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theoretical probability density functions

(PDF) of electromagnetic fields inside reverberation chambers
operating in a ‘“good-but-imperfect” regime have been recently
reported. The present work reports on the application and
assessment of these PDFs using a non-conventional type of rever-
beration chamber, namely the Vibrating Intrinsic Reverberation
Chamber (VIRC). A vector network analyzer was used in order
to measure the complex field components. An electrically short
dipole antenna was used as a receiving antenna. Five thousand
frequency points were taken ranging from 200 MHz (undermoded
regime) to 4 GHz (overmoded regime), so one measurement
every 760 kHz was performed. For each frequency, 200 samples
of the real and imaginary part of the field were measured.
Measurements confirm the fact that the novel PDFs are able
to describe the occurrence of anomalous statistics in the VIRC.

I. INTRODUCTION

A Reverberation Chamber (RC) consists of a metallic
shielded room of finite conductivity with a stirring device,
antennas, an equipment under test, and other devices inside.
It formally can be defined as an electrically large, high Q,
multimoded cavity using mode stirring to create changing
boundary conditions in order to obtain a statistically uniform
electromagnetic field [1].

RCs are gaining significant confidence in their use for
electromagnetic compatibility measurements and multipath
environment characterization. The correct interpretation of the
measurement results and the performance optimization of RCs
require a full understanding of their working principles.

A particular non-conventional example of a RC is the one
referred to as the Vibrating Intrinsic Reverberation Chamber
(VIRC) [2]. The VIRC is a chamber with an intrinsically
complex geometry where wave diffusion is given by the
naturally jagged surface of the flexible walls. Moreover, it is
not only a complex-shaped chamber but also a vibrating one,
thus changing the mode structure at every stir state, which in
this case is a particular configuration of the chamber shape.
The practical means for realizing such a chamber is basically
to construct a shielded room with flexible conductive material
and make the whole structure vibrate.

It has been reported that most statistical models in reverber-
ation chamber theory assume ideal reverberation conditions.
When using high-power goodness of fit tests and with a large
number of samples, it can be seen that in real RCs it is
not so simple to find ideal reverberant conditions for every
frequency, even in the overmoded regime. The marginal PDFs
reported before in [3] fit better the real measured data than the
asymptotic xf) distributions i.e. the theoretical ones for ideal
reverberation.

The marginal distributions were validated in [3] using
measurements provided by two conventional RCs: the one of
Alenia Aeronautica in Caselle, Italy and the one of IETR-
INSA in Rennes, France. This paper aims at applying this
statistical model to the VIRC. The VIRC represents a more
suitable environment as a random field generator than conven-
tional RCs [4].

II. GOOD-BUT-IMPERFECT REVERBERATION

Main statistical models for reverberation chambers (e.g.
[1], [5]) conclude that each complex part of the Cartesian
field components E,g, where o = =x,y,z represents the
Cartesian component and § = r,i the real and imaginary
part, respectively, is normally distributed [6] with zero mean.
The statistical distribution of complex fields that represent
ideal reverberation inside a perfect enclosure can then be
deduced from ideal circular Gauss normal variates resulting
in well-known distributions. The magnitude is found to be
X2, distributed, the energy density is x3, distributed for a
Cartesian field component (v = 1) or total field (v = 3) and
the phase U(—m, ) (uniformly) distributed.

Nevertheless, just by ensuring Gauss-normal field compo-
nents does not guarantee that the known asymptotic distri-
butions Xg,) can always be found. Other assumptions must
be taken as conditions, such as that the complex Cartesian
field components are unbiased, independent and identically
distributed Gauss-normal variates, i.e. with zero mean (ug,,, =
tEe,; = 0), equal variance (J?EM = J%m) and no correlation
between them (pg,, .. = 0). It has been stated that in real



RCs, even at relatively high frequencies, these ideal conditions
are often not met [3].

Experiments were carried out in a VIRC [4] at the Environ-
mental Competence Center of Thales Nederland in Hengelo,
The Netherlands, using a vector network analyzer and a
short dipole antenna in order to measure the complex field
components. The size of the VIRC is | m x 1.2 m x 1.5 m.
The first resonant frequency is around f110 = 160 MHz (its
value changes depending on the tightness in which the VIRC
is fixed). According to the generally accepted criteria (like e.g.
in [7]) the lowest useable frequency (LUF) might lay between
480 MHz and 960 MHz. For each frequency, 200 samples were
measured while the VIRC was shaking and performing mode-
stirring. Different statistical tests were applied to the measured
data in order to test the above mentioned assumptions.
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Fig. 1. Rejection rates for the Anderson-Darling GoF test for measurements
performed in a VIRC for the real and the imaginary part of field.

