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Abstract—The defective behaviour of an 8T SRAM cell with
open defects is analyzed. Full and resistive open defects have
been considered in the electrical characterization of the
defective cell. Due to the similarity between the classical 6T
SRAM cell and the 8T cell, only defects affecting the read port
transistors have been considered. In the work, it is shown how
an open in a defective cell may influence the correct operation
of a victim cell sharing the same read circuitry. Also, it is
shown that the sequence of bits written on the defective cell
prior to a read action can mask the presence of the defect.
Different orders of critical resistance have been found
depending on the location of the open defect. A 45nm
technology has been used for the illustrative example presented
in the work.

Keywords: open defect, 8T SRAM cell, read error, delay
fault, test, defect analysis.

L INTRODUCTION

The extensive use of programmable processor cores in
SOCs require a large amount of embedded SRAMs to
implement on-chip data and instruction storage. The area
occupied by SRAM is currently higher than the rest of the IC
circuits and is increasing for each new technology node.

The aggressive scaling of SRAM cells decreases the
reliability of operation of the memory cores due to an
increasing impact of the wvariability of the process
parameters, voltage and radiation noise and IC temperature
gradients. The ITRS 2009 [1] reports an increase of three
orders of magnitude (a factor of 10%) in the variability-
induced failure rate when scaling High Performance SRAM
from 45 nm to 32 nm. The study assumes the traditional 6T
cell design with the same circuits (pMOS and nMOS ratios,
sizing and required read/write circuits, etc.) and the PTM [2]
models with the expected process variability.

The vulnerability of the SRAM cores to catastrophic
defects is also increasing due to the reduction of the
minimum feature size and the higher complexity of the
process steps. Open and bridge catastrophic defects are
increasing in each new technology node and there is growing
concern on its impact of the fabrication yield. Defect based
testing (DBT) strategies require to analyse the impact of the
defects in nano-scaled CMOS circuits [3]. The increasing
number of contacts and vias, the reduced size of the
connecting lines and the required process steps increase the
probability of open defects. Some of these opens are full
opens (the open defect causes a complete electrical
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disconnection) but other defects called resistive opens are
modelled with a resistance added in the broken line [4].

Most of current defect based memory test algorithms are
centred in the 6T (six transistors) cell circuit which is the
dominant present architecture for commercial embedded
SRAM cores. The 6T SRAM shares the bit lines for the
READ and WRITE operations. To guarantee an acceptable
SNM during the READ operation, the strength of the access
nMOS transistor must be low compared to the strength of the
pull-down nMOS. On the other hand, to assure an acceptable
SNM during the WRITE operation, the strength of the access
nMOS transistors must be high compared to the strength of
the pull-down nMOS. These conflicting requirements are
acceptable for cells with large SNM, but in the future with
lower margins the cell becomes unreliable.

To overcome this problem in future technology nodes,
for 32 nm and beyond, the 8T SRAM cell has been proposed
[5] [14] as a possible substitute of the 6T cell SRAM. As can
be observed, in the 8T cell of Figure 1 the READ and
WRITE paths are independent thanks to adding a Read Word
Line (RWL), a Read Bit Line (RBL) and two stacked
transistors (RD and RDaux) [7] [8].

In this paper, we focus our attention to the open defects
(full and resistive) located on the read port of the 8T SRAM
cell. The defects on the 6 remaining transistors would behave
similarly to the defects on the classic 6T cell which have
been widely researched in recent years [9]-[12].

The rest of the paper is organized as follows: Section II
reviews the 8T cell circuit functionality. The impact of the
open defects is analyzed in Section III. A summary of the
defective behaviour of the full and resistive opens is listed in
Section IV. Finally, the conclusions of the work are
presented.

II. 8T SRAM CELL

Figure 1 shows the electrical schema of the 8T SRAM
cell considered in this work. The 8T SRAM is based on a
cell schematically similar to cells commonly used in register
files, by separating the Read Word Line (RWL) and Write
Word Line (WWL) and adding two stacked NMOS
transistors for single-ended read action.

Since the 8T memory cell has a separated read port
comprised of two transistors (RD and RDaux in Figure 1),
there is some area overhead compared with the 6T cell.
However, some voltage control scheme proposals enable the
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scalability of 8T SRAM cell crossing down the 6T cell area
for technology nodes below 45nm [8].

RWL
WWL

RDaux CraL

nBL RBL

Electrical schema of the 8T SRAM cell considered.

