope of the line is −0.028.

Thus the results of figure (1) show that coherent structures strike back again
no matter how good is the scaling observed in the inertial range ! Recently [11]
the existence of the dip in the lagrangian local slopes κ(p,τ) has been explai-
ned by means of a suitable generalization of the multifractal theory. The basic
idea is that the dissipation scale η (in the eulerian framework) is a fluctuating
quantity which is related to the velocity difference via the relation

δv(η)η
ν

∼ 1 (6)

A similar expression is also valid in the lagrangian framework. Eq. (6) implies
that η= η(h), i.e. the dissipation scale depends on the local exponents h which
leads to a complex and high non trivial behavior of the structure functions in
the dissipation range. This argument, however, does not give us the information
on whether the coherent structures are the causes or the effect of the anomalous
scaling or, following [2] whether they are the ”dog” or the ”tail” in turbulence.

One possible way to answer this question is by using a completely different
approach based on the ”shell models”. In the last twenty years, it has been
shown that there exists a class of simplified models, named shell model, which
shows multifractal intermittency (anomalous scaling) similar qualitatively and
quantitatively to what it is observed in the Navier-Stokes equation. Among
many different shell models, we shall consider the shell model proposed in
[16] ( see also [17] for a review). Shell models of turbulence, can be seen
as a truncated description of the Navier-Stokes dynamics, preserving some of
the structure and conservation laws of the original equations but destroying all
spatial structures. In figure (2) we plot the local scaling exponents
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FIG. 3 – Same as in figure (2) for the sixth order scaling exponents κ(6,kn).
The straight line has the slope −0.056

κ(4,kn) ≡
d log(S4(kn)
d log(S2(kn))

.

computed from the numerical simulations of the shell model (upper panel) and
predicted by the multifractal theory using the idea of a fluctuating dissipation
scale (lower panel). Different colors refer to different Reynolds numbers. The
first striking result is that the numerical simulations of the model clearly show
a well defined dip in the dissipative region (i.e. large value of n in the figure),
similar to what it is observed in experiments and in the numerical simulations.
The dip is increasing towards small scales as the Reynolds number increases
and it deepens. The straight line in the figure is a qualitative fit on the behavior
of the dip as a function of Re. Clearly, the increase of intermittency in the
dissipative region is scaling as log(Re). Notice that this scaling behaviour was
not visible in the experimental and numerical data shown in [11, 12] because
of the limited range of Reynolds spanned in those cases.

From the above analysis we can draw some interesting conclusions. First of
all, the increase of intermittency in the dissipative range is not due to coherent
vortices (there are no vortices in the shell model). Moreover, the increase of
intermittency is predicted by the multifractal conjecture because of the fluctua-
tions of the dissipative scale. Translating back these results to the real Navier-
Stokes equation, we are tempted to conclude that coherent structures exists but
their dynamics is nor relevant to explain intermittency in turbulent flows. They
are the tail more than the dog. Actually, one can take the opposite point of
view : the matching between inertial range (scale invariance) intermittency and
the dissipation range produces an increase in fluctuations and, consequently,
an increase of vorticity. This effect is dominant at low Reynolds number, as it
is clearly observed in the shell model : i.e. at low Reynold numbers no scaling
behavior is observed and intermittency is strongly dominated by the fluctua-
tions in the dissipation range. Let us also point out that our observations is in
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qualitative agreement to the known phenomenology of boundary layer turbu-
lence. Near the wall, the local Reynolds number is relatively low and strong
intermittency is observed together with a rich dynamic behavior of coherent
structures (hairpin vortices). The full dynamics is dominated by strong inter-
mittent fluctuations and it is tempting to relate our previous discussion to this
specific well known turbulent flows.
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Abstract. We report here experimental results of coarse-grained ve-
locity gradients from Lagrangian particle tracking measurements in fully
developed turbulence. The coarse-grained velocity gradients are ob-
tained from the tetrad model proposed by Chertkov et al. (Phys. Fluids,
11:2394, 1999). We investigated the scale dependence of the coarse-
grained velocity gradient by varying the size of the tetrads. We observed
more “flattening” in the inertial range while the coarse-grained veloc-
ity gradients approach Gaussian at large scales. Keywords: velocity

gradient, coarse-graining, inertial range, scale dependence
dependence

Abstract. We report here experimental results of coarse-grained ve-
locity gradients from Lagrangian particle tracking measurements in fully
developed turbulence. The coarse-grained velocity gradients are ob-
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11:2394, 1999). We investigated the scale dependence of the coarse-
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Scale dependence of coarse-grained velocity gradients in turbulence
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1. Introduction

Turbulence dynamics at different scales is the central part of the turbulence
problem itself and is related to many practical applications such as turbu-
lent dispersion and mixing. At scales below the Kolmogorov scale, progress
has been achieved by studying the transport equations for the velocity gra-
dient [2, 3]. The results are usually presented in terms of the two non-
trivial invariants of the velocity gradient tensor: R ≡ −(1/3)tr(m3) and Q ≡

−(1/2)tr(m2), where m is the velocity gradient tensor. It has been shown that
the turbulence velocity gradient preferentially distribute along the “Vieillefosse
tail”: R > 0, Q = −(27R2/4)1/3. At large scales, it is generally believed that
the turbulence may be approximated as a random Gaussian field [4]. Chertkov
et al. [1] proposed a phenomenological model to describe the coarse-grained
velocity gradient M in the inertial range. In three-dimensional turbulence, the
coarse-grained velocity gradients are obtained from the fluctuation velocities
at 4 points in space – the so-called “tetrad model”. Numerical [1, 5, 6] and
experimental investigations [7, 8] demonstrated the merit of this model. In this
work, we study the change of the coarse-grained velocity gradient with the size
of the tetrads, i.e., the scale dependence.
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2. Experiments

We measured the turbulence velocity by following, in three dimensions, neu-
trally buoyant tracer particles (with a specific density ρp/ρw = 1.06 and a diam-
eter dp = 25µm) in a von Kármán swirling water flow between counter-rotating
disks. The high-speed Phantom v7.2 cameras that we used provide sub-τη tem-
poral resolution. For details, see Refs. [9, 10].

To measure the coarse-grained velocity gradients, we conditioned our statis-
tics on nearly isotropic tetrads by selecting tetrads whose edges are of length
within ±10% of a nominal scale r0. We then fit velocity gradients from the
differences of fluctuation velocities using the tetrad model [1]. The incom-
pressibility constraint is enforced at the fit. We normalize the invariants us-
ing the turbulence dynamical time scale corresponding to the length scale r0:
R = (r2

0/ε)R and Q = (r2
0/ε)

2/3Q.

3. Results

Figure 1 shows the joint probability density distribution function (PDF) P(R,Q)
at different scales in the inertial range. It is clear that the PDFs are skewed
toward the “Vieillefosse tail”, which corresponding to the flattening by the tur-
bulence. This is consistent with previous observations.
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Figure 1: Result from Rλ = 350 experiment: the joint probability den-
sity function of the invariants of the coarse-grained velocity gradient M:
R ≡ −(1/3)tr(M3) and Q ≡ −(1/2)tr(M2) at different spatial scales. (a)
r0 = 6mm. (b) r0 = 8mm. (c) r0 = 12mm. The integral scale of the turbu-
lence is L ≈ 70mm.

Figure 2 shows the PDF of R conditioned on the sign of Q. It can be seen
that depending on the sign of Q, the conditional PDFs skew to different direc-
tions. If the velocity gradient is Gaussian, then the conditional PDFs would be
symmetrical. There is evidence of approaching Gaussian distribution as scale
increases. Quantitatively, both the unconditional and conditional mean and
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skewness of R approach zero as scale increase.
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Figure 2: Conditional PDF of R. (a) P(R|Q < 0). (b) P(R|Q > 0).

Finally, we measured the eigenvalues (λ1, λ2, and λ3, ordered as λ1 ≥ λ2 ≥

λ3) of the symmetric part of the coarse-grained velocity gradients. Since λ1 +
λ2 +λ3 = 0, the sign and the value of the intermediate eigenvalue λ2 are tightly
related to the characteristics of turbulence. At scales larger than the integral
scale, the velocities are uncorrelated and 〈λ2〉 = 0. In the dissipative range, it
has been found empirically that 〈λ2〉/〈λ1〉 ≈ 0.15 [11, 12, 13]. As shown in
Figure 3, our measurements confirm the sign of λ2 in the inertial range and
show that the ratio 〈λ2〉/〈λ1〉 increases continuously from nearly zero at large
scales to values close to previous measurements in the viscous range.

4. Conclusions

We measured the coarse-grained velocity gradient in the inertial range of fully-
developed turbulence using Lagrangian particle tracking. We observed more
“flattening” in the inertial range while the coarse-grained velocity gradients
approach Gaussian at large scales.

5. Acknowledgment

We are grateful to Boris Shraiman for many insightful discussions during this
work.

Scale dependence of coarse-grained velocity gradients in turbulence 27



4 H. XU, A. PUMIR, AND E. BODENSCHATZ

100 200 300 400 500 600 700 800 900

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

R
0
/η

<
λ 2>

/<
λ 1>

Figure 3: Result from Rλ = 690 experiment: The ratio of the eigenvalues
〈λ2〉/〈λ1〉 of the coarse-grained velocity gradient as a function of scale. The
scale separation of the inertial range is L/η≈ 2300 at this Reynolds number.
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The nonlinearity in the Navier-Stokes equations gives rise to an interaction
between different length-scales in a turbulent flow. These interactions are the
basic mechanism behind the celebrated Kolmogorov-Richardson energy cas-
cade. In the Lin equation for the turbulent energy spectrum E(k),

∂E(k)
∂t

= T (k)−2νk2E(k), (1)

(k being the wavenumber and ν the kinematic viscosity), these scale inter-
actions are represented by the nonlinear transfer T (k). In physical space,
the second-order and third-order longitudinal structure functions, Dll(r) and
Dlll(r), are related to E(k) and T (k) by the following expressions,

Dll(r) = 4
Z ∞

0
E(k)

[
1
3
−

sinkr− kr coskr
(kr)3

]
dk, (2)

Dlll(r) = 12r
Z ∞

0
T (k)

[
3(sinkr− kr coskr)− (kr)2 sinkr

(kr)5

]
dk. (3)

The possibility of corrections to the inertial range scaling of structure func-
tions, due to the intermittent character of the energy dissipation was advanced
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Abstract. The velocity increment skewness of isotropic turbulence is
computed using the EDQNM model and compared to results of the mul-
tifractal formalism. At the highest Reynolds number available in wind-
tunnel experiments, Rλ = 2500, both the multifractal model and EDQNM
give power-law corrections to the inertial range scaling. For EDQNM,
this correction is a finite Reynolds number effect, whereas for the multi-
fractal formalism it should persist at high Reynolds number. Therefore,
at Rλ = 2500, corrections to the inertial range scaling of the skewness
are not an adequate measure for intermittency, since the influence of in-
termittency cannot be distinguished from the influence of the Reynolds
number.

Reynolds number effect on the velocity increment skewness in 
isotropic turbulence
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by Kolmogorov [1]. A phenomenological model which succeeds to give a co-
herent picture of the influence of intermittency is the multifractal model [2].
This model compares well to measurements and gives non-zero intermittency
corrections to the inertial range scaling of the energy spectrum at high Reynolds
numbers. For Dll(r) this correction is believed to yield the scaling

Dll(r) ∼ r2/3+µ, (4)

with µ the intermittency correction, of the order of 0.03. For Dlll(r) ∼ r, there
is no correction. This gives for the (longitudinal velocity increment) skewness,

Sk(r) = Dlll(r)/Dll(r)3/2, (5)

a scaling Sk(r) ∼ r−0.045. In the present communication we will compare the
skewness as computed from spectral closure, with the prediction of the multi-
fractal model and experimental measurements of windtunnel turbulence.
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Figure 1: The velocity increment skewness at Rλ ≈ 2500. Results from
EDQNM computations, the multifractal formalism and experimental results.

The spectral closure used here is the EDQNM model [3]. This model,
which is a simplification of the DIA-closure family developed by Kraichnan
(e.g. [4, 5]), closes the Lin-equation by giving a closed expression for T (k)
as a function of the energy spectrum. It is known to be a valuable tool to
study the influence of the Reynolds number on some statistical properties of
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turbulent flows [6]. It is however not able to take into account intermittency
in the sense that at asymptotically high Reynolds number no corrections to the
inertial range scaling of the energy spectrum remain.

In figure 1, the results of EDQNM computations of freely decaying turbu-
lence, the multifractal formalism as described in [7] and experimental measure-
ments of windtunnel turbulence [8] are compared, all at a Taylor-scale-based
Reynolds Rλ number of approximately 2500. A good qualitative agreement is
observed at small scales. At large scales, the statistics of the experiment are not
fully converged. Both EDQNM and the multifractal prediction follow a pow-
erlaw with an exponent close to −0.045. At very high Reynolds number this
exponent should tend to zero for the EDQNM results. Therefore, at physically
relevant Reynolds numbers (Rλ = 2500 is the highest value obtained in wind-
tunnels until now), the inertial range scaling of the skewness is not an adequate
measure for intermittency, since the influence of intermittency cannot be dis-
tinguished from the influence of the Reynolds number. Other quantities, such
as the flatness, would perhaps give a better measure, since their corrections due
to intermittency should be larger.
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Unified multifractal description of velocity increments statistics in turbu-
lence: Intermittency and skewness, Phys. D 218 (2006), 77.

[8] H. KAHALERRAS, Y. MALECOT, Y. GAGNE, AND B. CASTAING, In-
termittency and Reynolds number, Phys. Fluids 10 (1998), 910.

32 W.J.T. Bos, L. Chevillard, J. F. Scott



Abstract. Particles with finite inertia present anomalous transport
properties such as small scale clustering, a feature usually addressed in
homogeneous and isotropic conditions. Here the effect of the mean shear
on the particle clustering is analyzed by using DNS in several configu-
rations of shear flows: homogeneous shear, pipe flow, and free jet. Data
evidence that the segregation process is essentially anisotropic, even in
the range of scales where isotropization of velocity statistics already oc-
curred. Spatial inhomogeneity adds additional features associated with
the migration of particles towards specific regions of the flow

Transport of particles is a classical problem in fluid mechanics since the pio-
neering contributions of Richardson and Taylor. In many cases the inertia of the
particles plays a crucial role in their dynamics. An essential phenomenology
induced by inertia is clustering, thoroughly analyzed for statistically homoge-
neous and isotropic flows[1]. In such conditions the most striking result con-
cerns the singular behavior exhibited by the radial distribution function show-
ing that, under proper conditions, clustering may occur at small scales, below
the Kolmogorov length. Actual flows are neither isotropic nor homogeneous.
Purpose of this work is to describe recent contributions addressing the effects
of shear and inhomogeneity on particle dynamics. The effects of shear are
evident in the instantaneous configuration of particles shown in the top panel
of figure 1, taken from homogeneous turbulent shear flow [2]. The presence
of clusters is apparent, as it is their orientation induced by the velocity field
anisotropy. Technically clustering amounts to an increased probability to find
particles at a given distance r and it is quantified by the radial distribution func-
tion (RDF), bottom-left panel of figure 1. The main parameter controlling the
dynamics for small, diluted, heavy particles is the Stokes number, Stη = τp/τη,
where τp = ρpd2

p/(18µ) is the particle relaxation time and τη is the Kolmogorov
time. Clustering is maximum when Stη � 1, see the slope of the RDF at small
scales. The anisotropy of the advecting field results in a strong directionality
of the probability to find particles at small separation, bottom-right panel of
figure 2. The data provide evidence of the substantial anisotropy of the particle
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2 C.M. CASCIOLA, P. GUALTIERI, F. PICANO & G. SARDINA

Figure 1: Top panel: instantaneous slice of particle distribution at Stη = 1 in
homogeneous shear flow at Reλ = 100. Left-bottom panel: radial distribution
function for different Stokes numbers; right-bottom panel angular distribution
function for Stη = 1 and r = 4η. See [2] for more details.

distribution which, under appropriate conditions, may easily reach the small
scales of the flow where isotropization of velocity statistics already occurred.
Anisotropic clustering is a generic property of particle-laden turbulent shear

flows, see e.g. figure 2 providing the instantaneous particle distribution in a free
turbulent jet at ReD = 4000. Inhomogeneity adds new features, inducing the
migration of particles towards specific regions of the flow. The effect is strik-
ing in wall bounded flows [4], where particles of suitable mass St+ � 10÷50

Figure 2: Snapshot of particles with StD = τpU0/D = 4 in a turbulent jet at
ReD = 4000
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Figure 3: Snapshots of particle distributions in a spatial developing pipe flow
at Reτ = 200. Colors correspond to different Stokes numbers St+ = 0.1 green,
St+ = 10 blue, St+ = 100 red. Panel (a) whole domain with length Lz = 200R
(not to scale). Panels (b) and (c): cross sections at z/R = 25 (developing region)
and at z/R = 200 (far field), respectively. region. See [3] for more details.

drift towards the wall reaching concentration up to thousands times the value
in the bulk. Accumulation at the wall, figure 3, occurs together with spatial
localization of the particles in elongated patterns, which, as discussed in [3],
are necessary features of the equilibrium distribution.
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Abstract. Based on the Euler dynamics at short-time, we propose
a stochastic incompressible vectorial field that mimics the main prop-
erties of fully developed turbulence in the inertial range, including in-
termittency, the non-vanishing skewness of longitudinal increments, the
teardrop shape of the RQ-plane and the preferential alignments of vor-
ticity with the intermediate eigenvector of the deformation. A free pa-
rameter, the intermittency parameter, needs to be specified on empirical
grounds. Here, we present the main statistical properties of a numerical
simulation of this process.
Keywords: stochastic process, intermittency.

ũε(x) = − 1

4π

∫
ϕL(x−y)

x−y

|x−y|
3
2
+ 2

3
ε

∧ eS̃dW(y) (1)
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Here, based on former works [1, 2], we propose a stochastic method to
build an incompressible, skewed and intermittent velocity field. This method
is motivated by the early stage mechanics of the Euler equation during when
vorticity is stretched by the local deformation, whereas early advection by the
large scale velocity is neglected. We have shown in Ref. [3] that such a Re-
cent Fluid Deformation (RFD) closure [1] leads to an incompressible differen-
tiable velocity field which reproduces well known facts of empirical turbulence,
namely the teardrop shape of the RQ plane and a skewed probability density
function (PDF) for the longitudinal gradients. Unfortunately, it is seen numer-
ically that this field is not skewed in the inertial range, leading to vanishing
mean energy transfer through scales, and furthermore, alignment properties of
vorticity deviate from empirical findings. Thus, to take into account both long-
time vorticity streching and advection (or mixing) of fluid particles, that have
been formely neglected, we will call for multifractal principles in order to im-
pose the inherent long-range correlations of small scales such as dissipation or
enstrophy. We end up [3] with the following explicit incompressible vectorial
field
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where S̃ is a tensorial Gaussian log-correlated noise, given explicitly as an
integral form of the very same white noise dW(σ) entering in (1):

S̃(y) =
3

8π
λ√
4π

∫ [
(y−σ)⊗ [(y−σ)∧dW(σ)]

|y−σ|7/2
ε

+
[(y−σ)∧dW(σ)]⊗ (y−σ)

|y−σ|7/2
ε

]
ϕL(y−σ) ,

where, in order to get mathematically well defined integrals, we have intro-

duced both a large scale cutoff ϕL(x− y) in the definition of u and S̃, and a
small scale regularization ε: |x|ε = θε ∗ |x| (see Ref. [2] for further details).

Figure 1: Numerical results of the process given in (1). (a) PDFs of longitu-
dinal velocity increments δ�u (N = 1024), scales � are logarithmically spaced
between dx and L (see text). (b) Scale dependence of the Skewness S (bot-
tom) and Flatness F (top) of longitudinal (open symbols) and transverse (filled
symbols) for the three resolutions: N = 256 (◦), N = 512 (�) and N = 1024
(�).