Figure 1 shows the rejection rates (percentage of rejected
tests over a frequency bin) for the Anderson-Darling [8]
Goodness-of-Fit (GoF) test for the real and the imaginary part
of the field measured in a VIRC, for a 5% of confidence level.
It can be seen that the rejection rate is rather low (significantly
lower than 5%) for the overmoded region.

The Student’s t-distribution helped in testing the hypothesis
of zero-mean (T-test), equal variances (F-test) and uncorrela-
tion (Pearson’s p test), all of them for a 5 % of confidence
level. Figure 2 shows the rejection rates resulting from the
measurements performed in the VIRC. It can be seen that in
this case, the rejection rates are significantly high.

As an example of the concepts explained above, let us
consider two measurements, one at 3.612 GHz and the other
one at 3.63 GHz. Both measurements were chosen for fre-
quencies in the overmoded regime. Their histograms with
superimposed fitted normal PDFs can be seen in Fig. 3. The
dashed vertical lines indicate, the average value (in the middle)
and the average plus or minus the standard deviation at its
sides.
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Fig. 2.  Testing some basic assumptions on the first- and second-order
statistical properties of the real (E.,) and imaginary (E.;) part of the
field components. Rejection rates show the percentage of rejected tests over
frequency bins.

The GoF applied to the sets of data in Fig. 3(a), gave p-
values of 0.31 and 0.14 for the real and the imaginary part,
respectively; while for the data in Fig. 3(b), the p-values
resulted in 0.92 and 0.23. This gives good reason to accept
the hypotheses of normality on the four cases.

Nevertheless, there is a difference between the two data
sets and it is that in the case of Fig. 3(a), the T-test, the F-test
and the Pearson’s p test failed to accept the null hypotheses
of zero-mean, equal variances and uncorrelation, respectively;
while the data in Fig. 3(b) did not fail.

The specific problem that will be treated in the present paper
assumes that asymprotic Gauss normal distributions for the
field components apply, but the overall operational conditions
depart from ideality. This condition has been referred to as
the “good-but-imperfect” reverberation [3]. In this sense, data
of Fig. 3(a) can be considered as an example of “good-but-
imperfect” reverberation, while data on Fig. 3(b) are closer to
the ideal situation.

III. MODEL OVERVIEW

The derivation of the statistical model in [3] is based on
considering two gaussian random variables with mean values,
variances and correlation between them that are departed from
the ideal assumptions. A bivariate approach using a complete
joint gaussian distribution of these variables is defined.

For our model formulation we start considering the joint
PDF of two Gauss-normal random variables £ and 7 [6]:

ffn(§777) = !

2mocon/1 — pz.

(D

1 (6—pg)? L (—pn)?  2p(E—pg)(n—pny)
20D 2 o2 Teon ’
where u¢ and p1,, are the mean values for £ and 7, respectively,

0’? and 0727 are the corresponding variances and p is the correla-
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(a) Measurements at 3.612 GHz

Fig. 3.

(b) Measurements at 3.63 GHz

Histogram with superimposed fitted normal density for the real and imaginary part of the (normalized) electric field (upper and bottom panel,

respectively). Measurements were performed for two frequencies in the overmoded regime.

tion coefficient between & and 7 as defined in [6]. The function
fen(&,m) of (1) will be denoted by N (pg, fiy; ¢, 003 p).

It can be seen in Fig. 4 three-dimensional histograms of the
bivariate measured data, with the fitted bivariate joint gaussian
distribution of eq. (1). A three-dimensional histogram simply
counts the number of points laying in the two dimensional
bins in which the variates are divided.

A change of variables representing each field component in
terms of its magnitude and phase, leads us to consider a new

pair of random variables:
r=|Ey| =vVE +n? ¢=argEa:arctang, )

where r > 0 and —7 < ¢ < 7. With this assumption, the
system in (2) has a unique solution

E=rcoso

Since the Jacobian of this variable transformation is simply

n=rsin¢ for r > 0. 3)

. —1
J§7]r¢ (Ta ¢) = oo (b . (b = 17 4

—rsing rcos¢ r

we conclude that the joint PDF of the new set of variables in
(2) is

fr¢ (Tv ¢) = rf{n (T Cos d)v T sin ¢)

and zero for » < 0. This result is readily obtained extending
the procedure illustrated in [6].

Figure 5 shows the three-dimensional histograms of the
same measurements of Fig. 4, but with the change of variables
in (2) applied to them. The fitted joint PDF of eq. (5) is also
superimposed.

The PDFs of the individual magnitude and phase of the field
components can be derived as the marginal distributions of the
joint fr4(r, @) of eq. (5) by calculating:

r 20, ®)

Lo = femdyds  fue) = / " frolr @) dr.