Figure 1

During the normal operation of the 8T SRAM, the
RDaux transistor is activated with signal RWL in order to
perform a read action on the memorized bit, as illustrated in
Figure 2. Assuming that the Read Bit Line (RBL) has been
precharged to a high value before the reading operation, the
RBL node will keep the high voltage if a memorized Q=1
(nQ=0) is in the cell (see Figure 2a). In the case of Q=0, the
high voltage (nQ=1) feeding the RD transistor gate allows
the discharge of Cgrpy through the two stacked on transistors,
as illustrated in Figure 2b.

Voo
D ﬁgRBL ﬁgkm
RWL ---—][ RDaux T RWL T
on = =
0 RBL RBL
nQ ... RD nQ
_| off
a)

Figure 2 Read operation of the memory bit in the 8T SRAM cell of a
previously a) Q=1 and b) Q=0 written state.

HSPICE simulations have been carried out in order to
characterize the electrical behaviour of the SRAM cell. The
Berkeley Predictive Technology Model 45nm has been used
and standard sizing [7] [13] has been chosen to implement
the cell included in this work as an illustrative example.

Figure 3 shows the timing response of the defect-free cell
for a sequence of writing and reading actions assuming a
working frequency of 1GHz. Figure 3¢ indicates the three
WO0-W1-WO0 write operations (triggered by WWL) followed
by the read action RO (triggered by RWL). Figure 3b shows
the response of Q and nQ to these write and read actions.
Finally, Figure 3a illustrates the precharge of node RBL prior
to the read operation, which results in a completed discharge
of Crpr as a consequence of nQ=1, i.e. Q=0.

Wi | R
I

- 1
WWL =

RWL

0,0

Time (ns)

Figure 3 Timing behaviour of the defect-free 8T SRAM cell: ¢) indicates
the write and read actions performed on the cell; b) shows the response of
Q and nQ nodes; the precharge of node RBL is shown in a), together with

its subsequent discharge as response to nQ=1 (triggered by RWL).

III. DEFECTIVE 8T SRAM CELL

In this section, open defects affecting the terminal nodes
of the read port transistors RD and RDaux are analyzed, (see
Figure 4). The effects of full and resistive opens on each
location are presented. During the electrical characterization,
the written values on the cell are assumed to be correct since
the defects only affect the read port.

RWL
WWL

Q o/ =]

RDaux

BL nBL RBL
Figure 4 Open defects affecting the read port of an 8T SRAM cell.

A. Open defect at the gate of RDaux transistor (O1)

1) Full open defect O1
In the case of Q=1 (nQ=0), shown in Figure 5, the
complete electrical discontinuity at the RDaux transistor gate
does not affect the reading operation of the cell. In this case,
the defect-free off transistor RD assures the precharged Crpr
capacitor to keep its charge and, thus, results in a correct
reading R1 (Q=1).
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_l off

Figure 5 Full open defect Ol in the case of Q=1, nQ=0. The reading
operation is correct since the precharged RBL line keeps the electrical
charge.

Let us now consider that the memorized state is Q=0, i.e.
nQ=1. Under this circumstance, the RD transistor is on as
shown in Figure 6 and, in the case of a defect-free cell, the
RBL should be discharged in order to correctly detect nQ=1
(RO). However, as illustrated in Figure 7, the floating node
FN remains in an intermediate voltage that only allows the
partial discharge of Cgg;. Indeed, during the RBL precharge,
the coupling capacitance Cp, (see Figure 6) pulls up the
voltage of the floating node FN to an intermediate value Vy.
Note that this is possible because the positive RWL pulse is
disconnected from the floating node due to the defect. The
discharge of the RBL node is performed through the weakly
on RDaux transistor (and RD), and is slower than expected.

Figure 6  Effect of the precharge of RBL on the floating node in the case
of a full open defect O1 with Q=0. The RBL precharge pulls up the
floating node due to the coupling capacitance Cpar. The subsequent reading
operation may be incorrect since the precharged RBL line is only partially

discharged.
1,0
\'
0,5
0,0
1 2 3 4 5
Time (ns)

Figure 7 Partial discharge of RBL due to the intermediate voltage Viy
caused by the full open O1.

The behaviour illustrated in Figure 7 is due to the
capacitive coupling between the floating node and the RBL
line (the larger the capacitance, the higher the resulting
voltage Vi is). The effect of this intermediate voltage Viy

DCIS 2010 Proceedings

depends, among others, on the threshold voltage of the
RDaux transistor, on the value of Cgrpp (which depends on
the number of cells sharing the same read bit line). As a
result, the readout of the cell (with Q=0) depends on whether
the final Vggy falls below the threshold voltage of the read
circuitry or not. The effect of the full open is a non assured
correct reading RO.

