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Abstract—This paper addresses the generation of an enhanced
stochastic model of a carbon nanotube interconnect including
the effects of process variation. The proposed approach is based
on the expansion of the constitutive relations of state-of-the-art
deterministic models of nanointerconnects with uncertain param-
eters in terms of orthogonal polynomials. The method offers
comparable accuracy and improved efficiency with respect to
conventional methods like Monte Carlo in predicting the statisti-
cal behavior of the electrical performance of next generation data
links. An application example involving both the frequency- and
time-domain analysis of a realistic nanointerconnect concludes
this paper.

Index Terms—EMC, Transmission line, Stochastic analysis,
Tolerance analysis, Uncertainty, Circuit modeling, Circuit Simu-
lation, Polynomial Chaos, Carbon Nanotubes.

I. INTRODUCTION

Today we find ourselves on the verge of a transition between
the traditional copper interconnects and new structures for
the high-speed data communication links in next generation
devices. Copper interconnects in the nanoscale range suffer
from a large resistivity and poor current density and demand
for the availability of alternative materials and technological
solutions. In recent years, carbon nanotubes (CNT) have
been considered good candidates for replacements in future
applications due to their impressive mechanical and electrical
properties [1]–[5].

In order to reduce the intrinsic highly resistive behavior
of a single conductor, carbon nanotube interconnects usually
consist of either bundles of numerous single-walled CNTs
(SWCNTs, i.e., formed by a mono-atomic layer of graphite)
or several graphene sheets arranged in coaxial configuration
(multi-walled CNTs, or MWCNTs). In both cases the conduc-
tors are usually parallel connected at both ends and excited in
common-mode configuration.

Numerical models of CNT interconnects are required for
assessing strengths and limitations of application designs im-
plementing this technology. The recent literature proposed a
number of models for the description of the electromagnetic
behavior of CNT structures. Without loss of generality, we
limit ourselves to the results based on the approximation of
signal propagation on nanointerconnects via the well-known
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telegraph equations (e.g., see [6]–[11] and references therein).
This class of models allows to simulate realistic nanointercon-
nects in either the frequency or time domain via conventional
transmission-line theory techniques [12]. However, the main
limitation of the available approaches is that the proposed CNT
models are deterministic, i.e., they describe a nanostructure
with predefined values of its electrical and geometrical pa-
rameters. As process technology continues to scale downward
and physical interconnect dimensions become smaller, the
impact of process variations on interconnect characteristics
has become increasingly significant and needs to be taken
into account. Pioneering work providing a thorough review
and discussion on the effects of process variations on the
performances of CNT interconnects has been carried out
in [13]–[15], though based on a conventional Monte Carlo
(MC) approach.

The aim of this paper is the extension of the state-of-the-art
transmission line models of a CNT interconnect to account for
the inherent variability of model parameters. The advocated
method is based on the so-called Polynomial Chaos (PC)
theory1, that assumes a series of orthogonal polynomials of
random variables for the solution of a stochastic problem [17].
This technique turns out to be much faster than alternate
available solutions for variability, like the aforementioned
MC simulation, while maintaining comparable accuracy. It
has been successfully applied to several problems in differ-
ent domains, including the extension of the classical circuit
analysis tools, like the modified nodal analysis (MNA), to
the prediction of the stochastic behavior of circuits [18].
Recently, these results have been extended to long distributed
interconnects described by multiconductor transmission line
equations [19]–[20].

II. MULTICONDUCTOR TRANSMISSION LINE MODEL FOR
CNT INTERCONNECTS

The basic building structure of a CNT interconnect is repre-
sented by a SWCNT. A SWCNT has a diameter on the order
of few nanometers and can exhibit either a semiconducting or
a metallic behavior depending on the way it is rolled-up.

The interconnect is obtained by the parallel connection of
a bundle of SWCNTs as shown in the cross-section of Fig. 1.