The velocity field (1) is expected to be asymptotically multifractal [2] with a

quadratic structure exponent, i.e. for the longitudinal case 〈|δ�u|q〉 ∼ �ζq where

ζq =
(

1
3
+a(cλ)2

)
q− (cλ)2 q2

2
. A rigorous derivation of the constants a and c

is still missing; numerics show that a is of order 1 and c ≈ 1. The intermittency
coefficient λ is a free parameter and is chosen as λ2 = 0.025 on empirical
grounds [3]. The exponent 3

2
+ 2

3
in (1) can be slightly modified in order to

impose ζ3 = 1.
We reproduce in figs. 1 and 2 the results of the simulation proposed in

ref. [3]. In fig. 1 are reproduced the results related to the intermittency
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A STOCHASTIC REPRESENTATION OF THE LOCAL STRUCTURE OF TURBULENCE 3

Figure 2: (a) Contour plots of the logarithm of the joint probability of the two
invariants of A (N = 1024 case) non-dimensionalized by the average strain

Q∗ = Q/〈Si jSi j〉 and R∗ = R/〈Si jSi j〉3/2. The thick line corresponds to the
zero discriminant (Vieillefosse) line. Contour lines correspond to probabilities
10−2.5,10−2,10−1.5,10−1,10−.5,1. (b) PDF of the cosine of the angle θ be-
tween vorticity and the eigenvectors of the strain (see text) associated to three
eigenvalues λ1 (dashed-dot), λ2 (solid) and λ3 (dashed), for the N = 1024 case.

phenomenon, both the probability density functions (PDFs) of the longitudi-
nal velocity increments δ�u, and the dependence on the scale of the Flatness

F = 〈(δ�u)4〉/〈(δ�u)2〉2 and Skewness S = 〈(δ�u)3〉/〈(δ�u)2〉3/2. Given the free
parameter λ2 = 0.025, results are realistic of empirical measurements. In fig.
2, we focus more on geometrical properties of 3D turbulence, such as the joint

probability of the invariants Q =− 1
2
tr(A2) and R =− 1

3
tr(A3), where A = ∇u is

the velocity gradient tensor, and the alignment of vorticity with the eigenvector

of the deformation S = 1
2
(A+A�) (eigenvalues ordered as λ1 ≤ λ2 ≤ λ3). The

proposed process (1) reproduces both the dissymetry of the RQ-plane along the
Vieillefosse-line, and the preferential alignment of vorticity along the interme-
diate eigenvector of the deformation.
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Wave turbulence [1] is modelled as a Hamiltonian equation for the complex
wave amplitudes, ak, coupled to a source and sink of energy which are widely
separated in k (wave-vector) space :

∂tak = i
δH
δāk

+ fk − γkak. (1)

H has a linear and nonlinear part, H = T +gU . The latter induces interactions
between waves enabling transfer of energy among normal modes resulting in
cascades in k-space. The linear part of the energy describes a collection of lin-
ear oscillators: T =

∫
ωkakākdk. For 3-wave interactions, the nonlinear part of

the energy is U =
∫

Vkk1k2 (akak1 āk2 + ākāk1ak1)δ(k−k1 −k2)dkdk1dk2. We
take the dispersion relation, ωk, and the triad interaction coefficient, Vkk1k2 to
be homogeneous functions of their arguments having degree α and γ respec-
tively. Almost everything is known [1] about the stationary statistics of Eq. (1)
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Abstract. Constant fluxes of conserved quantities in stationary wave
turbulence exactly determine the inertial range scalings of appropriate
flux-carrying correlation functions just as energy conservation deter-
mines the scaling of the third order structure function in hydrodynamic
turbulence. This constraint on the flux-carrying correlation function,
which we refer to as a constant flux relation (CFR) requires no assump-
tion of weak nonlinearity. It thus provides a natural departure point for
the study of strong wave turbulence. In this paper we state the theoreti-
cal results and illustrate the ideas using a finite dimensional toy model.
We predict that the energy cascade in strong wave turbulence, provided
that a local cascade is possible, would be of a different character to most
familiar cascade mechanisms and must involve a non-trivial conversion
between linear wave energy and nonlinear wave self-interaction energy.

Keywords: strong wave turbulence, higher order correlation functions.
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in the limit of weak nonlinearity when the interactions between waves can be
treated perturbatively. In particular, T , is conserved to leading order and cas-
cades to small scales in an analytically tractable way. Practically nothing is
known about the strong nonlinearity limit when both T and U cascade.

In the stationary state [2], conservation of energy, T +U , requires that∫ 2

∏
i=1

(dkik
d−1
i )

[
Tk;k1,k2Π0;1,2 −Tk1;k,k2Π1;0,2

]
= 0 (2)

in the inertial range. In this equation

Π0;1,2 =
∫ 2

∏
i=0

dΩi〈Re(a�k ∂t ā�k1
ā�k2

)〉 (3)

is the energy flux correlation function. Note the unusual structure of this cor-
relation function: it involves time derivatives of amplitudes and is thus a com-
posite quantity. Assuming a locality condition requiring convergence of a cer-
tain integral involving an unknown scaling function, one may show that this is
only possible if Π0;1,2 has homogeneity degree −3d−γ. This result, analogous
to Kolmogorov’s 4/5-Law, holds regardless of the strength of the underlying
wave turbulence. This is the only general exact result known to us for strong
wave turbulence. In the weak limit, the assumption of locality can be checked
a-posteriori. This is not the case in general. Locality can be non-trivial [3]. In
general, we require numerical simulation to study locality of a cascade.
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Figure 1: Left panel: Verification of CFR scaling, Eq. (6), for the toy model.
Right panel: Stationary fluxes of linear, nonlinear and total energy for γ = 0.0.

To separate complications coming from the unusual structure of Π0;1,2 from
those coming from locality, we studied a toy model of strong 3-wave interac-
tions. The model is a discrete chain of oscillators with wavenumbers, kn = 2n
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and frequencies ωn = kαn . Energy is injected by forcing oscillator 0 and re-
moved by damping at both ends. The Hamiltonian is H =∑n=N

n=−N Tn +Un where

Tn = ωnanān Un = kγn−1

(
āna2

n−1 +anā2
n−1

)
. (4)

The chain reaches a statistically stationary state in which energy is injected at
the centre, cascades through the chain and is removed at the ends. The flows
of linear and nonlinear energies are:

dTn

dt
= Q(T )

n −Q(T )
n−1 −Rn

dUn

dt
= Q(U)

n −Q(U)
n−1 +Rn (5)

where Q(T )
n = −4gωnkγnIm[an+1ā2

n], Q(U)
n = −4g2(knkn−1)γIm[ān+1ana2

n−1] and

Rn =
(

1− ωn
2ωn−1

)
Q(T )

n Taking averages in the stationary state yields for the

average transfer of total energy: 〈Q(H)
n 〉−〈Q(H)

n−1〉= 0 where Q(H)
n = Q(T )

n +Q(U)
n

is the flux of total energy. This has the simple solution

Re〈ān+1 an dtan〉 = −

Q0

4g
k−γ

n , (6)

where Q0 is the rate of dissipation of total energy. This is the analogue of the
constant flux relation for our toy model. Its numerical verification for several
values of γ is shown in the left panel of Fig. 1. The right panel of Fig. 1
demonstrates the constancy of the flux of total energy for the case γ = 0. The
results indicate that the flux carrying correlation function can indeed exhibit
scaling behaviour despite its composite nature. The cascade of total energy in
the toy model is clearly of a different character to a more familiar cascade of
a quadratic quantity. The cascade involves the transmutation of linear energy
into nonlinear energy in order to maintain a constant flux of the sum of the two.

We have not yet studied the extent to which these lessons carry over to
the original wave turbulence problem. It is clear, however, that there is some
potential here for some interesting new results on strong wave turbulence.
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Abstract. In anisotropic axisymmetric turbulence, the kinetic energy
at a scale r, 〈(δui)2〉 with δui = ui(x + r)− ui(x), depends upon two
scalars: r (the modulus of the spatial separation r) and μr (the cosinus
of the angle made by r with the axisymmetry direction). A scale-by-scale
energy budget equation is derived for axisymmetric turbulence, with par-
ticular emphasis on the central region of a round jet. This equation in-
cludes inhomogeneous and anisotropic effects (decay, production, vari-
ations of the mean energy dissipation rate). All the involved quantities
could be estimated from planar measurements, such as PIV.

The behaviour of a scalar (kinetic energy, scalar variance etc.) at a given
scale in turbulent flow depends upon the advecting field, the molecular effects
and large-scale effects (decay, mean shear, mean scalar gradient etc). The sim-
plest exact way to describe statistical properties at any scale is to study the
second-order moments, which naturally involves the third-order moments of
the scalar. This was first developed by A.M. Yaglom [1] and further extended
for the turbulent kinetic energy [2] under the ideal assumption of local isotropy.
However, for moderate Reynolds numbers of slightly heated grid turbulence,
Yaglom’s equation is only valid for a restricted range of scales, notwithstanding
the approximate validity of local isotropy in this flow. Clearly, it is important
to identify and quantify the terms that allow the energy balance to be closed,
in order to better understand all the physical phenomena brought into play in a
flow/region of a flow. Several methodologies are outlined below in increasing
order of difficulty:

– 1) When local isotropy holds, large-scales effects are to be taken into
account, e.g. [3], [4].

– 2) In flows and mixing where local isotropy is not appropriate, different
approaches should be considered. This paper only considers axisymmet-
rical flows [5], [6].

The starting point is the scale-by-scale energy budget equation for the total
kinetic energy (δq)2 ≡ 〈δuiδui〉, which writes in the context of local isotropy
[2],

−〈δu1(δq)2〉+2ν
d
dr
〈(δq)2〉=

4

3
〈ε〉r, (1)
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where 〈ε〉 is the mean energy dissipation rate. The focus herein is to write the
counterpart of Eq. (1) in the anisotropic/axisymmetric context. Note that the
exact tensorial representation of the axisymmetric field [5] is beyond the scope
of this contribution. Following the same mathematical development as pre-
sented in [3], we write the incompressible Navier–Stokes equations at the two
points x and x+, which are separated by the increment r = x+−x, and further
focus on the central region of a round jet, for which: the flow is statistically
stationary, pressure containing terms as well as turbulent diffusion terms are
neglected. The result is

2〈δ
(

Uα
∂ui

∂xα

)
δui〉(r)+2〈δ

(
uα

∂Ui

∂xα

)
δui〉(r)+

∂
∂rα
〈δuα(δq)2〉(r) =

+ 2ν
∂2

∂rα2
〈(δq)2〉(r)−2

(〈ε〉+ 〈ε〉+)
. (2)

In Eq. (2), each term depends on the spatial vector r. Let us assume that
the flow is axisymmetric about a direction specified by n (the jet axis). The
statistical correlations of the flow properties will then be invariant for rotations
in planes normal to n and symmetries with respect to planes containing n. We
note r2 = r · r and rμr ≡ r ·n. In this context, each term of Eq. (2) depends on

two variables r, μr. The advection term ∂
∂rα
〈δuα(δq)2〉(r) is written in a manner

similar to [6]:

〈δuα(δq)2〉(r) = Ma(r,μr)rα +Na(r,μr)nα, (3)

where only two scalars Ma and Na appear. The scalars Ma(r,μr) and Na(r,μr)
can be determined from planar experiments (e.g., PIV) which include the ax-
isymmetry vector n, via the measureable 〈δu‖(δq)2〉 and 〈δu⊥(δq)2〉. Here, ⊥
indicates any direction perpendicular to the axisymmetry axis n and ‖ desig-
nates the direction of n. This leads to the experimentally determinable scalars

Ma(r,μr) and Na(r,μr). Therefore, for the axisymmetric case, ∂
∂rα
〈δuα(δq)2〉(r)

becomes

∂
∂rα
〈δuα(δq)2〉(r)≡

(
r

∂
∂r

+3

)
Ma(r,μr)+

(
μr

∂
∂r

+
1−μ2

r

r
∂

∂μr

)
Na(r,μr). (4)

The kinetic energy dissipation term 〈ε〉+ reads, in the context of axisymmetry

〈ε〉+ = 〈ε〉+ d〈ε〉
dn (rμr).

In order to simplify the mathematical form of the final equation, we put

Na(r,μr)=
[
2+ r ∂

∂r

]
V = 1

r
∂
∂r

[
r2V

]
, N∗a =

(
μr

∂
∂r + 1−μ2

r
r

∂
∂μr

)
V , and G = Ma(r,μr)+

(4)
∂

∂rα
〈δuα(δq)2〉(r)≡

(
r

∂
∂r

+3

)
Ma(r,μr)+

(
μr

∂
∂r

+
1−μ2

r

r
∂

∂μr

)
Na(r,μr).

Na(r,μr)=
[
2+ r ∂

∂r

]
V = 1

r
∂
∂r

[
r2V

]
, N∗a =

(
μr

∂
∂r + 1−μ2

r
r

∂
∂μr

)
V , and G = Ma(r,μr)+
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N∗a (r,μr). After integration with respect to r, the final axisymmetric form of
scale-by-scale energy budget equation is

G(r,μr) =−4

3
〈ε〉− 1

2

d〈ε〉
dn

(rμr)+2ν
1

r3

[∫ r

0
s2 ∂2

∂s2
〈(δq)2〉ds

]
+

2ν
1

r3

[
2(1−μ2

r )
∂2

∂μ2
r

∫ r

0
s2〈(δq)2〉ds

]
− 1

r3

∫ r

0
s2 (D(r,μr)+P(r,μr))ds, (5)

where D(r,μ) and P(r,μ) are the decay and production terms respectively. Note
the importance of (5) with respect to the classical equation (1): i) it obviously
reduces to the isotropic ’4/3’ law ; ii) it contains large-scale terms (decay and
production) which are very important in the context of the validation against
experimental data; iii) it contains an explicit variation of the mean kinetic en-

ergy dissipation rate
d〈ε〉
dn . Equation (5), and its counterpart for the scalar en-

ergy, are tested against experimental data obtained by PIV and PLIF (Planar
Laser Induced Florescence) for scalars, in either a single round jet or multi-
ple opposed/sheared jets. A decomposition of each term in a more explicit
dependence on r and μr is possible by using e.g. spherical harmonics [7].
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Abstract. An analysis of spectral budgets of homogeneous and
isotropic (HI) turbulence in dilute polymers based on a set of newly pro-
posed equations is performed. The results confirm the value of the pre-
sented tool for the study of energy transfer in viscoelastic turbulence.

In this contribution the analysis of spectral budgets of homogeneous and
isotropic (HI) turbulence based on the set of newly proposed equations is per-
formed for a dilute polymer solution in the mild stretch regime at low-Reynolds
number. In this regime, the dynamics of the polymers is described by the linear
and homogeneous equation for the conformation tensor, R, [1]

∂R
∂t

+u ·∇R = KR+RK† − 2
τ

R , (1)

accounting for advection, stretching, re-orientation and linear elastic restoring
force. As follows from its physical meaning, the conformation tensor must be
a symmetric positive definite second order tensor. It can be factorized in terms
of X, the matrix of the right-eigenvectors, and L, the diagonal matrix of the
eigenvalues, as R = XLX†. As such, its square root, i.e. the tensor Q such that
R = QQ† with Q = X

√
L exists and obeys the evolution equation

∂Q
∂t

+u ·∇Q = KQ− 1
τ

Q . (2)

In this framework, the elastic energy can be expressed as a quadratic form in
terms of Q, E p(x,t) := νp/τ tr

[
Q(x,t)Q†(x,t)

]
while the production term can

be written as Πp(x,t) = 2νp/τ tr
[
K(x,t)Q(x,t)Q†(x,t)

]
. In other words the

adoption of Q as descriptor for the polymers allows the energy to be expressed
as the L2-norm of the relevant field. Under homogeneity assumption, the mean
elastic energy equation takes the form d〈E p(t)〉/dt = 〈Πp〉(t)− 2/τ〈E p〉(t) .
For the velocity, the mean kinetic energy density, 〈E k(t)〉 = 1/2〈u ·u〉(t), fol-
lows a balance equation which reads d〈E k〉(t)/dt = 〈W 〉(t)−〈εN〉(t)−〈ΠN〉(t)
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. HI turbulence was simulated via a spectral code on 963 points for the dealias-
ing procedure. The corresponding Newtonian case, i.e. with same viscosity
and energy input, presented a Reλ = 80 and the Deborah number based on the
Newtonian Kolmogorov time scale was equal to 5.

Moreover the three-dimensional spectrum of elastic energy may be defined
from the correlation tensor of the field Q, Cp(r,t) := 〈Q(x,t)Q†(x + r,t)〉 , as

E(3D)
p (k,t) =

1
(2π)3

νp

τ

Z
IR3

tr [Cp(r,t)]e k ·r d3r (3)

where k is the wave-vector. Equation (3) implies the spectral decomposition

〈E p(t)〉 =
Z

IR3
E(3D)

p (k,t)d3k =
Z ∞

0
Ep(k, t)dk . (4)

where the spectrum of elastic energy is defined, as usual, as an integral on the
solid angleΩ of E(3D). The corresponding evolution equation is obtained by the
product of the Fourier transform of equation (2) with the conjugate transpose
of the Fourier transform of Q and reads

d
dt

Ep(k,t) = Hcp(k,t)+Hsp(k,t)− 2
τ

Ep(k,t) , (5)

where Hcp and Hsp come from the convective term, u ·∇Q, and the stretching
term, KQ, in equation (2), respectively. In equation (5), the contribution, Hcp,
whose integral over k vanishes, has the meaning of a redistribution of spectral
energy among different bands with no net change in the overall energy content.

Right: Spectral balance 2(blue curves), filled circles represent the stretching
term Hsp, the emply circles the convective term Hcp and the triangles the dissi-
pation. Superimposed is the stretching term Hsk of the kinetic energy (red).
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On the contrary, the stretching term Hsp represents a net injection of energy
into the polymeric sub-structure. For a steady state (5) yields the equationZ ∞

0
Hsp(k)dk =

2
τ

Z ∞

0
Ep(k)dk ≥ 0 . (6)

For the macroscopic field the evolution equation for the spectrum

d
dt

Ek(k,t) = Hck(k,t)+Hsk(k,t)−2νk2Ek(k,t)+F(k,t) , (7)

where F is the energy from the forcing, reduces at steady state

−
Z ∞

0
Hsk(k)dk + 2ν

Z ∞

0
k2 Ek(k, t)dk =

Z ∞

0
F(k)dk ≥ 0 . (8)

According to Lumley time criterion, [3], the range of scales where the polymers
can be stretched by the turbulence is confined below the scale rL =

√〈εT〉τ3. In
the present simulation rL = 0.41 and this value is consistent with the crossover
between the spectra, see left panel of figure 1, which identifies, following De
Gennes[3], the k values where polymers are most effective.

At larger Reynolds numbers, such that kF << kL << kη, one should expect
a classical inertial range, with no polymer effect in kF << k << kL with the
energy flux given by the input power 〈W 〉= 〈εT〉. Below, one should observe a
mixed inertial-elastic range, where a leaking cascade progressively reduces the
total energy flux. Equations (6) and (8) lead to the fact that

−
Z ∞

0
Hsk(k)dk =

Z ∞

0
Hsp(k)dk . (9)

It should be stressed that, for each k, −Hsk(k) �= Hsp(k), as shown by the right
panel of figure 1, even if for a steady state, the energy removed from the kinetic
field by the polymers is positive and exactly the same amount of energy feeds
the micro-structure, as shown by equation (9).
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Abstract. The viscosity dependence of two-dimensional turbulence

is studied by means of direct numerical simulation. We consider either

periodic or no-slip boundary conditions. We compare the Navier-Stokes

solutions to those of the regularized Euler equations. The regularization

is perfomred at each time step by applying the wavelet-based CVS filter

which splits turbulent fluctuations into coherent and incoherent contri-

butions. We show that for Re > 105 the dissipation of coherent enstrophy

tends to become independent of Re, while dissipation of incoherent en-

strophy grows logarithmically with Re. In the wall bounded case we

observe an additional production of enstrophy at the wall. As a result

coherent enstrophy diverges when Reynolds tends to infinity, however its

time derivative seems to remain bounded.

Keywords: two-dimensional turbulence, vanishing viscosity limit, no-

slip walls.

In the fully-developed turbulent regime one observes that dissipation be-
comes independent on the molecular viscosity of the fluid for three-dimensional
incompressible flows when Reynolds number is larger than 105. This has been
confirmed by numerical experiments [1]. Here, we will study if incompress-
ible two-dimensional turbulent flows may exhibit a similar behaviour in the
vanishing viscosity limit.

For this, we apply the coherent vorticity simulation (CVS) filter, introduced
in [2], to incompressible decaying two-dimensional turbulence, in periodic and
wall-bounded domains, for Reynolds numbers varying from 103 to 107. CVS
expands the vorticity field into an orthogonal wavelet basis and splits the flow
into two orthogonal contributions: a coherent and an incoherent flow. The co-
herent vorticity field and the induced coherent velocity field are reconstructed
from the largest wavelet coefficients, which correspond to the coherent vortices
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and are the only components advanced in time. In previous work [3], we have
shown that applying the CVS filter at each time step to the inviscid Burgers
equation models dissipation.

We examine the viscosity dependence of the solutions of the two-dimensional
Navier-Stokes equations and we compare them to those of the two-dimensional
Euler equations regularized by the CVS filter at each time step. The solutions
of both equations are computed with a parallelized fully-dealiased pseudo-
spectral code (written in C++), using a fourth-order Runge-Kutta time scheme
and up to 81922 grid points, on the IBM BlueGene/P of IDRIS-CNRS with up
to 1024 processors. For the wall-bounded case we consider a circular domain
and use a volume penalization method to impose no-slip boundary conditions,
as in [4].

In the periodic case (Fig. 1, left), we observe that the enstrophy dissipation
vanishes like (lnRe)−1 in the inviscid limit, which confirms previous results
[5]. In contrast, dissipation of coherent enstrophy does not vanish in the same
limit and tends to become independent of Re.

For the wall-bounded case (Fig. 1, right), we observe an additional produc-
tion of enstrophy at the wall. As a result, coherent enstrophy diverges when
Re → ∞, but its time derivative seems to remain bounded independently of
Re. This may indicate that a balance has been established between coherent
enstrophy production at the wall and coherent enstrophy dissipation.

In conclusion, the above results for two-dimensional turbulence, investi-
gated for Reynolds numbers up to 107, suggest that the dissipation of coherent
enstrophy becomes constant when Re > 105. We propose to define this as the
onset of the fully-developed turbulent regime where viscous dissipation, due
to the fluid’s molecular viscosity, becomes negligible in front of the turbulent
dissipation due to the flow nonlinear dynamics of Euler equations.

Figure 1: Vorticity field at Re = 104, t � 60 turnover times. Left: periodic
domain. Right: circular domain.
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Abstract. We investigate kinetic equations for the description of vor-
ticity statistics in two dimensional turbulence. The assessment of condi-
tional expectations of the turbulent velocity field either by means of direct
numerical simulations or by modeling allows one to formulate stochastic
processes describing the Lagrangian dynamics of point particles.
Keywords: kinetic equation, turbulent vorticity.

Recent experimental progress in particle tracking in turbulent fields has re-
newed the interest in the N-point statistics of turbulent velocity and vorticity
fields. Central quantities are the Eulerian probability distributions (pdf’s) for
the vorticity field ω(x, t),

f ({ωi,xi}, t) = f (ω1,x1; ..;ωN ,xN ; t) = ΠN
i=1 < δ(ωi −ω(xi, t) > , (1)

or the corresponding Lagrangian pdf’s. The brackets denote a suitably defined
statistical average.