2) Resistive open defect Ol

The case where the open defect is a partial break of the
electrical connection is shown in Figure 8 assuming the
resistive model of the open [4]. Depending on Ropen, the
gate of RDaux transistor may reach a sufficient voltage able
to properly discharge Cgp;, as illustrated in Figure 9 for
different resistance values. Figure 10 shows the defective
node voltage (Vry) and the discharged Vg at the end of the
reading phase, for the 45nm SRAM cell considered in this
work. In this example, Ropen<6.4MQ result in Vggp
discharged below Vpp/2. Assuming a nominal threshold
voltage of Vpp/2 for the read circuitry, although the electrical
RBL response is degraded, the nQ bit is correctly interpreted
as 1 (RO).

! (read ?)

" CRBL
I RDaux I

_D_ Ropen _n_
RWLE— +—

RBL

nQ 1—| RD

on

Figure 8 Partial open defect O1 modeled with resistance Ropen.

1,01 [T T Vaw
(U TRV |
1) |
/ \ A
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0,0 L - —

1,0
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Figure 9 Response of the a) floating node voltage Vey to a positive pulse
Vrwrand b) resulting discharge of Vrp. depending on the resistance of the
defect (Ropen).
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Figure 10 Read Bit Line voltage detected by the read circuity versus the
resistance of the open O1.

3) Impact of Ol on victim cells
The presence of Ol in a defective cell may impact the
read operation on other defect-free cells sharing the same
RBL. In order to analyze this fact, let us assume a defect-free
cell i and a defective cell j, as illustrated in Figure 11, which
are connected to the same RBL.

B.L n.BL RBL
: Cell i : :
RWL; -
WWL; : . --
T U Y [Roauw
|[RDi
: [} [}
: i :
Cellj
RWL,
L

.

=}
2
|_.
/b
1%
Q

Figure 11 Defective cell j and defective-free cell i connected to the same
Read Bit Line.

The electrical interaction between both cells is simplified
to the circuit shown in Figure 12. In the case where the
operation RO; is performed on the victim cell i (Qi=0,
nQi=1), the influence of cell j has no effect and the RBL line
is correctly discharged through the read port of cell i.

RWL; |

Precharged to Vpp
CRBL

1

nQi=0

RWL,

Figure 12 Read action on victim cell i affected by defect in agressor cell j
due to full open O1.

However, the read operation R1; (Qi=1, nQi=0) can be
disturbed by the connection to the read port of cell j. Let us
assume the circuit in Figure 12 with Qi=1 and Qj=0, in this
case, the read operation on Qi should keep Cgrp precharged
to a high value, however the full open defect Ol allows the
weak connection of RDaux; and, thus, the partial discharge
of RBL (similar to Figure 7). Note that a resistive open Ol in
cell j does not affect the reading of cell i since RWL; is not
activated in this case.

B.  Open defect at the gate of RD transistor (02)

1) Full open defect O2

The resulting electrical circuit derived from the defective
cell with full open O2 is illustrated in Figure 13. The effect
of O2 during the read operation of the cell is expected to be
similar to the effect of O1 since the floating gate node is also
capacitively coupled (C) to the drain terminal of the
defective transistor, as illustrated in Figure 13. The activation
of RDaux with the positive pulse at RWL pulls up node x to
Vpp-Vrr and node X, in turn, pulls up the floating node (due
to C) to an intermediate voltage Vgy (see Figure 14a).
However, voltage Vgy is not able to turn on RD transistor
due to the voltage drop caused by RDaux. The value on nQ
is always read as 1 since the RBL is not discharged (see
Figure 14). The read action RO is erroneous.
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nQ — L' RD ;RBL
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Figure 13 Full open defect O2 always resulting in a readout equal to “1”
since the RD transistor remains off.
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Figure 14 Read error RO due to a full open defect O2 always resulting in a
readout equal to “1” since the RD transistor remains off.

2) Resistive open defect O2
The effect of a resistive O2 is presented in this
subsection. Figure 15 shows the circuit resulting from the
inclusion of a resistance modeling for the open defect

i (read ?)