- ©6)

Figure 6 shows the histograms and the marginal PDFs
of eq. (6) for the magnitude and phase of the (normalized)
electric field of the present example. Also the PDFs for
ideal conditions of operation (Rayleigh for the magnitude
and Uniform for the phase) are present in the figure for
comparison. It can be seen that the distribution of the phase
is significantly more disturbed by the imperfections than the
distribution of the magnitude. Let us recall that both these
sets of measurements embed reasonably good Gauss-normal
variates.

A. Summary

The sequence of the operations defined above will be
summarized and presented in this subsection for clarity.

1) We start considering two random variables ¢ and 7,
normally distributed with:

fe(€) ~ N(pg,o¢),

fn(n) ~ N(unaan) ,

where ¢ and g, are the mean values for £ and 7,
respectively, o? and 02 are the corresponding variances.
The variables are correlated with correlation p. Figure
3 shows an example of two pairs of data samples with
this description.

2) Secondly, consider the joint distribution between & and
n of eq. (1). The distributions of & and 7 can easily be
“retrieved” by doing:

fe6) = /_ T paEnydn fyn) = /_ " fen(€m)de.

Figure 4 shows the bivariate PDF applied to the mea-
surements following this process.

3) Thirdly, apply the change of variables in eq. (2) that
results in the joint PDF of eq. (5). This change of vari-
ables represent a change of coordinates from rectangular
to polar representation of the complex [electric field]
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(b) Measurements at 3.63 GHz

Fig. 4. Three-dimensional histogram with superimposed fitted bivariate normal density function. Measurements were performed for two frequencies in the

overmoded regime.
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vector. Figure 5 shows how data is transformed with
this procedure.

4) Finally, find the distribution of r and ¢ as the marginal
distribution of eq. (5) by applying eq. (6). Figure 6
shows the final result of the process.

In the following section, the marginal distributions of eq.

(6) obtained by integration of a two-dimensional joint PDF
are compared with theoretical PDFs for ideal situations.

IV. RESULTS

A Rohde & Schwarz ZVA40 Vector Network Analyzer
(VNA) was used in order to measure the complex field
components. An electrically short dipole antenna was used
as a receiving antenna. The electrically short dipole antenna
is necessary for sampling a (rectangular) component of the
electric field. The receiving antenna was placed in the geomet-
rical center of the working volume, oriented along the longest
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(b) Measurements at 3.63 GHz

Three-dimensional histogram with superimposed fitted joint PDF of eq. (5). Measurements were performed for two frequencies in the overmoded

dimension of the working volume. Five thousand frequency
points were taken ranging from 200 MHz (undermoded) to
4 GHz (overmoded), so one measurement every 760 kHz
was performed. For each frequency, 200 samples of the real
and imaginary part of the field were measured. A full VNA
calibration has been done over the entire frequency band.

Figure 7 shows the rejection rates of the Anderson-Darling
GoF test with the marginal and with the ideal distributions for
measurements performed in the VIRC for the magnitude and
phase. Appropriate critical values for these particular PDFs
need to be derived. We assume a commonly used critical value
of 0.752 for a 5% level of confidence test. Looking for more
adapted critical values goes beyond the aim of the present work
and may not have a significant consequence on our validation
results. The better fit (lower rejections rates) can be found as
well for the VIRC as it was found for conventional RCs [3].
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Histograms with superimposed fitted marginal PDFs of eq. (6) and ideal PDFs (Rayleigh and Uniform) for the magnitude and phase part of the

(normalized) electric field (upper and bottom panel, respectively). Measurements were performed for two frequencies in the overmoded regime.

These marginal PDFs can give better reason for departures
from ideality in well-performing RCs, situation that has been
called “good-but-imperfect”. In particular, the departure of the
phase from a uniform distribution is noteworthy.
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Fig. 7. Rejection rate of Rayleigh and Marginal PDFs for the magnitude
(upper panel) and for Uniform and Marginal for the phase (bottom panel) of
the electric field. Data refer to measurements in the VIRC.