The probability distributions (1) obey an infinite set of evolution equations
relating distributions of N points to the one of (N +1) points [1]. Novikov [2]
has pointed out that the introduction of conditional averages formally lead to
closed kinetic equations. In [3] the case of the single point vorticity pdf has
been studied. In the present contribution we pursue this approach for the statis-
tics of two dimensional turbulence, which, as Kraichnan has pointed out in his
seminal work [4], can exhibit an inverse energy cascade. Our procedure will
allow us to make contact with the tetrad models [5], [6], which have revealed
geometric characteristics of turbulence beyond pure scaling properties.

We consider a two dimensional fluid motion, which is exposed to white
noise stirring with spatial correlation < F(x, t)F(x′

, t ′) >= 2Q(x−x′)δ(t− t ′):[
∂
∂t

+u(x, t) ·∇x

]
ω(x, t) = νΔxω(x, t)− γω(x, t)+F(x, t) (2)
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The statistical properties of the turbulence is described by the hierarchy of
evolution equations for the vorticity probability distributions:

(
∂
∂t

+∑
i

∇xi ·U(xi;{ωl,xl}) f ({ωl,xl}; t) = ν∑
i

Δxi f ({ωl,xl}; t)+[
γ∑

j

∂ω j

∂ω j
+∑

jk

∂2

∂ω j∂ωk
(Q(x j −xk)−δ jkε(xl|{ωl,xl}))

]
f ({ωl,xl}; t)(3)

We have introduced the conditional velocities

U(x|ω1,x1; ..;ωN ,xN) =
∫

dω′ω′u(x−x′)p(ω′

,x′

|ω1,x1; ...;ωN ,xN) (4)

as well as the conditional dissipation anomaly field ε(x|ω1,x1; ...;ωN ,xN) ,
where p(ω′

,x′
|ω1,x1; ...;ωN ,xN) denotes the conditional pdf.

Assuming that the conditional expectation values are given as functions of
ωi, xi the kinetic equation (3) can be interpreted as a Fokker-Planck equation
for f ({ωi,xi}), t) with the set of Langevin equations

ẋi = U(xi|{ω j,x j})+ηi(t)
ω̇i = −γωi +H(xi, t) (5)

The fluctuating forces H(xi, t) and ηi(t) are Gaussian white noise forces, whose
statistical characteristics follow from eq. (3).

The conditional velocity fields can be taken from numerical solutions of
the vorticity equation. Figure (1) exhibits an example obtained from a 1024×
1024 simulation of forced two dimensional turbulence as described in [7]. The
topology of the obtained fields reminds one of the velocity field generated by
point vortices, which suggests to investigate stochastic point vortex models.

On the other side it is instructive to model the conditional velocity fields.
The simplest approach is to take the conditional probability distribution on the
basis of a Gaussian approximation. In this case the conditional velocity field
can be evaluated explicitly to yield

U(x|{ω j,x j}) =∑
i, j

ez ×∇xχ(x−xi)C−1(xi −x j)ω j (6)

where C(xi − x j) =< ω(xi, t)ω(x j, t) > is the vorticity correlation tensor and
the stream function is determined according to Δxχ(x−xi) = −C(x−xi). The
conditional velocity field is a superposition of dressed point vortices, i.e. vor-
tices whose radial velocity profiles are modified.

We have investigated the Langevin equation (5) using the Gaussian approx-
imation (6) for three points in a way similar to the treatments of [5] and [6].
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Figure 1: Conditional velocity field U(x|ω1,x1;ω2,x2;ω3,x3) from DNS

We obtain similar phenomena concerning the evolution of triangular configu-
rations. Scaling behaviour of the size is under current investigation. It may
be that in order to obtain a correct behaviour of the size one has to include
terms proportional to ωiω j in (6). The presence of such terms are responsible
for the breaking of time symmetry and detailed balance, and the emergence of
the inverse cacade. This can explicitly be shown considering the case of two
points.
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Abstract. In the paper that we propose to the attention of the Eu-
romech Colloquium we will study the simplest decomposition of a tur-
bulent field and the related simplest interaction of turbulent scales. The
large scale filtering operator is simply given by the two-point average in
space and the associated fluctuation is given by the two-point difference.
In the paper we will present the general properties of this simple decom-
position and the related properties of the associated interaction between
the sum and the difference of a turbulent field. Keywords: Turbulence

The simplest interaction

MASSIMO GERMANO*

structure, Scale interaction.TurbulenceKeywords:

The interest for the universal properties of turbulence dates probably to the
first studies on it, but the great step on is undoubtedly due to the Kolmogorov
assumptions, see Frisch [1] for a recent presentation. The idea that the small
scales of a turbulent flow are asymptotically provided with some geometric and
dynamic universality has been very fruitful and plenty of useful results. During
the years however some doubts on these assumptions have arisen and a more
detailed exploration based on the exact Navier-Stokes equations, conducted in
particular by Hill [2], have paved the way to a reexamination of many assump-
tion concerning the isotropy, the homogeneity and the universality of the small
turbulent scales, see Sreenivasan and Dhruva [3] and Frisch, Bec and Aurell
[4]. One point in particular is the object of an extended study, the assumed
statistical independence of the large and the small turbulent scales that recent
papers have vigorously put on discussion. A simple exact relation equivalent
to the Kolmogorov 4/5 law pointed out by Hosokawa [5] and experimentally
verified by Kholmyansky and Tsinober [6] put a lot of doubts on the assumed
independence of large and small scales under the assumption of isotropic turbu-
lent flows. The same happens for another exact relation derived by the present
author [7] that generalize the Kolmogorov 4/5 law to the case of homogeneous
fields.

Consistently with Kolmogorov all these studies define as a small scale the
difference of a turbulent quantity between two points. The simplest large scale
associated to the two-point difference seems the two-point sum for a lot of rea-
sons. First it is well known that given two random variables their sum and dif-
ference are statistically orthogonal, and in particular if they are jointly normal
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they are independent. Secondly these particular linear combinations represent
the simplest decomposition of a turbulent field. We remark that every approach
to turbulence is based on a decomposition of the original turbulent field in two
or more contributions. Due to the nonlinearity of the physical phenomena the
different modes interact among them and exchange energy. The associated
nonlinearity of the equations produces coupling terms between the different
levels, and the study of such interactions is fundamental both to theory and to
the practical computation of turbulent flows. The Reynolds decomposition, the
spectral and the wavelets decompositions, the proper orthogonal decomposi-
tion, the large eddy decompositions based on hierarchies of filters are different
formulations of such strategy. Multilevel and multiscale methods are more and
more applied to the study of turbulence and the interest for simple decomposi-
tions, particularly in the physical space, is actually very high in order to extend
the study of turbulent flows to nonhomogeneous situations.

Strangely enough the simple decomposition produced by the two-point sum
in space and the associated difference has not received till now a similar inter-
est. We remark that the simplest large eddy simulation of a turbulent field is
that produced by the two-point average, see Germano [8], where it is shown
that the subgrid quantities are intimately related to the two-point difference.
This simple average is a useful tool to understand some peculiar aspects of the
large eddy simulation and the duality between the two-point average and the
two-point difference is important as regards the elementary interaction between
large and small scales. We remark again that since the fundamental paper of
Kolmogorov the statistical properties of the two-point difference have been ex-
plored in great detail both in the case of a velocity field and in the case of a
passive scalar, but strangely enough the study of the statistical properties of
the simplest large eddy scale, the two-point sum, has not received a similar
attention. It is clear that in order to better understand the dependence and the
interaction between large and small scales we need more information on the
two-point sum, in particular as regards its relations with the two-point differ-
ence, and in this paper we will consider them together, the elementary dual
faces of the turbulence representation. Main results are an equivalent form of
the generalized inertial Kolmogorov law, and an equivalent form of the Yaglom
[9] inertial law for passive scalars.
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Abstract. Statistics of a passive scalar flux and scalar variance trans-
fer in homogeneous isotropic turbulence under the mean constant scalar
gradient are studied by using very high resolution DNS. It is found that
the spectrum of the scalar flux obeys Lumley’s scaling Euθ ∝ k−7/3 in
the inertial range and Nusselt number increases as Nu ∝ R2

λ for Sc = 1.
One point PDF of the scalar flux is negatively skewed and exponential.
In order to analyze intermittency of transfer flux of the scalar variance
to small scales, local scaling exponent ζLθ

p (r) of the combined velocity-

scalar structure functions
〈
(δuL

r (δθr)2)p/3
〉
∝ rζ

Lθ
p is computed and com-

pared to those of the velocity and scalar.

Keywords: scalar turbulence, scalar flux, Nusselt Number, scaling expo-
nents

We study statistics of a passive scalar flux q = u3θ and inter-scale transfer
flux of the variance of scalar increment r−1δuL(δθ)2 under a uniform mean
scalar gradient Γ = 〈∇3T 〉 for Sc = 1 by using the very high resolution DNS
with grid points up to 20483 [1, 2]. The Taylor microscale Reynolds number
Rλ is 174,263,468, and 586.

Three dimensional spectrum of the scalar flux is shown in Fig. 1 and the
compensated spectrum Γ−1ε−1/3k7/3Euθ(k) is in the inset figure for Rλ = 586
[2]. The present DNS data supports the Lumley scaling, Euθ(k) ∝ k−7/3 [3].

A nondimensional measure of the scalar flux is the Nusselt number defined
by Nu =−〈θu3〉

/
κΓ, where κ is the molecular diffusivity. Figure 2 shows that

DNS data obey Nu ∝ R2
λ irrespective of Schmidt (Prandtl) number [4], while

experimental data follow Nu ∝ R1.09
λ in which the power is obtained by the

least square fit (note that Peλ = u′λ/κ = RλSc) [5]. If we neglect the diffusion
effects, then the scalar fluctuation θ is given by time integral of the Lagrangian
velocity u3(x, t|s) along fluid trajectory and we can compute the mean scalar
flux as

〈θ(x, t)u3(x, t)〉=−Γ
∫ t

−∞
〈u3(x, t|s)u3(x, t|t)〉ds =−Γu′2TL =−CqΓu′L
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Figure 1: Three dimensional spectrum
of the scalar flux. Inset figure shows
the compensated three dimensional
spectrum Γ−1ε−1/3k7/3Euθ(k) for Rλ =
586 at Sc = 1.
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6 = 1.47± 0.02,ζθ6 =

0.99±0.05.

where Cq is a nondimensional positive constant of order one, and thus we obtain
Nu =−〈θu3〉

/
κΓ = CqRLSc ∝ R2

λ.

Figure 3 shows normalized probability density functions of the scalar flux
fluctuations for Rλ = 174,263,468,586, and inset figure shows PDFs for Sc =
0.1,1,2 at Rλ = 170. The curves collapse well onto a single curve, suggesting
that the scalar flux PDF is insensitive to Rλ and very weakly dependent on
Sc. It can be found from a simple argument on the dimensional ground that
PDF of q is of the form of P(q)dq ∝ |q|−1/2 exp(−c±q/σq), where σq is the
standard deviation of q and c± are nondimensional positive constants of the
order of unity. Asymmetry of the scalar flux PDF is due to c− < c+, and
c− = 0.77,c+ = 1.85 for the present DNSs.

The scalar variance is transferred to small scales by the action of fluid mo-
tion and the scalar transfer in the inertial convective range is well described
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by the 4/3 law SLθ
3 =

〈
[δuL

r (δθr)2]p/3)
〉
|p=3 = −(4/3)χr, where χ is the av-

erage rate of the scalar dissipation. Then the average rate of transfer of the
scalar variance across scale r is estimated as ∂SLθ

3 /∂r = −(4/3)χ, and from
this observation we may regard SLθ

3 /r as a surrogate transfer flux of the vari-
ance of the scalar increment (a passive scalar analogue in real space to the
kinetic energy transfer flux in the wavenumber space). It is important and in-
teresting to examine intermittency of the transfer flux of the scalar increment
variance and to compare with that of the transfer flux of the kinetic energy
SL

3/r = r−1
〈
[(δuL

r )
3]p/3)

〉
(=−(4/5)ε). For this purpose we have computed the

local scaling exponents of the combined velocity-scalar structure functions and
plotted in Fig. 4 as well as those of the structure functions of the velocity and
scalar alone; SL

6 ∝ rζ
L
6 ,SLθ

6 ∝ rζ
Lθ
6 ,Sθ

6 ∝ rζ
θ
6 for Rλ = 586 and Sc = 1. It is seen

that each curve has a single plateau in the range about 100 < r/η < 300, and
ζθ6 < ζLθ

6 < ζL
6, which means that the transfer flux of the passive scalar is more

intermittent than that of the kinetic energy but less intermittent than the passive
scalar. The value ζLθ

6 = 1.47± 0.02 obtained by the present DNS is slightly
lower than the experimental value 1.52 [5]. We will present several results on
the scaling exponents.
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Abstract. Pair dispersion is studied in a turbulent flow, generated
by Fourier transforming the dynamics of the GOY shell model into real
space. At very high Reynolds numbers we investigate the cross-over scale
between the Batchelor and Richardson regimes. In particular we study
how the cross over time scales with the initial separations of a particle
pair.

Pair Dispersion in a Shell Model Field

MOGENS H. JENSEN*, BO S. MADSEN*, SAGAR CHAKRABORTY**

Keywords: Turbulent relative dispersion, Richardson-Obukhov law, Batch-
elor’s scaling law, cross-over time.
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We study pair dispersion in a turbulent flow, applying the GOY shell model
[1] and Fourier transforming the complex shell-velocities back into real space
[2]. This procedure results in strongly turbulent velocity field (Reynolds num-
bers up to∼ 1014) where the dispersion of pair of particles can be easily studied
by advecting the passive particles in the velocity field. In particular, we can in-
vestigate how the dispersion depends on the initial separations.
From the work of Richardson[3] (and subsequently Obukhov[4]), we have the
well-known Richardson-Obukhov law (valid in the inertial range):

〈
r(t)2

〉
=

gεt3. Here, r(t) is the separation of the pair at time t, ε is the energy dissipation
rate per unit mass, and g is termed as the Richardson constant. Batchelor[5]
extended the study to both short-time and intermediate-time, and obtained

〈
|r(t)2− r2

0|
〉

=
{

11
3 C2ε2/3r2/3

0 t2 t � t0
gεt3 t � t0

, (1)

where C2 is the Kolmogorov constant for the longitudinal second-order velocity
structure function and

t0 ≡

(
r2

0

ε

)1/3

, (2)

the classical correlation time of an eddy of size r0, is the time for which a
particle-pair “remembers” its initial separation. t0 is also called Batchelor time.
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We have numerically investigated this “cross-over time” between the two scal-
ings,∼ t2 and∼ t3, and investigated how it is related to r0. In what follows, we
shall mention the first relation in equation (1) as Batchelor’s scaling law; the
second one is obviously the Richardson-Obukhov law.
Interestingly, with our simulations, both scalings are clearly visible as shown
by a representative figure in the left panel of figure (1). Please note that we
have plotted

〈
|r(t)− r0|

2
〉

and not
〈
|r(t)2− r2

0|
〉

on the y-axis. This is just to
make contact with the experimental results[6] which demonstrate that the cor-
relation between the initial separation and the relative velocity of the pair may
not be neglected when the flow is not perfectly homogeneous. However, the
GOY model— by construction— is a shell model of a perfectly homogeneous
and isotropic turbulence. So, within the paradigm of shell models, probably it
doesn’t make much of a difference if one chooses to work with

〈
|r(t)2− r2

0|
〉
.
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Figure 1: Left figure: the initial separation r0 is 10−4 and the data are averaged
over 10000 different simulations. One can distinctly note the presence of both
the Richardson-Obukhov law and the Batchelor’s scaling law. The cross-over
time t0 is somewhere in the third decade on the x-axis. The deviation of the
blue curve from Richardson-Obukhov scaling at higher times is due to the fact
that the pair-separations are no longer in the inertial regime. Right figure: the
cross-over times t0 plotted the initial pair-separations r0. The dashed line has
the theoretical slope predicted by Batchelor.

With no knowledge of the exact functional dependence of
〈
|r(t)− r0|

2
〉

on
various parameters of the flow, it is quite a tough task to exactly locate t0. How-
ever, we can use the following rather crude but effective method to see whether
equation (2) is validated by our simulations. To investigate where the crossover
happens, we found the slope of the blue curve in figure (1) at various points
on it. Obviously, when the slope comes close to zero, we are in Richardson-
Obukhov scaling regime. As the crossover happens before the slope is zero,
we decide on the following algorithm: determine the time corresponding to
the point where the slope is −0.5 and decide to call it t0; repeat the procedure
for the curves with various different r0. We have used the post-processed data
generated this way to get right panel of figure (1) where we plot the cross-
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over times t0 versus the initial pair-separations r0. One can note the excellent
agreement of the data with the theoretical prediction (the dashed line). It is a
remarkable achievement for a model as simple as GOY shell-model of turbu-
lence.
Similar result is obtained if one repeats the aforementioned algorithm for the
red curve in figure (1) focusing on the Batchelor’s scaling regime.
Another way to find the relation between the r0 and t0 comes from the fact
that Richardson-Obukhov scaling is

〈
r2

〉
= gεt3 while Batchelor considered〈

|r(t)2− r2
0|

〉
. So, if we plot

〈
r2

〉
and

〈
|r(t)2− r2

0|
〉

versus time, they will be-
come indistinguishable when Richardson-Obukhov scaling sets in and this will
happen around t0 for the corresponding r0. Thus, one can conveniently devise
an algorithm to find t0 in this case. Though we do not supply a figure here, we
just mention that from this indirect method too equation (2) stands validated.
In the closing, we mention that this is probably for the first time that a
shell-model of turbulence has shown the simultaneous existence of both the
Richardson-Obukhov and the Batchelor regimes in turbulent pair dispersion.
Whereas devising a better method of finding t0 would be worth investigating,
the temporal extent over which these laws are valid can easily be increased if
one uses a larger number of shells.
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Abstract. Numerical and phenomenological studies of the small scale
distribution of energy in three regimes in the parameter space of Rossby
and Froude numbers are presented for high Reynolds number rotating
and stably stratified flows in the Boussinesq approximation. We ex-
ploit regimes in which near-linearization of the potential vorticity con-
strains the distribution of horizontal kinetic energy and potential energy
in fourier space. Data from high-resolution simulations of the Boussi-
nesq equations spanning a wide range of Rossby and Froude numbers
are used to check our predictions. We show that the distribution of hori-
zontal kinetic energy and potential energy in wavenumber space depends
on both the ratio Ro

Fr as well as on the aspect ratio kz
kh

of the wavevector
kkk. These results do not require projections or filtering of the Boussinesq
solutions, and thus may be useful in applications to experimental and
empirical data.

The potential vorticity fluctuation q for the rotating Boussinesq equations is
given in its non-dimensional form in physical and spectral space by:

q = ωωω ·∇θ+Ro−1∂θ
∂z
−Fr−1ω3

q̃ = ω̃ωω · ∇̃θ̃− iRo−1kzθ̃+ iFr−1khũh (1)

where Ro (Rossby) and Fr (Froude) numbers are the non-dimensional rota-
tion rate and bouyancy frequencies respectively, ωωω is the local vorticity, θ
is the scalar (temperature) dimensioned as the velocity. In what follows we
will assume that viscosity ν→ 0 and scalar diffusion coefficient κ→ 0 such
that Prandtl number Pr = ν/κ = 1, and the force F is confined to the low-
est modes. Thus we assume a conventional ‘inertial-range’ of turbulent scales
wherein the transfer of conserved quantities dominates over both their dissipa-
tion and forcing [1]. Following Kraichnan for 2d turbulence [2] and Charney
for quasi-geostrophy turbulence [3] we seek to find constraining relationships
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system
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2 SUSAN KURIEN

between energy and potential enstrophy for the rotating Boussinesq system and
thus find universal scaling properties of energy spectra.

Assuming that velocity, vorticity and scalar remain reasonably bounded,
the potential vorticity linearizes in the dynamical variables, while Q becomes
a quadratic simply related to energy (in fourier space) in the following lim-
its. The final result in each limit is a derivation of the scaling exponents for
the high wavenumber for horizontal kinetic and potential energy spectra, as
given below. The details of these calculations involve simple dimensional and
phenomenological arguments which are given in [4].

For Ro = Fr = ε→ 0 and small aspect ratio modes
kh

kz
� 1

Eh(kh,kz)∼ ε2/5
Q k−3

h . (2)

where the horizontal kinetic energy Eh(kh,kz) = 1
2 |ũh(kh,kz)|2 and εQ is the

potential enstrophy dissipation rate.