-D- "’—_IQRBL
RWL 4' RDaux I
on

Ropen

nQ=1 ———{[RD {RBL

Figure 15 Resistive open defect O2 at the gate terminal of RD transistor.
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Figure 16 shows the electrical behaviour of the cell with
different resistive O2 defects higher than 300MQ. As shown
in the figure, the voltage at RBL node remains high and an
(incorrect) nQ=0 is read. Resistances below this critical
value (Rc) lead to a correct read operation RO of the cell
state.

0,5

0,0

Figure 16 Incorrect readout of Q=0 due to O2 with resistance higher than
300MQ. The write and read actions are the same as in Figure 14.

However, the erroneous or correct effect of resistive open
defect O2 on the read action of a cell depends not only on the
resistance of the defect but may also depend on the previous
write operations performed on the cell. In order to illustrate
this fact, Figure 17 shows the defective circuit analyzed in
Figure 16 but now with a particular Ropen=300MQ. Figure
17a and Figure 17b illustrate the response of Viy and Vgpp
for different writing actions preceding R0O. The same circuit
may result in a correct or incorrect RO depending on the time
Q and nQ have been stable before the read action.

1,04 P

v Vee—"

0,5 1 Ropon=300MQ

Ven o ey

0,5 Ven .

0,0 =

1,0

0,5
WwL

0,0

d) Time (ns)

Figure 17 Circuit of Figure 15 with a particular Ropen=300MQ and with
different write sequences prior to RO: a) W1-W1-WO (as in Figure 14) and
b) W0-W0-WO (as shown in d).

C. Open defect on the direct path of the read port O3

1) Full open defect on the direct path
Full open O3 and their equivalent opens (see Figure 18),
cause the RBL to always remain precharged since the direct
path to ground is completely broken. R1 is always correct.
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03 ; DD

TIT —  Le

RWL H RDaux I
on

RBL
nQ —[rRD
on

1

Figure 18 Full open defects on the direct path of the read port. The read
operation result is Q=1 since the RBL can not be discharged.

2) Resistive open defect on the direct path
Resistive O3 and their equivalent opens (see Figure 18)
may allow the discharge of Cgp; depending on the resistance
of the defect Ropen as illustrated in Figure 19. In this
example, resistances below critical Rc=25kQ allow the
discharge of RBL and result in a correct, but degraded, RO.

1 A
Vv

VRBL—
0,5 -

Time (ns)  °

Figure 19 Resistive open defect O3 on the direct path of the read port with
resistances between 1k€2 and 25k€2.

IV. DEFECTIVE BEHAVIOUR CLASSIFICATION

According to the defective behaviour presented so far for
an 8T SRAM cell with open defects at the read port, some
detectability conditions can be derived. Note that the cell
works properly as far as the writing operation is concerned.
Only the read operation may result in an erroneous readout.
TABLE 1. summarizes the behaviour of the cell with the
open defects presented in the previous section. The read
action on Q=0 results in different behaviours as shown in
column RO. RI is always correct. The influence of an
aggressor cell on a victim cell is listed in TABLE II.

TABLE 1. READOUT OF AN 8T SRAM CELL WITH OPEN DEFECTS VS
THE RESISTANCE OF THE OPEN (ROPEN) RELATED TO THE CRITICAL
RESISTANCE OF THE DEFECT (RC). * INDICATES A TIMING CONDITION

Q RO R1
| 01,3 | RopensRc | 0 ok (degraded)
Ropen>Rc | 0 incorrect
| 02 | Ropen<Rc | 0 ok (degraded)
Ropen>Rc | 0 | ok (degraded) / incorrect *
o123 - 1 ok
TABLE IL VICTIM CELL BEHAVIOUR DUE TO A FULL OPEN O1 IN THE
AGGRESSOR CELL
Defective (aggressor) cell Defect-free (victim) cell
Qus Que [ RO RI
- 0 [ ok
0 1 ok (degraded)

V. CONCLUCIONS

The defective electrical behaviour of an 8T SRAM cell
with full and resistive open defect has been analyzed. Due to
the similarity between the classical 6T SRAM cell and the
8T cell, only defects affecting the read port transistors have
been considered. It has been shown how an open in a
defective cell may influence the correct operation of a victim
cell sharing the same read circuitry. Also, it has been shown
that the sequence of bits written on the defective cell before
the read action may mask the presence of the defect.
Different orders of critical resistance have been found,
namely, units of MQ for OI, hundreds of MQ for O2 and
tens of kQ for O3. The presented electrical characterization
is a preliminary step to the identification of testability and
diagnosability conditions of the defective cell. A 45nm
technology has been used in this work.
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