V. ANOMALY CLASSIFICATION

In the past sections we introduced and investigated a family
of anomalous statistics occurring in the overmoded regime.
The model applied in the present work allows us not only to
detect these anomalies, but also to classify them. As explained
in section III, three basic assumptions were relaxed in order
to derive the marginal PDFs for “good-but-imperfect” rever-
beration. Each one of these assumptions specifies a different
type of deviation from ideality. Eight different combinations
of marginal PDFs can then be defined, by combining the
zero-mean, equal variances and/or uncorrelated variates as-
sumptions. In this manner, a number of alternative bivariate

PDFs for the general elliptical Gaussian function of eq. (1)
are therefore available accounting for different deviations from
ideality:

Type I :fen(§,m) ~ N(0,0;0,0:0)
Type I :fen(§sm) ~ N (e, pn; 0,030)
Type Il :fen(€,m) ~ N(0,0;0¢,0,;0)
Type IV :fen(§,m) ~ N(pe, pin; 0¢, 073 0)
Type V. :fen(§,m) ~ N(0,0;50,0:p)
Type VI :fen(§m) ~ N(pe, pin3 0,05 p)
Type VII :fey(&§,m) ~ N(0,0;0¢, 045 p)
Type VIII :fen(§,m) ~ N (e, pini 0, 00 p)

Type I represents the ideal case. Type II accounts only
for the case of nonzero-mean variates, i.e. resulting in the
Rice distribution for the magnitude, as shown in [3]. Type
IIT accounts for nonequal variances. And the list of eight
types completes by adding more and more deviations from
ideality. Two marginal PDFs per each type can be derived,
resulting in a family of sixteen different PDFs, half of them
for the magnitude, half for the phase of the electric field.
The physical parameters i, iy, 0¢,0, and p are found to
be acting as “shape parameters” (somehow similar to the k
parameter for the Weibull), and from this fact comes the ability
of the marginal PDFs of shape-changing and fitting better to
measured data.

The parameters ji¢, fiy,0¢,0, and p can be measured.
A procedure of hypothesis-testing can be applied to decide
whether a particular parameter can be accepted to as ideal or
not, yielding the classification of distribution shapes into types
I... VIIL In this manner, these parameters act as “classifiers”.
By means of this method we are able to characterize and
analyze the statistical structure of anomalous occurrences.

Figure 8 shows the percentage of occurrence of each type
over frequency bins. A total of 50 bins for the whole frequency



band were defined, resulting in 100 measured data sets in a
band of 76 MHz per bin. The percentage of occurrence as a
function of the frequency for each type, are plotted as stacked
curves in Fig. 8.

Percentage ocf ocurrence (Stacked curves) [%]
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Fig. 8. (color online) Marginal PDFs types percentage of occurrence over
frequency bins. The eight curves are plotted stacked on one another.

It can be seen on Fig. 8 that the occurrence of Type I
statistics (the ideal case), starts to rapidly grow right in the
region were the LUF was defined (three to six times the cutoff
frequency f110). After this point, the occurrence of Type I is
rather constant and dominant, yet never absolute. It is observed
that even in high frequency regime some anomalous statistics
occur with a rate of approximately 15-20% (and it reaches even
40% for some particular circumstances, like at 1500 MHz).

It is also to be noticed that the contribution of Type II
statistics (which coincides with the Rice distribution for the
case of the magnitude) seems also to be relatively constant all
along the measured frequency band.

In the undermoded region our model can not be rigorously
applied, since the different hypothesis tests performed assume
a normal distribution of the data samples, which is only the
case in the overmoded region. Nevertheless, it is interesting
to note that there is a dominance of even Types occurring
in the undermoded region, while the opposite takes place in
the frequencies after the LUF, where the odd Types prevail
(despite Type II that, as was mentioned, is constantly present
all along the band).

Furthermore, it appears from our measurements that the
occurrence of the Types accounting the largest number of
deviations from ideality i.e. Type IV, VI, VII and VIII is
rather scarce in the overmoded region, being more dominant
the Types with only one (or none) deviations from ideality i.e.
Type I, II, IIT and V.

VI. CONCLUSIONS

In the present work, we reported on a statistical analysis
of “good-but-imperfect” reverberation in an empty VIRC.
Measurements were performed over a relatively wide band

including both the undermoded and the overmoded regimes.
Our considerations are focused mainly in the overmoded
regime.

The Anderson-Darling Goodness-of-Fit test has been em-
ployed to detect an inconsistent rejection rate between data
assessed using the real and imaginary parts of the complex
field and using the magnitude and phase of the same field.
Rejection rates for the underlying gauss-normal variates show
to be lower than the rejection rates for the Rayleigh and
Uniformly distributed magnitude and phase, respectively. This
fact help us exclude sampling as a main cause for anomaly
occurrence. It was discussed how the step from two gaussian
random variables into a Rayleigh and a Uniform random
variables is done assuming certain conditions of ideality. By
relaxing these assumptions we showed a richer family of PDFs
that are able to account for the statistics of the deviations from
ideality.

Moreover, by means of this statistical model, we are able
to not only detect but also to classify the anomalies occurring
in the VIRC.

The results reported in this paper are to be helpful in
better understanding the behavior of resonant fields in enclosed
reverberant environments, where non-ideal random fields are
present.
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