For Ro = Fr = ε→ 0 and large aspect ratio modes
kz

kh
� 1

P(kh,kz)∼ ε2/5
Q k−3

z (3)

where the potential energy spectral density is P(kh,kz) = 1
2 |θ̃(kh,kz)|2

For Fr� Ro, Ro∼ O(1),

Eh(kh)∼ ε2/5
Q k−3

h (4)

independent of kz.
And finally for Ro� Fr, Fr ∼ O(1),

P(kz)∼ ε2/5
Q k−3

z (5)

independent of kh.
We check each of the predictions (2)-(5) using simulations of the Boussi-

nesq equations in unit aspect ratio, 6403 gridpoints, stochastic forcing of the
velocity and scalar in the low modes (peaked at k f = 4), hyperviscosity power
8 for the dissipation scheme. Figure 1 shows the results. For Ro = Fr and both
small, the dependence of the scaling regime of P(kh,kz) and Eh(kh,kz) on the
aspect ratio of the wavevector is clearly displayed while the scaling itself is
even steeper than the k−3 predicted. In the lower half of the figure, the depen-
dence of the scaling on the aspect ratio nearly vanishes with near collapse of
the curves for Eh(kh,kz) as a function of kh for various fixed kz and significant
(though not as pronounced) collapse for P(kh,kz) as a function of kz for various
fixed kh.
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Figure 1: Top left: Ro = Fr = ε→ 0, the steep scaling of Eh(kh,kz) in kh for
small aspect ratio modes. Top right: Ro = Fr = ε→ 0, the steep scaling of
P(kh,kz) in kz for large aspect ratio modes. Bottom left: Fr � Ro ∼ O(1),
Eh(kh,kz) becomes independent of kz. Bottom left: Ro� Fr ∼ O(1), P(kh,kz)
scaling in kz becomes (nearly) independent of kh.
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The statistical properties of small-scale Eulerian velocity increments is respon-
sible for the way, initially close pairs of tracers separate in turbulent flows. As
a result, depending on the values of time and space scales, we can observe dif-
ferent regimes for relative dispersion, see e.g. [1]. The application of similarity
theory for the stationary velocity statistics is at the base of the turbulent La-
grangian relative dispersion for inertial particle pairs also, i.e. of small, finite-
size particles with a density contrast with respect to the advecting flow. Heavy
particles of different radius a and density ρp can be described in terms of their
Stokes number St, defined as St = τs/τη, where τη is the flow Kolmogorov
timescale. The particle response time is τs = a2(ρ f +2ρp)/(9νρ f ), a being the
particle radius much smaller than the Kolmogorv scale η, and ρ f and ν are the
fluid density and kinematic viscosity, respectively.
A phenomenon which gathered much of the attention is preferential concentra-
tion, i.e. the tendency of heavy particles with moderate inertia to concentrate in
specific (hyperbolic) regions of the flow. More recently, it has been shown that
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Abstract. Relative dispersion of heavy point particles is studied by
means of direct numerical simulations of homogeneous and isotropic tur-
bulence at the Taylor-scale Reynolds number Reλ = 400. Numerical data
show that inertia can significantly influence particles dynamics and dis-
persion: i) affecting small-scale velocity increment statistics; ii) inducing
strong deviations from the Richardson behaviour, typical of tracers. In a
nutshell, turbulent dispersion of heavy pairs is found to be governed by
two temporal regimes. The first is characterised by an increased diffusiv-
ity with respect to tracers, due to the presence, at large Stokes numbers,
of small-scale caustics in the particle velocity statistics: it lasts until par-
ticle velocities have relaxed towards the underlying flow velocities. Next,
a second regime starts where heavy particles separate as tracers parti-
cles would do, but their diffusivity is depleted in amplitude.

Dispersion of heavy particles in turbulent fl ows
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when inertia is high enough, the particle pair velocity difference may exhibit
non trivial behaviour with scale, a phenomenon connected to the formation of
caustics, see e.g. [2]. This implies that, for moderate inertia, spatially close
particles can have very large velocity difference, and in the limit of St � 1,
when the Stokes time is larger than any turbulent flow time scale, nearby parti-
cles can move with uncorrelated velocities.
Here, we discuss the role of inertia in relative dispersion by considering pairs
of heavy particles, starting from initially close positions. In our set up, ap-
propriate for dilute suspensions of small (point) particles, the equation ruling
their dynamics is: Ẍ(t) = −1/τs

[
Ẋ(t)−u(X,t)

]
, where the particle position

and velocity are X and V = Ẋ, respectively. Also, u(X(t),t) is the Eulerian
fluid velocity evaluated at the particle position. In Fig. 1, it is plotted the
growth with time of the mean square pair separation 〈R2(t)|R(t0) = R0〉, where
R(t) = X1(t) − X2(t) and R0 is the pair initial distance. It is clear from the
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Figure 1: Mean square separation versus time, for heavy particles at changing
St and for the initial distance R0 ∈ [4 : 6]η. Left: data for St = 0.16,0.6,1,
compared with tracers (St = 0). Right: data for pairs with strong inertia,
St = 5,10,30,70, and tracers. Average is performed over 104 pairs per Stokes
number. Particles move in a homogeneous and isotropic flow, which solves
Navier-Stokes eqs. in a cubic, periodic box with 2048 collocation points per
spatial direction. Reynolds number is Reλ = 400. Details can be found in [3].

right panel that pairs with small to moderate Stokes numbers, up to St � 1 -
where preferential concentration is maximal-, are not really affected by iner-
tia, at least for such low order moments of the separation. We remark that
the long time behaviour agrees with the Richardson law 〈R2(t)〉 ∼ t3. On the
contrary, particles with larger St, strongly deviate from the tracers behaviour.
At intermediate time lags, they separate much faster than tracers would do;
next, after a time lag that varies with inertia, they separate in time as trac-
ers, but with a depleted prefactor, which is again function of the inertia. This
can be understood as follows: for pairs of small inertia, the relative velocity
difference at initial time, δR0V = V1(t0)−V2(t0), is of the order of the fluid ve-
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locity difference at that scale. This is immediately clear if we consider the pair
diffusivity d/dt〈R2(t)〉 = 2〈R · δRV〉, (see also [4]). For St ≤ 1, δRV � δRu,
and thus according to the similarity theory d/dt〈R2(t)〉 ∝ 〈R2(t)〉2/3 (see right
panel of Fig. 2). Differently, for pairs with moderate-large St, initially the rel-
ative velocity difference δR0V is much higher than that of tracers. It takes a
time of the order of the particle Stokes time τs for such velocity to decay on
that of tracers pairs (see [3]): before such time, heavy particles separate ac-
cording to an almost ballistic motion which results in a diffusivity scaling as
d/dt〈R2(t)〉∝ 〈R2(t)〉1/2. After such transient, pair velocity difference has syn-
cronised with the fluid one, except for an amplitude prefactor which decreases
as inertia increases. This implies that heavy pairs diffusivity recovers that of
tracers, but with a smaller amplitude.
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Figure 2: Pair diffusivity versus the square relative separation, at varying iner-
tia. Average is performed over the same data of Fig.1. Dashed lines give the
diffusivity scaling ∼ 〈R2〉1/2 for the quasi-ballistic motion, and ∼ 〈R2〉2/3 of
tracer diffusion.
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Abstract. Three-dimensional particle tracking velocimetry (3D-PTV)
was applied to measure acceleration and spatial velocity gradients in
quasi-homogeneous and isotropic turbulent flow. The focus is on the
spatial distribution of extreme values of acceleration with respect to the
fields of vorticity and rate-of-strain. We show that strong acceleration is
not only an “attribute” of strong vorticity, but that it occurs with equal
probability in the regions of strong strain. Keywords: particle tracking,

Introduction Accelerations in turbulent flows are intimately related to the field
of spatial velocity gradients. Results of acoustic tracking [1] had shown that
strong vorticity filaments, which are surrounded by strong strain, are respon-
sible for intense acceleration. Numerical studies [2, 3] demonstrated that high
acceleration events appear in intense vorticity regions and that they are mainly
associated with “vortex trapping”. Other authors, e.g. [4] suggest that high ac-
celeration events occur at stagnation points, rather than strong vortices. High
resolution numerical simulations of [5] proposed that fluid particles are drawn
into zones of high vorticity with a larger acceleration compared with zones of
high strain rate, although the contrast becomes weaker at high Reynolds num-
ber. At higher Reynolds numbers, vorticity time scales become very short,
therefore vortex orientation can not be maintained for a substantial period of
time. In this work both, acceleration and the velocity gradient tensor are ac-
cessed instantaneously in a quasi-homogeneous and quasi-isotropic flow. We
demonstrate that high acceleration occurs due to vortex trapping and due to
straining motion in the so-called ”jet colliding” situations, first described by
[6].
Experimental method Lagrangian trajectories of fluid elements in water are
obtained by tracking neutrally buoyant particles in space and time in the setup
described elsewhere [7]. Parameters of the turbulent flow as obtained from
PTV measurements are given in the following table:
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CH 8093 Zurich, Switzerland

†. Turbulence Structure Laboratory, School of Mechanical Engineering, Tel Aviv University, Ramat
Aviv 69978, Israel.

†∗ Corresponding author, e-mail: alexlib@eng.tau.ac.il

Risø National Laboratory, DK-4000 Roskilde, Denmark.

Turbulence Structure Laboratory, School of Mechanical Engineering, Tel Aviv University, Ramat

Institute of Environmental Engineering, Swiss Federal Institute of Technology, ETH Hönggerberg,∗
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Reλ σu σa L ε η τη
84 15mm/s 31mm/s2 48mm 20mm2/s3 0.5mm 0.2s

Results We use conditional sampling analysis to probe the distributions of en-
strophy and strain in respect to the acceleration. The results are presented
for the whole dataset and separately for our conditional subsets of the data
(⟨ω2⟩ ≈ ⟨2s2⟩ ≈ 20 s−2): (1) low gradients, i.e. ω2 < ⟨ω2⟩, s2 < ⟨s2⟩, (2) high
vorticity, ω2 > ⟨ω2⟩, ω2 > 2s2 (i.e. below the separatix in 1b), (3) high strain ,
2s2 > ⟨2s2⟩, 2s2 > ω2 (i.e. above the separatix).

Firstly, figure 1a presents the probability density functions (PDFs) of the
acceleration magnitude ∣a∣. We observe that acceleration tends towards higher
values for both, high enstrophy, and high strain. In figure 1b acceleration mag-
nitude is shown as the joint PDF conditioned on both, enstrophy and strain,
i.e., (ar.m.s.;ω2,s2)/ar.m.s.. The horizontal and vertical lines in figure 1b mark
the average strain and enstrophy. The lower left region contains two thirds of
all events that fall into the “low gradient” region and the high strain and high
enstrophy region contain each 1/6 of all events. It appears that two distinct
populations of intense acceleration co-exist. One for high enstrophy and lower
strain, where conditional mean values are up to 5 ar.m.s.. This population con-
tains the events that are referred to as “vortex trapping” events. The second
population with high acceleration is governed by high strain and lower en-
strophy where conditional means reach values up to 4 ar.m.s.. This region can
presumably be associated with “jet colliding” events.
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Figure 1: (a) PDFs for a conditioned on low velocity gradients, high enstrophy
- low strain and high strain - low enstrophy. (b) ar.m.s. conditioned on joint PDF
of enstrophy and strain. The vertical, horizontal and diagonal dashed lines are
at ω2 = ⟨ω2⟩, s2 = ⟨2s2⟩, and ω2 = s2, respectively.

Summary and conclusion Acceleration in a quasi-isotropic turbulent flow has
been studied via particle tracking velocimetry with particular attention to the
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relation of intense acceleration events with the velocity gradient fields (strain,
shear and vorticity), obtained simultaneously. On a plane spanned by vorticity
and strain the joint probability density function forms an arrow tip like pattern.
On this plane, we identify three regions: low gradients, anti-correlated moder-
ately strong strain and vorticity regions. In the ω2, s2 arrow tip, we find that
the most intense acceleration events are comprised by two distinct populations
of either high vorticity or high strain.

The presented work adds to the understanding of how the magnitude of total
acceleration depend upon the field of velocity gradients in a complicated way
and how their interplay affects important issues such as the energy flux over
scales.
Acknowledgements The authors would like to thank the following funding
sources: A. Liberzon visits to ETH have been supported by the ERCOFTAC
visiting scientist program.
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Q is the second invariant, Q = 1/4(ω2 −2s2), of the velocity gradient ten-
sor Ai j and R is its third invariant, R = −1/3si js jkski − 1/4ωiω jsi j. In joint
PDF plots of Q versus R a qualitatively identical ‘tear drop’ shape for different
kinds of turbulent flows was found by a number of investigators. [1] argue that
the shape is a universal characteristic of the small-scale motions of turbulence.
This statement is corroborated by a compilation of Q− R plots of different
flows, [6], and velocity gradient measurements at Reλ = 6600, see [2]. The
most characteristic feature is that in strain dominated regions the strain pro-
duction term, −si js jkski, is dominant over ωiω jsi j, resulting in the so-called
Vieillefosse tail, see [7].

Here we expand the {Q;R} space to three dimensions (3d) by the decom-
position of R into its strain production −1/3si js jkski and enstrophy production
1/4ωiω jsi j terms. For our analysis we have used the JHU Turbulence data-
base that is developed as an open resource by the Johns Hopkins University,
see [5, 3]. The data is from a direct numerical simulation of forced isotropic tur-
bulence on a 10243 periodic grid with a Taylor Reynolds number is Reλ = 237.
Similar to {Q;R} space, see [4], we define the conditional mean rates of change
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Résumé. The two dimensional space spanned by the velocity gradient
invariants Q and R is expanded to three dimensions (3D) by the decom-
position of R into its strain production −1/3si js jkski and enstrophy pro-
duction 1/4ωiω jsi j terms. The {Q;R} space is a planar projection of the
new 3D representation. In the {Q;−sss;ωωs} space the Lagrangian evo-
lution of the velocity gradient tensor Ai j is studied via conditional mean
trajectories (CMT) as introduced by [4]. From an analysis of a numeri-
cal data set for isotropic turbulence of Reλ ∼ 237, taken from the JHU
Turbulence database, we observe a pronounced cyclic evolution that is
almost perpendicular to the Q−R plane. The relatively weak cyclic evo-
lution in the Q−R space is thus only a projection of a much stronger
cycle in the {Q;−sss;ωωs} space. Keywords : velocity gradient, dyna-

Keywords: velocity gradient, dyna-mics, invariants.

Abstract.



FIGURE 1 – CMT’s of the evolution of Ai j in the {Q;−sss;ωωs} space are
shown for two different views inside V95% represented by ribbons, with the
arrows indicating the direction of the CMT’s. The surface with the discriminant
D = 27/4 ·R2+Q3 = 0 is shown as a wire mesh. The view point of a) is chosen
such that the envelope of the ribbons resemble the ‘tear-drop’ shape and the
clockwise cyclic evolution, known from the 2D Q−R representation. The 3D
view (b) reveals the cyclic evolution more clearly.

for the {Q;−sss;ωωs} space as

vQ = 〈DQ
Dt

· τ3
η | Q,−1/3

√
2sss,1/4

√
2ωωs〉

vsss = 〈D(−1/3
√
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√
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· τ4

η | Q,−1/3
√

2sss,1/4
√

2ωωs〉. (1)

To illustrate that the Q − R plane is a projection of the {Q;−sss;ωωs}
space we show in figure 1a the evolution of conditional mean trajectories
(CMT’s) starting from the center of each bin within V95% from a view point

approximately perpendicular to the Q−R plane, i.e., {Q ·e1; [−1/3
√

2sss ·e2−
1/4

√
2ωωs · e3]}. The surface of D = 0, with the discriminant D = 27/4 ·R2 +

Q3, is rendered as a wire-mesh. From this view point the well known clock-
wise evolution is evident in the enstrophy dominated regions where Q > 0,
while around the Vieillefosse tail the evolution is less clear. However, if the
view-point is moved such that it is facing almost the Q−ωωs plane (fig. 1b),
our main result becomes much clearer : There is a pronounced anti-clockwise
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cyclic evolution, with a rotation axis that is almost perpendicular to the Q−R
plane. This non trivial cyclic evolution is one of the manifestations of the time
irreversibility of turbulent flows, as reflected by other manifestations, such as
positive net enstrophy and strain production and the 4/5 Kolmogorov law.
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Abstract. Cloud-clear air mixing is investigated in the laboratory

experiment by means of Particle Imaging Velocimetry (PIV). It occurs

that turbulent velocities depend on thermodynamic contrasts between

the cloud and its environment. Evaporative cooling at the edges of

cloud/clear filaments and/or uneven mass loading result in buoyancy

fluctuations which affect the smallest scales of turbulence. These effects

are illustrated by means of second order structure functions of velocity

field.

Keywords: turbulent mixing, anisotropy, clouds.

Experimental evidence of the small-scale turbulence in clouds is very lim-
ited. By small-scale we understand here turbulence close to dissipation range,
i.e. for the range of scales from 10cm down to a fraction of 1 mm. Since it is
hard to observe it in natural conditions [1], [2], laboratory simulations mimick-
ing some aspects of cloud-clear air turbulent mixing is prformed. The setup of
these experiments closely follows earlier studies by [3],[4],[5].

In brief, cloud-clear air mixing is investigated by observation of motion of
cloud droplets in a glass walled chamber. A box placed on the top contains
saturated air with suspended water droplets of diameters in range from 7 to
25 μm, similar to those in real clouds. After opening the hole between the
chambers air from the box descends, forming a negatively buoyant, turbulent
plume undergoing mixing with the unsaturated air in the main chamber. The
plume is illuminated with a narrow sheet of laser light in a vertical cross-section
through the central part of the chamber. Light scattered on cloud droplets is
imaged with a high-resolution CCD camera. PIV technique is used to study
the flow (Fig.1).

Similar mixing process was studied in a series of idealized numerical simu-
lations of cloud-clear air mixing [6], [7], [5], [8]. Key findings from numerical
simulations and experiments can be summarized in the follwing way. Large
scale velocity fluctuation lead to filamentation of the cloud. At the cloud-clear
interface droplets evaporate. Evaporative cooling and uneven mass loading
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Figure 1: A sketch of the experimental setup. 1 - laser, 2- beam-shaping optical
system, 3 - light sheet at the vertical cross-section through the cloudy plume
undergoing mixing with the environment in the chamber, 4 - camera.

effect in small scale buoyancy fluctuations. These fluctuations result in pro-
duction of additional, small scale turbulence. Since priduction of turbulence
in small scale is anisotropic, small-scale velocity fluctuations are anisotropic
with preferred vertical direction. Deatils of mixing process depend on thermo-
dynamical properties of cloud and environment, mass fraction of the cloudy air
in the mixing event, cloud droplet size spectrum and turbulent kinetic energy
flux cascading down from large scales.

In the present study new laboratory results, focusing on the effect of evap-
orative cooling on the properties of small-scale turbulence are presented. A
range of thermodynamic conditions and possible effects of mixing on buoyancy
are illustrated by mixing diagram (Fig.2) showing dependence of a buoyancy
temperature Tb ( [9], eq. 4.3.6 ) on mixing proportion:

Tb = T

[
1+

(
Rv

Rd

−1

)
q− x

]
. (1)

Here T is the air temperature, Rv and Rd are gas constants for water vapor
and dry air, q and x are the water vapor and cloud water contents. It can be seen,
that conditions cover a range of buoyancy effects, allowing for more detailed
investigation of the influence of evaporative cooling on small-scale turbulence.

An example result is presented in Fig.3. It shows second order structure
functions of velocity drived from PIV of cloud droplets at various relative hu-
midities in the environment. It can be seen that decrease of the environmental
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Figure 2: Mixing diagram illustraties a range of buoyancy fluctuations inside
the cloud chamber at various specific humidities of the environmental air at
given temperature and liquid water content of cloud. Horizontal axis depicts
mixing proportion k. k=0 indicates environment, k=1 indicates cloud, inter-
mediate values correspond to proportion of both spieces in the mixing event.
Vertical axis - buoyavcy temperature of the homogeneized mixture. High bu-
ouancy temperature corresponds to low deisity of air (cloud). Successive ”v
shape” lines show dependence of densiity temperature of mixture on the rela-
tive humidity of the environment. At low humidities potential for evaporative
cooling is high, as indicate absolute minima of the density temperature. At
relative humidities higher than 0.6 the maximum density temperature of the
mixture is lower than that of the cloud.

Figure 3: Second order longitudinal structure functions of horizontal velocity
component for various relative humidities of the environmental air.
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hymidity results in increase of squared velocity differences. It can be inter-
preted in a following way: at given temperature and constant conditions in
cloud (Fig.2) a possible buoyancy production due to evaporative cooling de-
pends on the relative humidity of the environment. Buoyancy effects produce
turbulent kinetyc energy in small scales, which is reflected by the increase of
squared velocity differences.

More detailed analyses will be presented at the ETC512 meeting.
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Abstract. The web-services based public turbulence database enables
user-friendly access to 27-Terabytes of data from a 10244 space-time his-
tory of isotropic turbulence (http://turbulence.pha.jhu.edu). It is used in
this work to carry out Lagrangian analysis. The focus of the analysis is
on time correlations of dynamically important tensor elements. Tensor-
based time correlation functions show that rotation has much longer time
memory than strain and the difference is larger than what had been pre-
viously observed from magnitude-based time correlations. Conditional
averaging shows that vortical coherent structures (worms) are not the
major reason for the difference between rotation and strain-rate tensor
element memory time. A similar analysis for the pressure Hessian tensor
exhibits significantly different correlations between the trace and devia-
toric parts of the pressure Hessian.

Keywords: web-based public turbulence database, isotropic turbulence,

DNS, lagrangian time correlations.

The advent of increasingly powerful supercomputers has presented both oppor-
tunities and challenges for high-fidelity direct numerical simulations (DNS) of
turbulence in recently years. It makes it possible to glean fundamental physical
insight into fine-grained turbulence, whereas the generated massive datasets
create serious new hard challenges and hamper practical numerical experi-
ments due to the shortage of easy access to the vast amounts of data gener-
ated, especially for high resolution simulations [1], or more complex problems
such as passive scalar turbulent mixing ([2]) and magnetohydrodynamic turbu-
lence. Owing to the storage limitations within typical computational clusters,
numerical experiments must be mostly performed simultaneously along with
the simulation. Any modifications or new designs of numerical experiments
means repeatedly running the DNS duplicating the computation expense. Even
though a few large datasets from high-resolution simulations are stored, they
are practically inaccessible to most who lack the cyber resources to handle
the massive DNS data. The web-services based public turbulence database
[3] applies “database technology” to computational fluid dynamics (CFD) and
turbulence research. This database enables users to access 27-Terabyte DNS
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data and extract information such as velocity, pressure, and their derivatives
simultaneously for accurate analysis of isotropic turbulence in a user-friendly
fashion. Details about the isotropic turbulence DNS data and the usage of the
web-based database are found at http://turbulence.pha.jhu.edu.

The Lagrangian evolution of the velocity gradient tensor has received con-
siderable attention since the works of Vieillefosse [4] and Cantwell [5] on the
dynamics of Ai j = ∂ui/∂x j that is obtained by taking gradient of the Navier-
Stokes (NS) equation. Neglecting viscous effects and assuming the pressure
Hessian (Hi j ≡ ∂2 p/∂xi∂x j) isotropic lead to a closed formulation known as the
Restricted-Euler (RE) equations. With analytically treatable solutions for the
full tensor-level, the RE system provides a fruitful starting point for small struc-
ture modeling although there exist deficiencies of the RE dynamics which pre-
dicts non-physical finite-time singularities [5] and displays various differences
with true NS dynamics. Efforts are continuing on finding and modeling regu-
larization properties of the neglected viscous and anisotropic pressure Hessian
terms, e.g.[6]. Despite recent progress, the inability to account for anisotropic
pressure Hessian and viscous effects accurately continues to limit the useful-
ness of the RE dynamic models, especially for relatively high Reynolds (Re)
number flows.

Using the public web-based turbulence database mentioned above, we are
able to track [7] a large number of fluid particles randomly selected in the
computation domain. Plot (a) in Fig. 1 shows the representative 100 parti-
cle trajectories in 3D following the time-evolution through an entire turn-over
time-scale of the flow. It visualizes a glimpse of the complex turbulent mo-
tion. We focus on Lagrangian statistics of dynamically important tensor-based
time correlation functions such as Ai j and Hi j. First, it is found that rotation
has a significantly longer time correlation than strain rate, more profound than
what has been observed from dynamically less transparent, magnitude-based,
time correlations, i.e. vorticity vs. dissipation rate. Meanwhile, the full veloc-
ity gradient displays correlations between that of strain rate and rotation rate.
To answer the question whether this trend is mainly due to vortical coherent
structures (worms), we perform conditional time correlations excluding parti-
cles initially within strain or rotation dominated zones, see (b) and (c) in Fig.
1. It turns out that even with the exclusion of worms, the rotation rate remains
significantly more correlated over time than the strain.

Second, the so-called finite-time Cauchy-Green tensor is a key ingredient in
a new model of the pressure and velocity Hessians required to close Lagrangian
velocity gradient evolution equation [6]. This model has been proven quite ac-
curate for moderate Reynolds numbers. However at high Re, significant dis-
crepancies between model and DNS shows the need for more in-depth analysis
of the various terms needed in the modeling. Therefore, it is also of interest
to study the auto-correlation structure of the pressure Hessian. Our analysis
for the pressure Hessian tensor correlation function shows significantly differ-
ent correlations between the trace and deviatoric parts of the pressure Hessian.
The results obtained have implications for modeling, since they suggest that
stochastic forcing terms may need to better represent some of the distinctions
observed between deviatoric and isotropic parts of the pressure Hessian.
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Figure 1: (a): Sample trajectories of 100 randomly selected particles in 2π3

domain. (b) and (c): Iso-countours of ω and streamlines in two representative
boxes – (b) shows strain-dominated region and (c) a high rotation region which
has been excluded from conditional analysis.
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Abstract. We present an experimental study of the mixing processes
in a gravity current. The turbulent transport of momentum and buoyancy
can be described in a very direct and compact form by a Prandtl mixing
length model [1]: the turbulent vertical fluxes of momentum and buoy-
ancy are found to scale quadratically with the vertical mean gradients of
velocity and density. The scaling coefficient is the square of the mixing
lenth, approximately constant over the mixing zone of the stratified shear
layer. We show in this paper how, in different flow configurations, this
length can be related to the shear length of the flow

√
ε/∂zu3.

Keywords: mixing, turbulence, gravity current.

Mixing in stratified shear flows is an important process in many geophys-
ical situations. Of particular current interest is the mixing and entrainment of
oceanic overflows, which contributes to the transport of heat and salinity in the
global ocean via the thermohaline “conveyor belt” [2]. The mixing processes
occur at scales too small to be captured by the numerical simulations of this
circulation, requiring a sub-grid parametrization. In situ measurements [3], as
well as experimental studies, are necessary to provide an accurate description.
In order to obtain a valid parametrization from a laboratory experiment, there
is also a need for a model that extrapolates the parametrization to oceanic con-
ditions.

We developed an experiment with a stratified flow on an inclined plane that
is destabilized by shear. The experiment, described in detail elsewhere [4],
consists of a turbulent, uniform-density flow injected via a pump into a tank
filled with unstirred higher density fluid. The turbulence level of the injection
current is enhanced by an active grid device located just before the injection
nozzle. The flow, upon exiting the nozzle, is bounded from above by a trans-
parent plate inclined at an angle of 10o with respect to horizontal. The velocity
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u has components {u,v,w}. We use the notation u for a time- and ensemble-
averaged quantity and u′

= u−u for its fluctuating part. The exit fluid, a solu-
tion of ethanol and water, is less dense than the fluid in the tank, water and salt
(NaCl). The concentrations of ethanol and salt are adjusted so that the fluids
are index matched to avoid optical distortions. Velocity and density are mea-
sured simultaneously in the x− z plane (x is the mean flow direction and z the
downward distance perpendicular to the plate) using particle image velocime-
try (PIV) and planar laser-induced fluorescence (PLIF), respectively.

In an earlier publication [1], we reported the observation that the verti-

cal time averaged fluxes of momentum u′w′ and of density ρ′w′ didn’t re-
late to the corresponding vertical gradients via a constant eddy diffusivity as-

sumption. The observed scaling was indeed the following : u′w′ = L2
mS2 and

ρ′w′ =−L2
ρ|S|∂zρ where S is the vertical mean shear ∂zu. Lm and Lρ correspond

to typical scales where the turbulent mixing takes place. This observation can
be understood in the framework of Prandtl mixing length theory [5].

A stratified flow results from the competition between the stabilizing effect
of the stratification and the destabilizing effect of the shear. This competition
is mesured by the bulk Richarson number : Ri = gΔρ/ρU2. Another feature
of the flow is the intensity of turbulence, which can be measured by the Taylor

Reynolds number Reλ = u′2/
√

15εν where ε is the turbulence dissipation rate
and ν the kinematic viscosity. In order to better characterize the dependence of
the measured mixing lengths with these ingredients of our flow, we measured
them in various flow configurations. The results are displayed in the follow-
ing table. Starting from configuration 1, called “standard”, (used for the data
presented in [1]), we then varied stratification and/or intensity of turbulence in
5 different configurations. The fourth column shows the initial velocity of the
current. Since in all cases momentum and density mixing lengths are equal (ex-
cept the non stratified case where Lρ is undefined), we give in the last column
the value of Lm.

# configuration Δρ/ρ Ri U0[cm/s] Rλ Lm [cm]

1 standard 0.26% 0.3 8 100 0.45
2 more turbulent same 0.2 10 140 0.6
3 no active grid same 0.35 same 42 0.35
4 unstratified 0 0 same 115 2.1
5 double density 0.52% 0.45 same 93 0.3
6 double dens. half veloc. 0.52% 1.4 4 72 0.2

Compared to case 1, cases 2 and 3 show that the value of the mixing length
increases with turbulence intensity. In the same way, as expected, cases 4
and 5 show that the stratification prevents mixing. In the last case, both the
stratification is stronger and the shear weaker, resulting in very short mixing
length.

As discussed in [1], for the conditions of our study, where shear dominates
stratification (small Ri), the typical eddy size can be estimated based on shear
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and turbulence Ls =

√
ε/S3. In figure 1, we show indeed that in all cases

studied, the mixing length scales as the shear length : Lm = 1.3Ls. This result
points towards possible extrapolation to estimate the mixing length in oceanic
situations, once the shear length is known. Finally, it is interesting to note
that this proportionality indicates that an equivalent relationship for our system
is that the eddy viscosity νT and eddy diffusivity γT are given by νT ≈ γT ≈
1.3ε/S2.

Figure 1: Measured mixing length vs computed shear length, for the different
flow configurations indicated.
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After the seminal papers by A. Kolmogorov in 1941, it is well established
that, apart from small corrections due to intermittency, the energy spectrum,
E(k), of the velocity fluctuations for the high Reynolds number hydrodynamic
turbulence shows a power law of the form E(k) = C P2/3 k−5/3, where C is
the dimensionless Kolmogorov constant and P is the flux of energy in wave
number space. Many decades after the work by Kolmogorov, it has been dis-
covered that systems of weakly nonlinear, dispersive, random waves also be-
have qualitatively in a similar way as hydrodynamical turbulence; the nonlinear
interaction of waves can produce other waves characterized by different wave-
lengths and so on, generating a cascade process (just like the one observed in
classical fluids) that ultimates in power law wave spectra. In this framework,
a systematic approach based on averaging the dynamical equations leads to a
Boltzmann like equation (known as wave kinetic equation) that describes the
evolution of the spectral density function for the turbulent field. The turbulence
that can be described by such an equation is known as weak wave turbulence
(WWT).

In this context, a nonlinear dispersive model describing the interaction of
waves that has been studied by many researchers is the nonlinear Schrödinger
equation (NLS):

i
∂ψ
∂t

+∇2ψ+σ|ψ|2ψ = F +D , (1)

where ψ is the wave function; σ can assume the value ±1 depending on the
physics of the problem. For σ= −1 the equation takes the name of defocusing
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Abstract. We present a numerical study of the 3D defocusing nonlin-
ear Schrödinger equation (NLS) which describes waves in a nonlinear
medium. By forcing the system at low wave numbers and including a
dissipation term at low and high wave numbers, we achieve a turbulent
steady state. Depending on the form of the dissipation at high scales
(friction or hypo-viscosity), we observe two power law spectra. The
first is consistent with the weak wave turbulence (WWT) prediction and
the second, much steeper, leads to a critical balance (CB) conjecture.
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nonlinear Schrödinger equation or Gross-Pitaevskii equation (GPE) for repul-
sive potentials. F and D represent forcing and dissipation functions. Equa-
tion (1) describes for example the propagations of optical pulses in a nonlinear
medium or weakly nonlinear interacting bosons in the limit of low temperature.

Assuming that the nonlinear interactions are small and that the field is quasi-
gaussian and homogeneous, WWT can be applied to NLS and a four-wave
wave kinetic equation can be derived:

∂n1

∂t
= 4π

Z
n1n2n3n4

(
1
n1

+
1
n2

−

1
n3

−

1
n4

)
(2)

×δ(k1 +k2 −k3 −k4)δ(ω1 +ω2 −ω3 −ω4)dk234

where the wave-action ni is related to the wave filed as 〈ψ̂(ki,t)ψ̂∗
(k j,t)〉 =

niδ(ki − k j) and ω(k) = |k|2 is the angular frequency of the wave numbers.
Equation (3) conserves the total wave-action N =

R
n(k)dk and the total en-

ergy E =
R
ω(k)n(k)dk and so, besides theromodynamic solutions, it has two

non-equilibrium stationary isotropic solutions of the form of n(k)∼ k−α. They
correspond to a region in the spectrum characterized by a constant flux of en-
ergy or wave-action: the first has a direct cascade with α = 3 and the second
follows an inverse cascade with α = 7/3 For all details see [1].

In our simulation the domain of computation is a cube with uniform mesh
of 2563 points and periodic boundary conditions; we integrate equation (1)
by a standard split step method. In order to observe constant fluxes, energy
and wave-action are injected directly in Fourier space at low wave numbers by
a forcing term of the form of F̂ = −i f0eiϕ(k) with ϕ randomly distributed in
k-space and time; to absorb energy at high wave numbers a dissipative hyper-
viscous term of the form of D = iνh(∇2

)
nψ is included. Note that, due to

the inverse cascade process, wave-action accumulates at large scales, i.e. a
condensate c0 = |ψ̃(k = 0,t)| keeps growing in the simulation. In order to
avoid such growth which will generate a transition to a three-wave interactions
[1], a dissipation must also be included at wave numbers lower that the ones
corresponding to forcing. Different options are available.

We consider firstly a friction type of dissipation which takes the form
D̂ = iµθ(k∗ − k)ψ̂ in Fourier space: θ is the Heaviside step function, k∗ corre-
sponds to lowest wavenumber forced and µ is a friction coefficient. We present
our stationary state solution in figure 1. The resulting spectral slope is consis-
tent with the prediction of the WWT theory. The growth of the condensate is
stopped by friction, as shown in the inset.

Another common way of damping the low wave numbers consists, in anal-
ogy to what is done at high wave numbers, in including an hypo-viscosity term
in the equation of the form of D = iνl(∇−2

)
mψ and suppressing the condensate

in Fourier space. In figure 2 we show the stationary states achieved with this
new damping term for different forcing coefficient f0. The observed spectrum
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Figure 1: Integrated wave-action spectrum at steady stage of simulation in the
presence of the friction term. The k−1 WWT prediction is also included. Inset:
the condensate c0 = |ψ̂(0,t)| as a function of time.

Figure 2: Integrated wave-action spectrum at steady stage of simulation with
hypo-viscosity for different order of forcing coefficient from f0 = 0.05 (A) to
f0 = 3.0 (F). The k−2 slope of CB conjecture is also plotted.

is clearly much steeper than the WWT prediction and it is reasonably fitted by
a power law k−2. It seems that the direct energy cascade is strongly influenced
by the accumulation of wave-action at wave numbers below the forcing caus-
ing an infrared bottleneck effect. Such a behavior leads to a critical balance
(CB), i.e. the scale-by-scale balance of the linear and the nonlinear terms in
equation (1). The CB is the result of the fact that the inverse waveaction cas-
cade is arrested when the nonlinearity reaches the same level as the linear term
(see [2] for details). If we evaluate CB slope in the case of three-dimensional
NSL we find, for the integrated spectrum, a k−2 prediction.

Concluding we have found two universal regimes: one following the WWT
prediction and the other arising from a CB conjecture. More details of our
work can be found in [2].
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Coherent eddy structures are believed to play a major role in the dynam-
ics of turbulent flows. In wall-bounded flows, a body of experimental [1] and
numerical [4] works supports the view that boundary layers are populated by
tubular hairpin vortices inclined at a positive angle with respect to the wall, ei-
ther alone or arranged in packets [5]. Vortex-based models relying on ‘forests’
of hairpin-shaped vortex tubes [2] yield accurate predictions of many of the
scaling behavior and statistics of turbulent boundary layers, supporting the no-
tion that hairpin vortices play an important role in wall turbulence dynamics.

The present analysis relies on the supersonic boundary layer database of
Ref. [3], and it is based on the swirling strength criterion [5] to educe vor-
tex cores. We consider the conditional average fields associated with cross-
stream (CS) and streamwise (SW) vortex cores by taking averages of the DNS
fields under the conditions λci ≥ 0.9ω′, ωn/ω ≥ 0.9, where λci is the swirling
strength, ω′ is the local r.m.s. vorticity, and ωn is the vorticity component in the
spanwise and streamwise direction, respectively. The distributions of the aver-
age signed tube strength (ωt,n = 2λci signωn) and of the out-of-plane spanwise
vorticity, conditioned to the occurrence of a CS and a SW vortex core (placed
at y+

= 37) are reported in figure 1, in the streamwise/wall-normal plane. In
the CS case, the projected flow pattern consists of a shear layer fed by the wall
vorticity, and having small slope with respect to the wall. The shear layer is
observed to roll-up, forming a vortex tube near the origin of the conditioning
event, in a fashion that recalls the Kelvin-Helmholtz mechanism of vorticity
collapse. Secondary, clockwise-rotating vortex cores are also observed up-
stream and above, and downstream and below, with respect to the primary one.
The average fields obtained by conditioning on the occurrence of a SW vor-
tex show the roll-up of an oppositely signed vorticity sheet around the primary
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Abstract. The small-scale vortical structures in wall-bounded turbu-
lence are extracted by means of conditional sampling from a compress-
ible turbulent boundary layer DNS database. The vortical patterns asso-
ciated with vortex cores aligned with the streamwise and spanwise direc-
tions are separately considered. Their conditionally averaged flow fields
consist, respectively, of a hairpin vortex, and of a quasi-longitudinal vor-
tex tube.
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core, indicating the occurrence of a mechanism of near-wall vorticity stripping.
In this case, only a small counter-rotating, companion vortex core is observed.
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Figure 1: Expected fields of out-of-plane vorticity (flood) and signed swirling
strength (lines), conditioned to vortex cores centered at y+

= 37. (a) CS vor-
tices; (b) SW vortices. Solid lines: clock-wise vorticity; dashed lines: counter-
clockwise vorticity.

To provide a three-dimensional perception for the geometry of the con-
ditional educed structures, in figure 2 we report iso-surfaces of the swirling
strength. Note that in the figure a relatively large threshold (λci = 0.50ω′) is
used to isolate only the most dynamically significant features, and therefore
most secondary motions seen in the two-dimensional representations are not
recovered. For CS vortex cores, a pattern very similar to a canonical hairpin
vortex is observed, extending for about 100+ in the streamwise direction, and
50+ in the spanwise direction. The conditional vortex structure exhibits ex-
tended quasi-longitudinal vortex tongues pointing in the downstream direction,
that are very similar to those found in instantaneous realizations [5]. Quanti-
tative examination of the figure indicates that the tubular part of the hairpin
has a shallow inclination of ≈ 15◦ in its donwstream part, whereas the head is
inclined at ≈ 45◦ with respect to the flow direction. The conditional average
structure for SW vortex core (see figure 2(b)) consists of a quasi-longitudinal
vortex having a length of approximately 200+, and an inclination of ≈ 15◦

with respect to the horizontal. The primary vortex is observed to restrict near
the origin, where it is surrounded by an annular shear layer (recall figure 1(b)).

The analysis of the conditional fields associated with the occurrence of
cross-stream (CS) and streamwise (SW) vortices shows that the vortex modes
commonly observed in instantaneous realizations of wall turbulence, namely
hairpin vortices and quasi-streamwise vortices, have statistical significance. In
the CS vortex case, is seems that clock-wise cores are frequently associated
with counter-rotating ones, suggesting that closed-loop structures (i.e. vortex
rings) may play a relevant role in the formation and evolution of the hairpins.
In particular, there is some evidence that an upstream counter-clockwise core
stimulates the ejection (with subsequent roll-up) of a near-wall shear layer, and
in turn the latter promotes the generation of near-wall, counter-clockwise vor-
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Figure 2: Iso-surfaces of swirling strength λci/ω′
(y) = 0.50, associated with

vortex cores centered at y+
= 37: (a) CS vortices; (b) SW vortices.

ticity to satisfy the no-slip condition. In the SW vortex case, quasi-streamwise
vortices are found, very often in isolation, which are observed to promote strip-
ping of the near-wall vorticity. Further study is required to assess the dynamical
relevance of the coherent vortex modes here reported.
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Understanding and predicting the collision rate of small inertial particles in
turbulent flows is crucial in many natural and industrial processes. For instance,
it can be a of importance to understand the growth of droplets in clouds during
the phase of growth by coalescence. The collision rate K per unit of volume of
equal size particles of diameter a and mean density n0 can be written [4] :

K = πn2
0 a2

〈|wr|〉g(a) (1)

where wr is the radial relative velocity between particles and g(a) the radial
distribution function at contact. Numerical simulations have shown that this
collision rate is larger for inertial particles than in the case of simple tracers.
This observation can be explained by two effects : (i) the concentration around
particles is locally larger than the mean density (g(a) > 1), due to ”preferential
concentration” [5], and (ii) the relative velocity between two colliding particles
can be significantly larger than expected based on the typical rate of strain
tensor, as described by the Saffman-Turner formula [6].

Aside from the Reynolds number, two dimensionless parameters charac-
terize the problem : the Stokes number St = τ/τK and the Froude number
Fr = uK/gτ which measure the inertia of the particles and the influence of the
gravity respectively. Here, τ is the response (Stokes) time of the particles, τK
and uK the time and velocity at the Kolmogorov scale and g the acceleration of
gravity. The equation of motion of a particle in this context can be written [5] :

dv/dt = (u−v)/τ+g (2)
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Abstract. The collision rate of small inertial particles in turbulent
flows simulated using a simplified model known as kinematic simulations
[1] is studied. When inertia increases, the relative velocity of colliding
particles can be substantially higher than expected from the local shear,
a phenomenon reffered as the sling effect [2]. A Lagrangian method
originally proposed in [3] has been used and compared to real numeri-
cal measurements of the collision rate, allowing us to estimate the sling
contribution in the collision process.
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Differentiating Eq.(2), one can obtain the equation of evolution of the gradient
velocity tensor in the Lagrangian frame [2]:

dσ/dt = (h−σ)/τ−σ2 (3)

where σi j = ∂ jvi and hi j = ∂ jui. The quadratic nonlinear term in (3) leads
to the possibility of a divergence in finite time for σ. This divergence can
be interpreted physically by signalling that particles acquire a velocity, which
strongly differs from the fluid velocity. Particles experiencing such a sling shot
[2] are prone to collide with other particles having very different histories and
velocities, hence lead to an enhancement of the term 〈|wr|〉 in eq.(1), and thus
of the collision rate K. This effect can also be understood by the formation of
fold caustics in the velocity field of the particles [7].

Here, we decompose the collision rate into two components. The first one
comes from collisions occurring in regions where the velocity field of the par-
ticles v is continuous. The relative velocity of the colliding particles can thus
be estimated by wr = a× r̂.σ.r̂. The other case concerns collisions occurring
within the caustics. In this situation, the relative velocity cannot be approx-
imated by σ. These two types of collisions will be referred respectively as
”continuous” and ”sling”.

We estimate separately these two contributions using the Lagrangian method
proposed in [3]. At any time, the continuous contribution of a given trajectory
is computed by estimating the instantaneous flux of incoming particles on a
target particle, In order to obtain the continous contribution to the collision rate
Kc, it is enough to follow a large number of lagrangian trajectories [3].

The estimation of the sling component is more phenomenological. We ex-
pect it to be proportional to the frequency at which the particles cross the caus-
tics. This quantity is directly accessible in our simulation measuring the av-
erage rate at which σ diverge in time. For this reason we call it the ”blowup
frequency” noted fbu. Thus, the sling contribution Ks will be given by,

Ks =
n0

2
×Ns × fbu (4)

where Ns corresponds to the average number of collisions occurring in the
wake of a sling event. This latter is proportional to the typical relative velocity
of the particles experiencing a sling collision ws

r. This quantity is difficult to
estimate accurately. However, a crude reasoning based on dimensional argu-
ments suggests, ws

r ∝ St−1/2.
Our results obtained by this Lagrangian method have been compared with

real numerical measurements of the collision rate. The results, normalized by
the case of tracers KST [6], are shown on Fig. 1 for two different intensities of
the gravity measured by the dimensionless parameter ε0 = Fr×St.

We observe that the sling contribution is essentially zero for St � 0.3. This
results from the fact that fbu behaves asymptotically as exp(−A/St) for small
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Figure 1: Comparison between direct measurements and the indirect La-
grangian evaluation of the different contributions to the collision rate normal-
ized by the ST case for two different intensity of the gravity. (a) Continuous
contribution. (b) Sling contribution.

St. We notice that the sling contribution is strongly affected by the gravity.
indeed, when gravity increases, particles fall more rapidly and their interaction
time with the turbulent structures decreases. For this reason, the probability
for them to be accelerated enough and thus experience a sling event is reduced.
We observe that for St � 1, Kc is higher than in the case of tracers.
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for example in the open ocean at horizontal scales from a few meters up
to hundreds of meters or more, are typified by strong, stable density strat-
ification but weak if any effects of the earth’s rotation. It is clear from
numerical simulations and from the analysis of atmospheric and oceanic
data that the motions at these scales are characterized by strong, for-
ward (downscale) spectral energy transfer in the horizontal, leading to
smaller-scale turbulence. Laboratory studies of strongly stratified flows
also indicate a strong upscale spectral energy transfer. In the strongly
stratified flow regimes of these experiments, however, the Reynolds num-
bers are often low enough that the strong forward spectral energy trans-
fer is not observed. This raises the question of whether the upscale trans-
fer observed in the laboratory would occur in the high Reynolds number
environments of the oceans and atmospheres, and, more generally, the
question of the overall spectral energy transfer in such flows.
We have performed direct numerical simulations of strongly strati-

fied flows at high enough Reynolds numbers that strong, forward energy
transfer in the horizontal is observed, but in a large enough computa-
tional domain to allow for significant upscale transfer as well. We find
that, contrary to the nonstratified case, significant upscale spectral en-
ergy transfer does occur, even in the presence of the strong downscale
transfer. To explain the results, heuristic arguments are given regarding
the inhibition by the stable stratification of the vertical velocity and of
the stretching of larger-scale, vertical vorticity.

The dynamics of many regions of the oceans and of the atmosphere,Abstract.
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Figure 1: Horizontal kinetic energy spectrum in the kh-kv plane at t = 34, Re=
6400, F = 4.

1. Results

The simulations are performed on 1024x1024x128-point computational grids
of domain size 8πx8πxπ in the two horizontal directions and the vertical di-
rection, respectively. Approximately fully-dealiased, Fourier spectral methods
were used to approximate spatial derivatives, with 4th-order Runga-Kutta time
stepping. The simulated flows are unforced, with Taylor-Green-type of initial
conditions with uncorrelated, low-level noise added. Simulations were run at
two initial Reynolds numbers, 800 and 6400, and, for the stratified case, the
initial Froude number of 0.64.

develops in time under the influence of strong stratification, vigorous vertical
shearing of the horizontal velocities occurs, which leads to locally low Richard-
son numbers and to intermittent, small-scale instabilities and turbulent-like mo-
tions. This in turn leads to a strong, downscale cascade of energy which results,
in particular, in the development of a ‘stratified turbulence’ inertial range.
An overall picture of spectral energy transfer can be obtained by first ex-

amining the spectral energy in the two-dimensional, horizontal-vertical, kh-kv
plane, as shown in Figure 1, which gives the logarithm of the spectrum of the
horizontal kinetic energy at the time t = 34, after the flow has evolved con-
siderably. The peak in the spectrum is now at a horizontal wave number of
about 0.5, whereas initially it was at the Taylor-Green scale of about 1.4. In
addition, there is considerable energy in vertical wave numbers up to about 10,
whereas the initial energy was localized at wave number 0.5; this is indica-
tive of the strong vertical shearing of the horizontal velocity which occurs in
strongly stratified flows.
The corresponding energy transfer spectrum is shown in Figure 2, which

gives this quantity at t = 34. The transfer of energy out of the original horizon-

As observed by Riley and de Bruyn [1], as the Taylor-Green-type flowKops
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Figure 2: Horizontal kinetic energy transfer spectrum in the kh-kv plane for
t = 34, Re= 6400, F = 4.

tal Taylor-Green scale (kh ∼ 1.4), now over a range of vertical scales, is clearly
visible. Interestingly, there is also a transfer out of horizontal wave numbers
lower than the Taylor-Green scale at vertical wave numbers near about 2; mo-
tion at these scales have been energized by the upscale transfer process. The
transfer out of these scales is now energizing vertical wave numbers near 10, as
now the strong vertical shearing of the larger scale horizontal motions occurs.
In summary, significant energy is transferred to higher vertical wave numbers,
as well as higher overall wave numbers. But at the same time significant energy
is being transferred to lower wave numbers as well, especially for lower wave
numbers with kv ∼ 10.

2. Conclusions

Our preliminary conclusions are that indeed there is significant upscale transfer
of energy, consistent with laboratory experiments, in strongly stratified flows
at high enough Reynolds numbers for instabilities and smaller-scale turbulence
to exist. In our presentation at the EUROMECH Colloquium 512, we will
present some theoretical arguments which justify this upscale transfer of en-
ergy, discuss some further spectral energy transfer analysis of our simulations,
and present the results of some ongoing simulations on larger computational
domains.
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Abstract. Understanding the phenomenology, statistical properties
and scaling laws of turbulence forced by various natural processes such
as shear or thermal convection is facilitated by analysing scale-by-scale
energy budgets in experimental or numerical realizations of such flows.
This contribution addresses the issue of numerical Rayleigh-Bénard con-
vection at moderate Rayleigh number 106 and Prandtl number one. The
results tend to rule out the possiblity of Bolgiano-Obouhkov scalings at
moderate Ra and reveal striking similarities with studies of scale-by-
scale budgets in homogeneous shear flows and turbulent channel flows.

Keywords: turbulence, convection, scaling laws.

1. Motivation
In nature, the forcing of three-dimensional turbulence often finds its source
in a large-scale gradient (of velocity, temperature etc.) and is therefore likely
anisotropic and broadband in wavenumber space. Besides, natural turbulent
flows are commonly observed in inhomogeneous environments (like the earth
atmosphere or the solar surface). Hence, an important question is whether
the classical Kolmogorov (K41) description of turbulence (relying on large-
scale forcing, homogeneity and isotropy) provides an acceptable guidance to
understand the statistical properties of such flows (overlooking intermittency
effects) or if a specific theory should be formulated for each type of flow (e. g.
thermal convection or shear turbulence).

A promising avenue of research to explore this issue is to construct extended
versions of the Kolmogorov and Yaglom equations [1, 2] retaining forcing,
anisotropic and inhomogeneous contributions. Deviations from the basic K41
assumptions can then be quantified in experiments or numerical simulations
by comparing at each scale the amplitude of these extra terms with that of the
classical 4/3 and diffusive terms. In the following, I highlight two important
aspects of the turbulent Rayleigh-Bénard problem using this method. How
does buoyancy enter the scale-by-scale budget and should Bolgiano-Obukhov
(B059) scalings [4, 5] be expected ? Does turbulent thermal convection bear
any statistical resemblance with other turbulent flows ?
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2 FRANÇOIS RINCON

2. Theory and results
A generalization of the hydrodynamic Kolmogorov and Yaglom equations can
be found in [3]. Here, I restrict the focus to the isotropic projection of the
Kolmogorov equation in numerical simulations of mildly turbulent Rayleigh-
Bénard convection at Ra = 106 and Pr = 1 (the isotropic part of the statistics
is shown to dominate at all scales in [3] ; note however that inferring scaling
exponents from reduced statistics computed from correlations along a single
direction yields inaccurate values in this regime). Following notations used in
similar derivations [6, 7], the equation reads

S3 = −4

3
〈ε〉 r +2ν

∂S2

∂r
+B+NH (1)

where S3(r) = 1/(4πr2
)
∮

∂Br

〈
δu2

jδui
〉

ni dSr, S2(r) = 1/(4πr2
)
∮

∂Br

〈
δu2

j

〉
dSr,

〈ε〉 is the mean dissipation rate and B and NH stand for the isotropic com-
ponents of the buoyancy correlator (involving 〈δθδuz〉) and inhomogeneous
terms. The various terms in this equation are shown in Fig. 1(a,b).

(a) (b)

(c) (d)

Figure 1: Scale-by-scale budgets for the Kolmogorov equation. (a) Rayleigh-

Bénard convection at Ra = 106, Pr = 1, Reλ ∼ 30. (b) Same as (a) on a log
scale. (c) Homogeneous shear turbulence at Reλ ∼ 45 (reproduced from [6],
Fig. 1(a)). (d) Channel turbulence at Reλ ∼ 35 (reproduced from [7], Fig. 4).

(a) (b)

(c) (d)
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3. Analysis and discussion
The previous results tend to rule out the existence of BO59 for moderate Ra and
Pr = 1. Indeed, the cross-over scale (the so-called Bolgiano scale LB) between
the 4/3 term and the buoyancy term turns out to be larger than the integral scale
Lint of the system. However, at scales smaller than Lint, a standard dominant
balance S3 ∼ r leading to a K41 spectrum is not observed either. As shown
in Fig. 1(a), this is partly because the thermal forcing remains important at
“inertial” scales and partly because the inhomogeneous contributions take over
at large scales. The diffusive term also contributes in this mildly turbulent
regime but it is smaller at large scales than other contributions. Hence, the
absence of inertial-range in this regime is explained in terms of violation of
the assumptions of large-scale forcing and homogeneity in the K41 theory.

The second point is that the turbulent convection budget bears a lot of re-
semblance with the budgets of other types of moderately turbulent flows. First,
there is a striking similarity between Fig. 1(a) and the budget obtained from
simulations of homogeneous shear flow turbulence [6], shown in Fig. 1(c). In
both cases, the cross-over between the production term and the 4/3 term takes
places at scales comparable to the integral scale, ruling out the possibility of
forcing-dependent power laws. Another interesting point is that the budget of
channel flow turbulence [7], shown in Fig. 1(d), follows the same trends as
Fig. 1(b). Most notably, the inhomogeneous terms produce similar effects.

To conclude on a general note, scale-by-scale budgets give valuable clues
on the reasons for the realization of (or lack of) scaling laws in turbulent flows.

Apologetic note: a significant amount of references on this subject could not
be included due to space limitations. A much more detailed list is given in [3].
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Abstract. The statistical properties of velocity gradients in a wall-
bounded turbulent channel flow are discussed on the basis of three-
dimensional direct numerical simulations. Our analysis is concentrated
on the trends of the statistical properties of the local enstrophy and the
energy dissipation rate with increasing distance from the wall.

Keywords: Velocity gradients, Turbulent channel flow.

Turbulence is associated with large fluctuations of velocity gradients which
appear preferentially at the smallest scales of the flow. The amplitudes of the
fluctuations exceed the mean values by orders of magnitude when the Reynolds
number of the flow is sufficiently large. This behaviour is known as small-scale
intermittency. It has been discussed recently that a deeper understanding of
fluid turbulence as a whole requires a detailed resolution of the intermittent dy-
namics at the small-scale end of the inertial range. This will include scales that

are smaller than the (mean) Kolmogorov dissipation length ηK = ν3/4/〈ε〉1/4

with the kinematic viscosity ν and the mean energy dissipation rate 〈ε〉. Al-
though significant progress in measurement techniques has been made, the
finest structures remain still spatially unresolved or the flows are limited to
very low Reynolds numbers. Direct numerical simulations can reach today
sufficiently high Reynolds numbers while resolving the gradients at the small-
scale end of the inertial range cascade properly.

The small-scale structure and statistics of turbulence has been mostly stud-
ied for the case of homogeneous, isotropic and statistically stationary turbu-
lence. A wall-bounded shear flow consists of a boundary layer which is dom-
inated by coherent streamwise structures and a central bulk region in which
they are basically absent. The statistics in the wall-normal direction is inho-
mogeneous and requires a height-dependent analysis on account of the varying
strength of the mean shear [1]. As a consequence, there is significantly less
work on the properties of small-scale turbulence for wall-bounded flows than
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Figure 1: Probability density functions of the energy dissipation rate ε (top)
and local enstrophy ω2 (bottom) for a highly resolved turbulent channel flow at
Reτ = 180. Data are obtained in planes at four different distances z+ from
the wall which are indicated in the legends. We denote εavr = 〈ε〉A,t and

ω2
avr = 〈ω2〉A,t where 〈·〉A,t is an average over planes at z+ and a sequence of sta-

tistically independent turbulence samples. The distance z+
= 72 corresponds

with the logarithmic region of the channel flow.

for homogeneous isotropic turbulence. This suggests to our view a systematic
study of the height-dependence of the statistics of the velocity gradient fields
in turbulent shear flows.

In the present work, we want to make a step in this direction and conduct an
analysis of the small-scale statistics of the velocity gradient in a wall-bounded
shear flow. We perform three-dimensional direct numerical simulations of a
turbulent channel flow. The applied pseudospectral method is based on Fourier
series in the horizontal directions x and y and a Chebyshev polynomial expan-
sion in the vertical z–direction [2]. Our study will be focussed to two fields,
the local enstrophy field and the energy dissipation rate field.

We detect a sensitive dependence of the largest amplitudes of both fields,
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which correspond with the tails of the probability density functions (PDF),
on the spectral resolution. It is shown that a full statistical analysis of both
fields requires a spectral resolution which is larger than the standard one. This
was one objective of our study, namely to make this case in a turbulent wall-
bounded shear flow. It clearly limits the range of accessible Reynolds numbers.
Based on this result, we investigated the height-dependence of the statistics of
the velocity gradient fields. The single-quantity PDFs as well as the joint dis-
tribution of the energy dissipation rate, ε(x, t), and the local enstrophy, ω2

(x, t),
vary significantly with increasing distance from the wall. In Figure 1, we show
the probability density functions of ε and ω2 for four different planes. The
largest fluctuations of the velocity gradients are found in the logarithmic layer
(z+

= 72). This is in agreement with recent laboratory experiments which ob-
serve a bursting of hairpin vortex packets into the logarithmic region [3]. Fi-
nally, we report first studies of the distribution of locally fluctuating dissipation
scales in a channel flow. Recent measurements in a turbulent pipe flow at the
nearly isotropic pipe centerline and within the anisotropic logarithmic layer
showed excellent agreement with distributions that were previously calculated
from numerical simulations of homogeneous isotropic box turbulence and with
those predicted by theory [4].

Our work is supported by the Emmy-Noether-Program (DK and TB) and
the Heisenberg-Program (JS and PEH with travel support) of the Deutsche
Forschungsgemeinschaft (DFG). The supercomputing ressources were pro-
vided by the Jülich Supercomputing Centre (Germany) under grant HIL01.
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Abstract. Preferential concentration of inertial particles in turbu-
lence is studied numerically by evaluating the Lagrangian compressibil-
ity of the particle velocity field using the “full Lagrangian method”. This
is compared with the “mesoscopic Eulerian particle velocity field” both
in a direct numerical simulation of turbulence and in a synthetic flow
field.

Keywords: particle, segregation.

Transport and agglomeration of particles/droplets in turbulent flows have been
intensively studied in recent years given their importance in many environ-
mental and engineering applications such as formation and growth of MP10
particulate, warm rain initiation, transport of chemically created aerosols, foul-
ing of heat transfer equipment and chemical process facilities (Campolo et al.,
2008).

In this work we quantificate the particle segregation by exploiting the full
Lagrangian method, proposed by Osiptsov (1984), and later used by Healy and
Young (2005), and the ”mesoscopic Eulerian formalism” (MEF), a method
essentially based on box counting and proposed by (F´evrier et al., 2005) and
(Simonin et al., 2006). We also benchmark the two methods in simple two-
dimensional synthetic turbulent flow field and in a direct numerical simulation
(DNS) of turbulence. The FLM evaluates the size of an infinitesimally small
volume of particles and tracks its changes in the course of time along each
particle trajectory. The rate of deformation of this volume is related to the
compressibility of the particle velocity field which is an indicator of particle
concentration (Picciotto et al., 2005, IJzermans et al. 2009).

Neglecting Brownian motion, the equations of motion of identical, rigid and
spherical particles are (Maxey and Riley, 1983):

dxp

dt
= v,

dv
dt

=
1
St

(
u−v

)
, (1)
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where xp and v are the position and the velocity of the particle respectively and
u = u(xp, t) is the velocity of the carrier flow at the position of the particle. In a
continuum approach in which the spatial derivatives of nv are finite, the particle
concentration n(x, t) evolves by (Elperin et al., 1996): ∂tn+∇ · (nv)= 0. Along
the trajectory of a particle which moves with velocity v, it is:

dn

dt
= −n

(
∇ · v

)
. (2)

where ∇ ·v denotes the compressibility of the particle velocity field.
Exploting the FLM, we define a unit deformation tensor as Ji j ≡ ∂xp,i(x0, t)/∂x0, j

and differentiate Eq. 1 with respect to x0 in order to obtain:

dJi j

dt
= J̇i j ,

d
dt

J̇i j =
1
St

(
Jk j

∂ui

∂xk
− J̇i j

)
. (3)

The initial conditions are chosen as Ji j(0) = δi j and J̇i j(0) = ∂ui(x0,0)/∂x j.
Along a particle trajectory, the instantaneous value of J corresponds to the
inverse of the particle concentration, so that using Eq. 2 and averaging over all
particle trajectories gives a relation between J and the compressibility of the
particle velocity field ∇ · v (Elperin et al., 1996):

d
dt
〈ln |J|〉 = 〈∇ ·v〉. (4)

Eq. 4 may result in J becoming equal to zero momentarily, which is equivalent
to a singularity in the particle velocity field (∇ · v = −∞).

According to the MEF, the velocity of particles dispersed in turbulent flows
can be seen as the sum of two contributions: a continuous turbulent velocity
field shared by all particles called the Mesoscopic Eulerian Particle Velocity
Field (MEPVF) and denoted by v, and a random velocity component we refer
to as Random Uncorrelated Motion (RUM) (Reeks, 2004). The MEF approach
provides a way to calculate ∇ · v (F´evrier et al., 2005) and (Simonin et al.,
2006), based upon a division of the calculation domain into grid cells. Averag-
ing the velocities of all the particles inside a cell gives v, defined in the center
of a cell. By taking the spatial derivatives using a finite difference method, one
can obtain ∇ · v at each cell center.

Comparison between the methods are presented in a simple two-dimensional
synthetic flow field (Babiano et al., 2000) for St = 0.05 (Fig. 1a) and for
St = 0.5 (Fig. 1b), together with the analytical estimate valid for small Stokes
∇ ·v �−St∇ · (u ·∇u) =−StQ (Elperin et al., 1996). For a small Stokes num-
ber such as St = 0.05 (Fig. 1a), the three lines collapse. A different qualitative
behaviour is instead observed for St = 0.5 (Fig. 1b), as it contains sharp neg-
ative peaks in the value of 〈∇ · v〉. These intermittent events correspond to
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Figure 1: (Color online) Compressibility of the particle velocity field 〈∇ ·v〉 in
the synthetic flow as a function of time, measured by the FLM (red solid line),
and by the MEF (blue dashed line). a) St = 0.05, b) St = 0.2.

a sudden collapse of the volume occupied by the particles so that J ∼ 0 and
〈∇ · v〉 → −∞. This phenomenon is due to RUM, i.e. singularities in the flow
field where particle trajectories cross and J vanishes. The agreement between
the MEF and the FLM is nonetheless very good, although the peaks tend to be
a bit steeper in the Lagrangian method, suggesting that the FLM is able to de-
tect singularities in the spatial distribution of particles, in contrast to the MEF
which is ultimately based on a difference equation.

References

[1] M. CAMPOLO, A. CREMESE, AND A. SOLDATI Controlling particle
dispersion in a transverse jet by synchronized injection, AIChE J. 54
(2008), 1975-1986

[2] OSIPTSOV A. N. Investigation of regions with unbounded growth of the
particle concentration in disperse flows, Fluid Dyn. 19(1984), 378-384.

[3] F´EVRIER P., SIMONIN O., AND SQUIRES K. D. Partitioning of par-
ticle velocities in gas-solid turbulent flows into a continuous field and
a spatially uncorrelated random distribution; theoretical formalism and
numerical study, J. Fluid Mech. 553 (2005), 1-46.

[4] SIMONIN O., ZAICHIK L. I., ALIPCHENKOV V. M., AND F´EVRIER
P. Connection between Two Statistical Approaches for the Modelling of

106 R.H.A. IJzermans, M.W. Reeks, E. Meneguz, M. Picciotto, A. Soldati



4 R.H.A. IJZERMANS, M.W. REEKS, E. MENEGUZ, M. PICCIOTTO, A. SOLDATI

Particle Velocity and Concentration Distributions in Turbulent Flow: the
Mesoscopic Eulerian Formalism and the Two-Point Probability Density
Function Method, Phys. Fluids, 18-12 (2006), 125107-1, 125107-9.

[5] PICCIOTTO M., MARCHIOLI C., REEKS M.W., SOLDATI A. Statistics
of velocity and preferential accumulation of micro-particles in boundary
layer turbulence Nucl.Eng & Des 235 (2005), 1239-1249

[6] IJZERMANS R., REEKS M.W., MENEGUZ E., PICCIOTTO M., SOL-
DATI A. Measuring segregation of inertial particles in turbulence by Full
Lagrangian Approach PHYS. REV. E, 80 (2009) 015302.

[7] HEALY D. P. AND YOUNG J. B., Full lagrangian methods for calcu-
lating particle concentration fields in dilute gas-particle flows, IN Proc.
Roy. Soc. London A: Mathematical, Physical and Engineering Sciences
461(2059) (2005), 2197-2225.

[8] MAXEY M. R. AND RILEY J. J., Equation of motion for a small rigid
sphere in a nonuniform flow PHYS. FLUIDS 26(4) (1983), 883-889.

[9] ELPERIN T., KLEEORIN N., AND ROGASHEVSKII I. Turbulent thermal
diffusion of small inertial particles, PHYS. REV. LETT 76(2) (1996),
224-227.

[10] REEKS M. W. Simulation of particle diffusion, segregation, and inter-
mittency in turbulent flows, IN Proc. of IUTAM Symposium on Computa-
tional Modelling of Disperse Multiphase Flow (Edited by S. Balachandar
and A. Prosperetti ) (2004), 21-30.

[11] BABIANO A., CARTWRIGHT J. H. E., PIRO O. AND PROVENZALE A.
Dynamics of a small neutrally buoyant sphere in a fluid and targeting in
Hamiltonian systems, PHYS. REV. LETT 84 (2000), 5764-5767.

Segregation of inertial particles in turbulence via the Full Lagrangian Approach 107



In order to investigate the onset of small scale anisotropy from macroscale
inhomogeneity, we consider the time decay of a turbulent flow with initially
uniform turbulent kinetic energy, but where the integral scale has been slightly
varied in two adjacent regions. The flow is studied by means of direct numeri-
cal simulations: Navier-Stokes equations are solved in a parallelepiped domain
by means of a Fourier-Galerkin pseudo-spectral method with an explicit fourth
order time integration. The initial conditions are obtained by matching two
fields, obtained from simulations of homogeneous and isotropic turbulence,
over a thin region. The computational domain contains two of such regions
placed in a specular way, so that the periodic boundary conditions can be used
in the direction of dishomogeneity, direction x, and in the two homogeneous
normal directions, see figure 1 and [1, 2, 3].

The different macroscales cause different decay rates of the two turbulent
regions [4, 5, 6, 7, 8] and this in turn generates a gradient of turbulent kinetic
energy. In fact, the simulations show that the flows with a smaller integral scale
decay faster and have higher decay exponents, which range from 1.1 up to 1.65.

∗Dipartimento di Ingegneria Aeronautica e spaziale, Politecnico di Torino, Corso Duca degli Abruzzi 24,
10129 Torino, Italy.

E-mail: daniela.tordella@polito.it

Abstract. The main point of this communication is that an onset of
anisotropy of the small scale can be observed, even in the presence of a
particularly mild turbulence inhomogeneity. We esamine a slight mod-
ification of an isotropic field by considering a turbulent field with an
initially uniform and isotropic kinetic energy distribution and where the
macroscale is then slightly varied in two adjacent regions. Direct nu-
merical simulations show that after a few initial eddy turnover times, the
velocity moments, but also the moments of the longitudinal derivatives,
become anisotropic. The skewness of the longitudinal derivative in the
inhomogeneous direction can in fact become much larger than that of the
other directions. Since the boundary conditions used are of an isotropic
type, this behavior could be associated to long-range turbulent interac-
tion over very different scales.

Keywords: small scale, longitudinal derivatives, skewness, anisotropy.
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Figure 1: (a) Initial three dimensional energy spectra E(k) of the isotropic
turbulent flow matched in the simulations. Continuous line: region (Reλ = 150)
with the larger scale �1; other lines: isotropic matched fields with a smaller
integral scale �2 < �1; n is the decay exponent found in the simulation. (b)
Scheme of the flow, the direction x is the inhomogeneous direction [1, 2].
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Figure 2: Spatial variation of the longitudinal derivative skewness and kurtosis
across the mixing layer, run with �1/�2 = 2.8, Reλ = 150, t/τ = 6.7; x repre-
sents the inhomogeneous direction, η = x/Δ is the normalized coordinate, Δ is
the mixing layer thickness, defined on the basis of the mean turbulent kinetic
energy distribution, as in [1, 2].
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Figure 3: (a) Time evolution of the peak of the longitudinal derivative skewness
inside the mixing, simulations at Reλ = 150. Filled symbols: skewness of the
longitudinal derivative along the inhomogeneous direction x, empty symbols:
skewness of the longitudinal derivative along the homogeneous directions y.
(b) the ratio between these longitudinal skewnesses (inhomogeneous over ho-
mogeneous normal directions) is here proposed as a measure of the small scale
anisotropy.

The smaller the macroscale, the higher the exponent value. Due to the differ-
ent decay, an energy gradient, always concurrent to the integral scale gradient,
soon emerges. This gradient is maximum after about one initial eddy-turnover
time τ = �/E1/2, then it gradually reduces, while the ratio of kinetic energy
between the two regions increases [3]. The thickness of the induced kinetic
energy layer increases while the two flows interact. The scale and energy mix-
ing layer immediately becomes intermittent and the intermittency level is close
to that found in shearless mixings with the imposed initial gradients discussed
in [1, 2]. Thus, it is sufficient to introduce an inhomogeneity into the integral
scale to induce an inhomogeneity in the kinetic energy during the decay [3].

This inhomogeneity makes the velocity statistics immediately depart from
their isotropic values [3]. However, after a few initial eddy turnover times,
the derivative moments also become anisotropic, see figure 2. For instance, it
can be observed that, with a certain delay of about 6-7 time scales, the ratio
between the thickness of the longitudinal derivative in the inhomogeneous di-
rection and those in the normal directions (which are directions along which
the field remains homogeneous) increases from 1 to 1.35, when the scale ratio
is close to 2, and to 1.64, when the scale ratio is close to 3 (see figure 3). Thus,
the large scale inhomogeneity spreads to the small scales. Since the bound-
ary conditions used are conditions of periodicity in all directions, and thus of
an isotropic kind, this behavior can be considered in terms of the long-range
turbulent interaction among very different scales.
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Arguably, the overarching aim of turbulence research is reduced order mod-
elling of turbulent flows. This may be in the form of one-point, two-point
(or even multi-point) closures such as k − ε and EDQNM, filtering closures
such as LES or in terms of dynamical systems concepts such as state-space
attractors. Arguably, too, such solution(s) to the turbulence problem(s) will not
be fully satisfactory if they do not eventually impact industry and/or practical
ocean/atmosphere prediction methods. This impact requirement is, however,
only a necessary but not a sufficient condition as is clearly exemplied by the
k− ε model which has had, and continuous to have, an enormous impact on
industry even though it is not a solution to the turbulence problem(s). The rea-
son why it is not a solution is directly linked to the issue of universality in the
context of turbulent flows.

Reduced order models such as k−ε have been developed for and calibrated
against a specific set of well-documented turbulent flows and can return use-
ful results only when applied to conditions close to those particular turbulent
flows. These models can fail by a wide margin when widely extrapolated be-
yond their comfort zone. They can therefore not be relied upon for predicting
the behaviour of radically new turbulent flow concepts. Radically new flow
concepts are urgently needed for the development of radically new industrial
and environmental flow solutions which are to be part of the widespread tech-
nological step changes required to avert climate change projections and meet
the dramatically evolving energy and environmental constraints. Industry can-
not afford to remain within its well-documented comfort zones for long but
may also not be able to step out of them significantly without some sort of uni-
versal reduced order modelling of turbulence which can be used to invent and
investigate new turbulent flow concepts at will and at non-prohibitive cost.

The first question raised is whether universality classes of boundary con-
ditions exist for which solutions of a given non-linear and non-local partial
differential equation such as the incompressible Navier-Stokes equations have

∗Imperial College London. E-mail: j.c.vassilicos@imperial.ac.uk

Abstract. The issues relating to universality and non-universality of
small-scale turbulence are, by a wide margin, not just issues to do with
varying degrees of anisotropy and with more or less small corrections
to Kolmogorov’s 1941 and 1962 theories. Fractal-generated turbulence
makes the case.
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statistical properties which are independent of these boundary conditions, per-
haps in some limit such as the high Reynolds number limit. Such properties
may be statistical in terms of some averaging operation, for example over ini-
tial conditions or over time. The second question is whether sufficiently accu-
rate and universal reduced order modelling is possible within these universality
classes. Even if reduced order modelling is possible on a case-by-case basis,
it may not be possible to develop a reduced order modelling approach which
is the same for all the boundary conditions of the universality class. In fact, it
might be expected that a negative answer to the first question implies a negative
answer to the second. However, in the case where some kind of universal sta-
tistical properties of solutions of the incompressible Navier-Stokes equations
do exist in some appropriate limit and within an appropriate universality class,
the third question will then be to know how to use them to develop some kind
of universal reduced order modelling approach to these equations.

These are very difficult questions which may sketch out, at best, broad goals
for future generations of researchers. Indeed, it is instructive and also sobering
to note that the textbook “Analysis of the Navier-Stokes equations” published
in 1995 by C.R. Doering and J.D. Gibbon considers only periodic boundary
conditions because of inherent technical difficulties with more realistic bound-
aries. Many turbulence researchers consider periodic boundary conditions but
add a forcing term to the Navier-Stokes equations. It is therefore relevant to
ask how such forcing approaches do or do not mimic the way that boundary
conditions may drive turbulent flows in reality.

Which turbulence properties are our current best candidates for universality
or, at least, for the definition of universal classes? The assumed independence
of the turbulence kinetic energy dissipation rate on Reynolds number Re in
the high Re limit is a cornerstone assumption on which Kolmogorov’s phe-
nomenology is built and on which one-point and two-point closures and LES
rely, whether directly or indirectly. This cornerstone assumption is believed
to hold universally (at least for weakly strained/sheared turbulent flows). It
is also directly related to the universal tendency of turbulent flows to develop
sharp velocity gradients, to the apparently universal geometrical statistics of
these gradients, and to the apparently universal mix of vortex stretching and
compression (described in some detail in the book “An informal introduction
to turbulence” published in 2001 by A. Tsinober who introduced the expres-
sion “qualitative universality” to describe such ubiquitous qualitative proper-
ties). This universal assumption on turbulence dissipation and these appar-
ently universal qualitative properties of turbulent velocity gradients are inti-
mately linked to the mathematical search for finite-time singularities and/or
near-singularities of the Navier-Stokes equations.

Evidence against universality has been reported since the 1970s, if not ear-
lier, in works led by Roshko, Lykoudis, Wygnanski and George (see for ex-
ample the 2008 Freeman Award Lecture of W.K. George: “Is there an asymp-
totic effect of initial and upstream conditions on turbulence?”) and has often
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been accounted for by the presence or absence of long-lived coherent struc-
tures. Coherent/persistent flow structure can actually appear at all scales and
can be the carrier of long-range memory, thus implying long-range effects of
boundary/inlet conditions. However, they can also be the reason for reduced
order modelling as they introduce the possibilities for significant reductions
in number of independent variables (see POD approaches introduced by Lum-
ley). In these respects, it is noteworthy that the stagnation points of fluctuating
velocities define persistence in the Eulerian frame (PRE 2005, 71, 015301)
whereas low-acceleration regions define persistence in the Lagrangian frame
(PRE 2009, 79, 015301), and both have a multiscale spatio-temporal struc-
ture. We refer to turbulence problem(s) for two reasons: (i) different univer-
sality classes or just boundary/inlet/upstream conditions may require different
treatment and (ii) mixing/clustering of fluid/inertial particles in turbulent flows
may require different reduced order approaches than the actual velocity field.
Stagnation points and zero-acceleration points (different instances of critical
points) are very useful in this last respect (see Phys Fluids 2009, 21, 015106;
JFM 2006, 553, 143).

All these considerations suggest that kinetic energy dissipation, vortex
stretching and compression, geometrical alignments, critical points and the
universality or non-universality of each one of these properties are central to
turbulent flows with an impact which ranges from fundamental mathemati-
cal aspects of the Navier Stokes equations all the way to engineering turbu-
lence modelling and includes, of course, basic Kolmogorov phenomenology
and scalings. Reduced order modelling may be too hard to attempt for the
turbulent velocity field at the present and for some time to come, but research
on the aforementioned properties are a clear prerequisite which can and must
be carried out now. Given the current state of knowledge and technical possi-
bilities, turbulence research can and must embark in a thorough experimental
and computational investigation of the universality or non-universality of tur-
bulence properties concerning dissipation, vortex stretching/compression, ge-
ometrical alignments and multiscale critical point spatio-temporal structure. Is
it possible, for example, to tamper with these properties by systematic modica-
tions of a flow’s boundary and/or upstream conditions?

To investigate such questions, new classes of turbulent flows have recently
been proposed which allow for systematic and well-controlled changes in mul-
tiscale boundary and/or upstream conditions. These classes of flows fall under
the general banner of “fractal-generated turbulence” or “multiscale-generated
turbulence” and have such unusual turbulence properties (see Phys Fluids 2007,
19, 035103; 2007, 19, 101518; 2009, 21, 025108) that they may directly serve
as new flow concepts for new indutrial flow solutions, for example conceptu-
ally new energy-efficient industrial mixers. Turbulence research does not need
to come up with reduced order models valid over wide universality classes to
impact industry if it can come up with new turbulent flow concepts which can
directly offer possibilities for new industrial and/or environmental flow solu-
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tions. These same turbulent flow concepts in conjunction with conventional
flows such as turbulent jets and regular grid turbulence are also being used
for fundamental research into what determines the dissipation rate of turbulent
flows and even to demonstrate the possibility of renormalising the dissipation
constant so as to make it universal at finite, not only asymptotically infinite,
Reynolds numbers (see Phys Fluids 2008, 20, 014102; 2009, 21, 035104).
The dissipation rate constant depends on small-scale intermittency, on dissipa-
tion range broadening and on the large-scale internal stagnation point structure
which itself depends on boundary and/or upstream conditions. In the case of at
least one class of fractal-generated homogeneous turbulence, small-scale inter-
mittency does not increase with Reynolds number and the dissipation constant
is inversely proportional to turbulence intensity even though the energy spec-
trum is broad and power-law shaped.
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Abstract. Small scale turbulence is considered to play a major role
in cloud dynamics. Hot-wire measurements in stratocumulus clouds are
analyzed in terms of internal intermittency. Good agreement is found
with well controlled laboratory experiments. Laboratory measurements
of Lagrangian acceleration are then rescaled to cloud conditions, and
demonstrate that local accelerations greater than g are expected.

Small Scale Statistics of Turbulence and Inertial Particles in 
Clouds and in the Laboratory

HOLGER SIEBERT*, SERGIY GERASCHENKO**, KATRIN LEHMANN*,
LANCE R. COLLINS**, RAYMOND A. SHAW***, ZELLMAN WARHAFT**

Most clouds are highly turbulent, with characteristic Reynolds numbers in
the same range or higher than observed in the boundary layer or clear atmo-
sphere, yet data on their turbulent structure has remained elusive due to the
extreme difficulty of the measurements. Without knowing the details of the
turbulence, the mechanisms of entrainment, mixing, transport, droplet size dis-
tribution and droplet growth in clouds cannot be understood. While laboratory
experiments can aid in understanding the turbulence structure and its effect on
droplet formation and growth, it is difficult to obtain the high Reynolds num-
bers but low dissipation rates observed in clouds. Here we describe recent
measurements of fine scale turbulence statistics in clouds and relate them to
recent laboratory work on inertial particles.

The instruments were part of the Airborne Cloud-Turbulence Observa-
tion System (ACTOS), suspended from a helicopter, and moving at a flight
speed sufficiently large to be safely outside the rotor downwash [1]. A one-
component hot-wire anemometer (CTA, Dantec ) was installed on ACTOS with
a platinum plated tungsten wire of diameter 5 µm and overall length 3 mm to
measure turbulence fluctuations. An elaborate algorithim was used to remove
spikes resulting from droplet impacts [2]. At Cornell acceleration statistics of
inertial particles were studied by injecting water droplets into a large (1 m x
0.9 m x 20 m) open circuit wind tunnel. The effects of Reynolds, Stokes and
Froude number variations were studied in a turbulent boundary layer formed
over a flat plate above the tunnel floor. The particles were injected into the
flow by means of sprays and humidifiers [3]. The acceleration statistics were
determined by moving a high speed camera along the side of the wind tunnel
at the flow speed [4].
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Figure 1: The scaling exponents ζ(n) of the structure functions in cloud derived
by ESS. Theoretical values for K41 and for K62 with an intermittency factor of
µ = 0.25 are shown for reference, together with data derived from wind-tunnel
experiments by [5].

The hot wire measurements were taken close to cloud top in a 200 m thick
cloud layer (Rλ ≈ 5,000) over a path of approximately 6 km. Our objective
is to see how turbulence statistics in the cloud compare with well controlled
laboratory measurements. In particular we are interested in the higher order
structure functions, since they reflect small-scale intermittency. Figure 1 shows
the scaling exponents of the longitudinal velocity structure function. The n-th
order structure function S(n)

(r) is defined as S(n)
(r) ≡ 〈(Δu(r))n

〉x . A scaling
behavior like S(n)

(r) ∼ rζn with a scaling exponent ζn < n/3 where n is the
structure function order should be observed at higher orders. This anomalous
scaling (classical Kolmogorov 1941 scaling predicts ζn = n/3 ) reflects the
internal intermittency [6]. The departure from the classic scaling in Figure 1
shows that the nature of the intermittency in the cloud is similar to that obtained
in controlled laboratory measurements, which are also shown in the figure.
Further analysis of the cloud data [2] determined that the intermittency factor ,
µ ≈ 0.25, in remarkable agreement with laboratory data.

The cloud results show that the fine scales turbulence statistics in a cloud are
similar to those observed in the laboratory. In clouds we cannot yet measure
the acceleration of the droplets, in particular their probability density func-
tion (pdf), and thus we do not know whether there are acceleration events that
compete with the gravitational acceleration. But because the intermittency in
clouds is similar to that observed in the laboratory, we may deduce from lab-
oratory measurements of inertial particles, the nature of the accelerations in
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clouds. We scale the laboratory pdf’s in order to elucidate the relative impor-
tance of fluid and gravitational accelerations in the cloud.

Figure 2: Pdf’s of the Lagrangian acceleration of droplets in the Cornell wind
tunnel flow [3]. The accelerations have been normalized by the gravitational
acceleration and scaled to reflect atmospheric conditions. Stokes and Reynolds
numbers (Rλ) are shown in the insert

Figure 2 shows the acceleration pdf’s normalized by the acceleration due to
gravity, in order to compare the magnitudes of the accelerations that the par-
ticles are experiencing with that of gravity. In order to make an approximate
comparison with expected atmospheric acceleration statistics we have scaled
the pdf with the acceleration ratio (RMSatmos)/(RMSlab). The RMS accelera-
tion measured in the laboratory is of the order 10ms−2. In the atmosphere it is
of order 1ms−2 in a typical cumulus cloud. We note that the laboratory Stokes
and Froude numbers are comparable to those observed in clouds.

The data of Figure 2 suggest the extreme accelerations caused by the turbu-
lent flow field may be having a significant effect on the nature of the inertial
particle motion, and may compete with the gravitational acceleration. In par-
ticular, roughly one drop in 1000 has an acceleration that is equal to or greater
than g. At the much higher Reynolds number of clouds, we would expect the
number of drops with accelerations greater than g to be much greater since the
tails of the pdf widen with increasing Reynolds number [4].

We have shown that the turbulence fine scale statistics in a stratocumulus
cloud are similar to classical laboratory results, exhibiting anomalous scaling
for the higher order structure functions and an intermittency factor of approx-
imately 0.25. Due to internal intermittency [7], laboratory experiments show
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stretched exponential tails of the probability density functions (pdf’s) of the in-
ertial particle acceleration. Because we have demonstrated that the turbulence
characteristics in the clouds are similar to those in the laboratory, we have
scaled the laboratory pdf’s to reflect atmospheric conditions. We have shown
that the extreme accelerations that we expect to occur in clouds may compete
with the gravitational acceleration. The implications of this for raindrop for-
mation are significant. Traditional cloud models assume droplets fall relative to
air at a constant speed, and therefore droplets of different size approach each
other primarily as a result of differential gravitational settling. The analysis
and experimental work presented here suggests that accelerations caused by
the turbulence may compete with gravitational settling, thereby enhancing the
rate of raindrop formation due to collision coalescence.

References

[1] SIEBERT, H., FRANKE, H., LEHMANN, K., MASER, R., SAW, E. W.,
SHAW, R. A., SCHELL, D., AND WENDISCH, M. Probing fine-scale dy-
namics and microphysics of clouds with helicopter-borne measurements.
Bull. Am. Meteor. Soc. 87 (2006), 1727 – 1738.

[2] SIEBERT, H., SHAW, R. A., AND WARHAFT, Z. Statistics of small-scale
velocity fluctuations and internal intermittency in marine stratocumulus
clouds. J. Atmos. Sci. (2009), in print.

[3] GERASHCHENKO, S., SHARP, N., NEUSCAMMAN, S., AND WARHAFT,
Z. Lagrangian measurements of inertial particle accelerations in a turbu-
lent boundary layer. J. Fluid Mech. 617 (2008), 255 – 281.

[4] AYYALASOMAYAJULA, S., GYLFASON, A., COLLINS, L. R., BODEN-
SCHATZ, E., AND WARHAFT, Z. Lagrangian measurements of inertial
particle accelerations in grid generated wind tunnel turbulence. Phys. Rev.
Lett 97 (2006), 144507.

[5] SHEN, X., AND WARHAFT, Z. Longitudinal and transverse structure
functions in sheared and unsheared wind-tunnel turbulence. Phys. Fluids
14 (2002), 370 – 381.

[6] FRISCH, U. Turbulence - The legacy of A. N. Kolmogorov. Cambridge
University Press, Cambridge, England, 296 pp., 1995.

[7] TOSCHI, F., AND BODENSCHATZ, E. Lagrangian properties of particles
in turbulence. Annu. Rev. Fluid Mech. 41 (2009), 375–404.

Small Scale Statistics of Turbulence and Inertial Particles in Clouds and in the Laboratory 119



Pressure fluctuations are important for understanding turbulent flow struc-
ture, and, through the gradients, closely related to the acceleration which, in
turn, is strongly influenced by the intensity of local straining and rotation.
In this short paper we explore statistical relationships among fluctuations of
pressure, dissipation and enstrophy in forced isotropic turbulence using a large
database generated from direct numerical simulations (DNS). Some major pa-
rameters are summarized in Table 1 below. For the largest Reynolds number,
we include 95% confidence intervals based on 20 instantaneous 40963 snap-
shots. Statistics for lower Reynolds numbers are derived from a larger number
of large-eddy timescales which are more readily available.

In agreement with previous investigations, the data above suggest that as the
Reynolds number increases: velocity gradients become more non-Gaussian,
the statistics of dissipation and enstrophy (each of which possessing large vari-
ability) approach each other, while the statistics of pressure fluctuations, which
are dominated by the large scales, show little change. Because of space lim-
itations we focus below on data at the lowest and highest Reynolds number
currently analyzed. The highest Reynolds number is sufficient to capture iner-
tial range behavior in both the energy spectrum (Ishihara etal. [1]) and pressure
spectrum (Tsuji & Ishihara [2]).

Figure 1 shows the probability density function (PDF) of pressure fluctu-
ations, with negative fluctuations sampled up to relatively large amplitudes.
Apart from possible statistical error, the effect of Reynolds number is mainly
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Abstract. We explore statistical relationships among fluctuations of
pressure, dissipation and enstrophy in forced isotropic turbulence using a
large database generated from direct numerical simulations in the Taylor
microscale Reynolds number range approximately 140–1000. Negative
pressure fluctuations are related more to strong enstrophy than to strong
dissipation, while both dissipation and enstrophy are generally less in-
tense in regions of positive pressure fluctuations.
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N3 2563 5123 10243 20483 40963

Rλ 135 231 362 595 1003
µ3 of ∇

‖
u -0.520 -0.540 -0.575 -0.602 -0.630 +/- 0.001

µ4 of ∇
‖
u 5.65 6.58 8.11 9.30 10.85 +/- 0.07

〈Ω3
〉/〈ε3

〉 4.81 4.14 4.21 3.59 2.41 +/- 0.31
p′

/ρu′2 0.923 0.849 0.887 0.870 0.916 +/- 0.039
µ3 of p -1.09 -0.95 -1.02 -0.88 -0.87 +/- 0.06
µ4 of p 6.53 5.90 6.04 5.27 5.32 +/- 0.27

Table 1.1: Selected DNS parameters, including number of grid points, Taylor-
scale Reynolds number, and moments of longitudinal velocity gradient (∇

‖
u),

pressure fluctuation (p), dissipation (ε), and enstrophy (Ω). (Primes, µ3 and µ4
denote r.m.s, skewness and flatness respectively.)

to spread the negative tail to increasingly large amplitudes (in some cases be-
yond 24 standard deviations, though not shown here). The general behavior
is consistent with a quasi-Gaussian PDF for positive amplitudes and nearly
exponential tails on the negative side.

p/p′

PDF

Figure 1: PDF of p/p′ from simulations at averaged Rλ of approximately 140
(�) and 1000 (�). Dashed parabola is the standard Gaussian, for comparison.

Our main interest here is to understand the nature of local flow condi-
tions that correspond to large, negative p/p′. Homogeneity in space requires
that p and ∇2 p be negatively correlated. Because of the Poisson equation
∇2

(p/ρ) =
1
2(Ω− ε/ν) we may expect p < 0 (low pressure) to be associated

with vorticity-dominated regions whereas p > 0 (high pressure) is associated
with conditions of strong strain rate but little vorticity. In Figure 2 we exam-
ine conditional expectations of dissipation and enstrophy given the pressure, in
the range −15 ≤ p/p′

≤ 4 which is not greatly affected by sampling difficul-
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p/p′ p/p′

〈Ω|p〉
〈Ω〉

or

〈ε|p〉
〈ε〉

Figure 2: Conditional expectations of ε (©) and Ω (•), represented by pairs of
lines bounded by 95% confidence intervals. Left: Rλ ≈ 140; Right: Rλ ≈ 1000.

ties that dominate the far tails. It is indeed seen that negative p usually leads
to stronger enstrophy than dissipation, but in general both dissipation and en-
strophy are higher in regions of negative p than positive p. As the Reynolds
number increases, conditional dissipation is substantially higher but the effect
on conditional enstrophy is apparently weaker and less well captured. The dif-
ference between dissipation and enstrophy thus becomes weaker, in agreement
with recent work (Donzis et al. [3]) which showed the PDFs of dissipation and
enstrophy become closer while characterized by widening tails of stretched-
exponential form corresponding to extreme events in the flow.

This work is supported by the National Science Foundation (NSF), USA.
The DNS database has been made possible through the deployment of massive
computational resources at several leading-edge supercomputer sites (TACC,
NICS, NCCS), and are available to other researchers on request.
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Caustics and Intermittency in Turbulent Suspensions of Heavy Particles

Jeremie Bec
Université de Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d’Azur, Labora-
toire Cassiopée, Bd. de l’Observatoire, 06300 Nice, France.

Luca Biferale (A. Scagliarini)
Department of Physics and INFN, Università Tor Vergata, Via della Ricerca Scientifica
1, 00133 Roma, Italy.

Massimo Cencini
INFM-CNR, SMC Dept. of Physics, Università “La Sapienza”, Piazzale A. Moro 2 and
ISC-CNR, Via dei Taurini 19, 00185 Roma, Italy.

Alessandra S. Lanotte
ISAC-CNR, Via Fosso del Cavaliere 100, 00133 Roma, and INFN, Sezione di Lecce,
73100 Lecce, Italy.

Federico Toschi
J.M. Burgers Centre for Fluid Dynamics, Eindhoven University of Technology, 5600
MB Eindhoven, The Netherlands.

The statistics of velocity differences between very heavy inertial particles sus-
pended in an incompressible turbulent flow is found to be extremely intermit-
tent. When particles are separated by distances within the viscous subrange,
the competition between quiet regular regions and multivalued caustics leads
to a quasi bi-fractal behavior of the particle velocity structure functions, with
high-order moments bringing the statistical signature of caustics. Contrastin-
gly, for particles separated by inertial-range distances, the velocity-difference
statistics is characterized in terms of a local Hölder exponent, which is a func-
tion of the scale-dependent particle Stokes number only. Results are supported
by high-resolution direct numerical simulations. It is argued that these findings
might have implications in the early stage of rain droplets formation in warm
clouds.

Statistics of two-dimensional Navier-Stokes turbulence

Guido Boffetta
Università di Torino, Torino, Italy.

The existence of a double cascade in two-dimensional turbulences is one of
the most interesting phenomena in fluid dynamics. The double cascade were
predicted theoretically by Robert Kraichnan in a remarkable paper in 1967,
as a consequence of the two conservation laws in the inviscid limit. After 40
years of experimental and numerical investigations, we are finally able to verify
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quantitatively Kraichnan’s predictions for the double cascade. This is not the
end of the story, as two dimensional turbulence is still source of new research
and discoveries, such as conformal invariance in the inverse cascade.

Velocity gradients statistics along particle trajectories in turbulent flows

Enrico Calzavarini
Lab. de Physique, École Normale Supérieure de Lyon, CNRS UMR5672, 46 Allée d’Ita-
lie, 69007 Lyon, France.

One of the most prominent features of turbulent flows are the strong variations
in the energy dissipation field, a phenomenon called intermittency. In an at-
tempt to describe quantitatively intermittent fluctuations in the inertial range
of turbulence, Kolmogorov and Oboukhov in 1962 [1, 2] proposed a general
relation linking velocity fluctuations, measured at a given spatial increment
δru = u(x + r, t)− u(x, t), with the statistical properties of the coarse grained
energy dissipation, εr = r−3 ∫

Λ(r) ε(x)d
3x averaged over a volume, Λ(r), of ty-

pical linear size r : δru ∼ r1/3ε1/3
r , where ∼ means “scales as”. Equation (1)

is known as the Refined Kolmogorov Similarity Hypothesis (RKSH) and it is
considered to be one of the most remarkable relations between turbulent velo-
city fluctuations : many efforts has been devoted in the last decades to its va-
lidation. The RKSH relation bridges inertial-range properties with small-scale
properties, supporting the existence of an energy cascade mechanism, statis-
tically local in space. So far, a rather strong evidence supports the validity of
the RKSH in the Eulerian frame (i.e. the laboratory frame). On the other hand,
no investigation has been reported in the literature on the validity of RKSH in
the Lagrangian frame. The main difficulty in studying RKSH in a moving re-
ference frame stem from the necessity to make multipoint measurments along
particle trajectories, in order to calculate the stress tensor. Also numerical ex-
periments are very demanding, requiring refined computations of velocity dif-
ferences along particle trajectories, something usually implemented by a heavy
use of Fast Fourier Transform combined with off-grid interpolation. Here we
report the first of such measurements using state-of-the-art Direct Numerical
Simulations (DNS) with resolution up to 20483 collocation points, correspon-
ding to Reλ = 400. We present an investigation of the statistics of velocity
gradients along lagrangian trajectories (i.e. fluid tracers trajectories) in a ho-
mogeneous and isotropic turbulent flow. The investigation is also extended to
the trajectories of inertial particles : We show that the Lagrangian RKSH is
well verified for time lags larger than the typical response time of the particle,
τp . Implications of these findings for modeling of particle transport in many
applied problems are also discussed.
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Symmetry, geometry and anomalous scaling in turbulence

Antonio Celani
Institut Pasteur, Paris.

I will discuss the origins of the breakdown of scale-invariance in hydrodynami-
cal turbulence in the light of recent theoretical advances in the study of passive
scalar turbulence.

The Bottleneck Effects and the Kolmogorov Constant in Three-Dimensional
Turbulence

Diego A. Donzis
Texas A&M University.

Katepalli R. Sreenivasan
ICTP Trieste, Italy.

A large database from direct numerical simulations (DNS) of isotropic turbu-
lence, including recent simulations for box-sizes of up to 40963 and Taylor
microscale Reynolds numbers of up to about 1000, is used to explore the bot-
tleneck effect in three-dimensional energy spectrum and in second- order struc-
ture functions, and to determine the Kolmogorov constant, Ck. The difficulties
in estimating Ck at any finite Reynolds number are examined. The data show
that the bottleneck effect decreases with the Reynolds number. On this basis,
an alternative to the usual procedure for determining Ck is suggested. The pro-
posal does not depend on any particular choice of fitting ranges or power-law
behaviors in the inertial range. Within the resolution of the numerical data, Ck
thus determined is constant in the Reynolds number. A simple model including
non-local transfers is proposed to reproduce the observed scaling. Implications
of the findings are discussed.

Extended Self-Similarity works for Burgers and why

Urier Frisch, Sagar Chakraborty, Samriddhi Sankar Ray
CNRS, Lab. Cassiopée, Observatoire del la Côte Azur, 0634 Nice Cedex 4, France.

Extended Self-Similarity (ESS), discovered by Benzi et al in 1993, is the em-
pirical observation that in fully developed turbulence when plotting structure
functions of order p vs, say, the structure function of order three, rather than
the traditional way where they are plotted vs the separation, then the range over
which clean power-law scaling is observed can be substantially increased.
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It was believed until recenty that ESS applies to 3D Navier-Stokes but not
to the 1D Burgers model. Actually this was due to insufficiently high resolution
used in the numerical simulations of the Burgers equation. When using 256K
Fourier modes it is found that the ESS way of plotting structure functions gives
increased scaling both at the infrared and at the ultraviolet ends of the inertial
range.

We provide a full theoretical explanation of this phenomenon which has to
do with subdominant corrections to the inertial-range scaling.

We conjecture that a similar explanation applies to the 3D Navier-Stokes
case.

Decay exponent of large and small scales in isotropic turbulence

Michele Iovieno, Daniela Tordella
Dipartimento di Ingegneria Aeronautica e Spaziale, Politecnico di Torino, Italy.

The effect of the initial conditions on the decay of homogeneous and isotropic
turbulence is still under debate, and there is a substantial body of experimental
evidence which would seem to suggest that the initial conditions and the slope
of the spectrum, at low wavenumbers, determine the value of the decay expo-
nents. We consider it interesting to verify this hypothesis since, in such a way,
it is possible to highlight the possible role played by the smaller scales. To do
this, we consider the time decay of a turbulent flow with an initially uniform
turbulent kinetic energy, but where the integral scale has been varied slightly in
two adjacent regions. The simulations thus follow the temporal decay of two
homogeneous and isotropic turbulent flows with uniform initial kinetic energy
separated by a thin transition layer in a parallelepiped domain with periodic
boundary conditions. The two fields are characterized by different shaped spec-
tra in the low wavenumber range, obtained by applying a high-pass filter to the
same homogeneous and isotropic turbulent field, which produces a kα slope
with α between 2 and 4. The simulations show that, for flows with an identical
kinetic energy, those with smaller integral scales and thus comparatively richer
in energy in the small scale range, decay faster and have higher decay expo-
nents, which go from 1.1 up to 1.65 : the smaller the macroscale, the higher the
exponent. This is in qualitative agreement with George (1992), who suggests
that the energy decay exponent n is a function of the low wavenumber exponent
α of the spectrum, n = (α+1)/2, and with the measurements in Antonia et al.
(2002). We then focus on the decay rates of the large and the small scale ranges
by dividing the spectrum into two parts : the left part – small wave numbers –
initially contains 60% of the total energy, the right part – high wave numbers –
the remaining 40%.

It can be observed that the decay rate of the full scale range is in-between
that of the small scale range and that of the large scale range. It can be also
seen that, at the lower values of the integral scale, in fields with the same initial
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kinetic energy, the full range exponent comes closer to the arithmetic mean of
the two other exponents. This indicates that the actual decay rate of the isotro-
pic turbulence is not only affected by the large scale properties, but also by the
small scale properties.

On the intermittency of scalars in atmospheric boundary layer

Irene Mazzitelli
Istituto di Scienze dell’Atmosfera e del Clima, CNR, via del Fosso del Cavaliere 100,
00133 Roma, Italy.

The objective of the present study is to characterize the statistics of large sca-
lar fluctuations in turbulent boundary layer driven by atmospheric convection,
and contrast the behaviours of active (temperature ϑ) and passive (humidity
q) scalar fields. This issue is assessed by means of a Large Eddy Simulation
model for the flow and for the scalar equations, with the subgrid-scale stresses
estimated by dynamic modeling. Experimental and numerical studies indicate
that, depending on the degree of instability and on surface moisture flux, an
entrainment-moistening or drying boundary layer can develop, i.e. humidity,
within the mixed layer, may increase or decrease in time. The current analysis
is focused on the high order statistics of the humidity field as compared to the
temperature field, in those two regimes. The large scalar fluctuations and inter-
mittency are investigated by evaluating the probability density functions of the
scalar (q,ϑ) increments δrq = q(x+ r)−q(x) at inertial range separations, and
by computing the cumulated probability of large fluctuations. In agreement
with previous numerical findings in convective boundary layer, temperature
statistics presents saturation of intermittency. It is now shown that also humi-
dity statistics displays intermittency saturation, with different characteristics
depending on the boundary layer regime. In entrainment-moistening boundary
layer, humidity displays the same degree of intermittency as temperature, that
is an active scalar. In entrainment-drying boundary layer, results obtained for
the humidity field, with respect to intermittency saturation, are consistent with
3D experiments and 2D simulations of passive scalar in homogeneous and iso-
tropic turbulence.

Turbulent dynamics in rapidly rotating Couette flows

Matthew S. Paoletti, Daniel S. Zimmermann, Santiago A. Triana and Daniel P.
Lathrop
University of Maryland, College Park, MD 20742, USA.

We present experimental studies of the turbulent flow of water between inde-
pendently rotating boundaries in two geometries : (1) spherical Couette and
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Rahul Pandit Centre for Condensed Matter Theory, Department of Physics, Indian
Institute of Science, Bangalore 560012, India.

We present a detailed direct numerical simulation (DNS) of the two-dimensional
Navier-Stokes equation with the incompressibility constraint and air-drag-
induced Ekman friction ; our DNS has been designed to investigate the com-
bined effects of walls and such a friction on turbulence in forced thin films.
We concentrate on the forward-cascade regime and study the probability dis-
tribution function of the Weiss parameter, which distinguishes between regions
with centers and saddles. Our results are is in quantitative agreement with ex-
periments.

Topological properties of turbulence in thin films : direct numerical simu-
lations with Ekman friction

Prasad Perlekar
Technische Universiteit Eindhoven, P.O. Box 51, 5600 MB Eindhoven, The Nether-
lands.

(2) cylindrical Taylor-Couette, which are capable of both strong turbulence
(Re > 106) and rapid rotation (Ek < 10−7). The torque required to drive the
inner boundary in both cases is precisely measured as a function of the two
angular velocities 1 and 2. Of particular interest are three distinct regions of
the ω1 vs. ω2 parameter space bounded by the inner and outer boundaries ha-
ving equal : (i) angular velocities (solid-body rotation), (ii) azimuthal velocities
and (iii) angular momenta (Rayleigh criterion) with the outer boundary statio-
nary line (ω2 = 0) serving as the final bound. We supplement the global torque
measurements with local wall shear stress measurements and ultrasound velo-
cimetry. We observe distinct phenomena depending upon the particular region
of parameter space. For ω1 = ω2, rather than observing solid-body rotation as
expected, a spin-over mode is driven by precession produced by the rotation
of the Earth. In regions of the parameter space dominated by global rotation
we observe Coriolis-restored, linear inertial modes. Lastly, when ω1 ≈ 3ω2
the spherical-Couette system intermittently transitions between two turbulent
states characterized by disparate torque demands. We model the system as
being composed of two interacting, turbulent boundary layers. There are se-
veral open questions that we work to answer : (1) Are there any conditions
under which angular momentum will flow uphill ? (2) What quantity (angu-
lar velocity, azimuthal velocity, or angular momentum) is the system trying to
“mix” ?
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Finite-sized particle dynamics in turbulent flows

Romain Volk, Enrico Calzavarini, Emmanuel Levêque, Jean-François Pinton
Laboratoire de Physique de l’Ecole Normale Supérieure de Lyon, 46 Allée d’Italie,
69007 Lyon, France.

Modern experimental techniques allow nowadays to resolve the dynamics of
small material particles in highly turbulent flows. This has open a way for a
precise comparison, found encouraging, between experimental data and la-
grangian data computed from Direct Numerical Simulations of very small -
computationally assumed to be pointwise - inertial particles. However, in many
realistic experimental situations the size of the particles (its diameter D) is not
small as compared the dissipative scale and the agreement between experi-
mental and numerical data falls off. In this contribution, I will focus on the

certain threshold, we can estimate the vortex filaments life
ferential concentration of heavy/light particles inside/outside vortex filaments
has been also used to investigate the fluctuations of the autocorrelation time
of vorticity along particle trajectories. The intense clustering of light particles,
due to trapping phenomena inside vortex filaments, has a dramatic impact on
their long term pair dispersion. This can be quantified in terms of the evolution
of particle pairs distances PDFs and of the finite time Lyapunov exponents for
particle trajectories.

8

Dynamics of vortex filaments in turbulent flows and their impact on par-
ticle dispersion

Andrea Scagliarini, Luca Biferale
Università di Roma “Tor Vergata”, Roma, Italy.

Federico Toschi
Eindhoven University of Technology, Eindhoven, The Netherlands.

We study, by means of state-of-the-art DNS, the dynamics of pointwise par-
ticles passively advected by a turbulent flow. We focus on the connection bet-
ween preferential concentration of particles and the underlying topological Eu-
lerian structures in general and with vortex filaments in particular. We charac-
terize the latter by tracking particles lighter than the fluid, which tend to accu-
mulate inside vortex filaments and there remaining trapped even for very long
time. We study the temporal evolution of the momentum of inertia of bunches
of particles. From the time lag during which this quantity remains under a

times. The pre--
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dynamics of large neutrally buoyant particles with size D/η ∈ [1,50] moving
in highly turbulent flows with Rλ ∈ [100,900]. I will present a comparison bet-
ween the lagrangian statistics for both experimental data obtained by Laser
Doppler Velocimetry, and numerical data obtained by DNS with a modified
equation of movement for the particles that takes into account the size of the
particles trough volume and surface averages.

Lagrangian statistical theory of fully-developed hydrodynamic turbulence

Kirill Zybin, Valeria Sirota, Anton Ilyn, Alexander Gurevich
Russian Academy of Science, Moscow, Russia.

In Zybin et al.(2007) we proposed a new statistical theory of turbulence based
on the Navier-Stokes equation. The inertial range of scales in incompressible
liquid was considered. The idea of the model is that the main role in statis-
tics belongs to the regions where vorticity is very high. We showed that these
regions must take the form of vortex filaments, and derived the equation des-
cribing the vorticity evolution. It appeared that growth of vortex filament was
caused by large-scale pressure pulsations. This large-scale term was used to
introduce randomness in the Navier-Stokes equation, instead of adding usually
external large-scale random forces.

Applying the theory we find the Lagrangian structure functions. For time
much smaller than the correlation time, the structure functions are shown to
obey scaling relations. The scaling exponents are calculated analytically wi-

ture functions of different orders analogously to the extended self-similarity
ansatz is found. All the results agree extremely well with the experimental data.

thout any fitting parameters. A new relation connecting the Lagrangian struc-
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