1In this context, the word Chaos is used in the sense originally defined by
Wiener [16] as an approximation of a Gaussian random process by means of
Hermite polynomials.
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Fig. 1. Cross-section of a typical nanointerconnect composed of a bundle
of SWCNTs in horizontal configuration, above the ground plane. The gray
circles correspond to the conducting nanotubes.

TABLE I
TYPICAL VALUES AND RANGES OF VARIATIONS FOR PARAMETERS IN

FIG. 1.

Variable Typical value 3σ relative
standard deviation

h ∼ 100 nm 32%

Rb ∼ 10 nm 32%

d ∼ 1 nm 50%

δ ∼ 0.34 nm 23%

In this structure, h is the height above the ground plane, Rb
is the radius of the entire bundle, d is the average diameter
of CNTs and δ is the inter-tube distance. For the sake of
simplicity, all the nanotubes in the bundle are assumed to have
the same average diameter d. This assumption is justified by
the typically small variations of the diameter among nanotubes
in the same bundle (e.g., 4.4% as reported in [14]). Typical
values and ranges of variation for these parameters have been
selected according to [10], [14] and are summarized in Tab. I.
It is also relevant to remark that approximately one third of
the nanotunes in the bundle (represented by the gray circles
in Fig. 1) exhibits a purely metallic behavior.

As already outlined in the introduction, an alternative con-
figuration is represented by MWCNTs (see Fig. 2), whose
overall radius can reach tens of nanometers. For both the case
of bundles of SWCNTs and MWCNTs, equivalent circuits
based on multiconductor transmission line theory are available
in the literature. As an example, Fig. 3 shows the muticon-
ductor equivalent of a typical single-ended data link base on
SWCNTs. Additional details on the model structures are given
in the next two subsections.

A. MTL Model for SWCNTs

This Section briefly provides an overview of the available
results for the modeling of the signal propagation on the
bundle of Fig. 1. A detailed discussion of model derivation can
be found in [6], while [11] extends the model to the inclusion
of the effects of wrapping and twisting inside the bundle.

Under specific conditions, a SWCNT bundle above a ground
plane behaves as an RLC multiconductor transmission line (see
Fig. 3, where nc denotes the number of metallic nanotubes)
with a suitable definition of the per-unit-length parameters

h

1 ... ... nc

Rb

Fig. 2. Cross-section of a MWCNT interconnect above the ground plane.
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Fig. 3. Multiconductor model of the SWCNT bundle of Fig. 1. This scheme
represents the typical configuration of a nanointerconnect used as an high-
speed link between a driver and a receiver.


d

dz
V(z, s) = − [R′ + s(Le + Lk)] I(z, s)

d

dz
I(z, s) = −s(C−1e + C−1q )−1V(z, s).

(1)

Specifically, both the inductance and the capacitance matri-
ces of the line are made of two contributions. The classical
magnetic inductance matrix (Le) and electrostatic capacitance
matrix (Ce), which are full and can be computed via stan-
dard analytical formulas or numerical methods, are combined
with two new diagonal matrices, namely the so-called kinetic
inductance matrix Lk and quantum capacitance matrix Cq ,
whose entries are given by

Lk,ii =
h

8e2νF
, Cq,ii =

8e2

hνF
, (2)

where h = 6.626 × 1034 Js is the Plank constant, e =
1.602 × 1019 C is the single electron charge and νF is the
Fermi velocity; moreover, the number of conducting channels
in a metallic nanotube is assumed to be equal to 2, although
more accurate formulae could be used [7]–[8]. For the case
of graphene, νF ≈ 8 × 105 m/s and the above parameters
become Lk,ii = 4 nH/µm and Cq,ii = 0.4 aF/nm. Losses
are described by the per-unit-length matrix R′, which is also
diagonal, and by two identical lumped series resistors Rp/2
on each conductor, that are independent of the line length and
account for the intrinsic quantum resistance of a nanotube.
The above parameters write

Rp = h/4e2, R′ii = Rp/λmfp, (3)
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where λmfp is the mean-free-path of free electrons. In the low
bias condition, i.e., for a longitudinal electric field less than
0.16 V/m, it is on the order of 1µm. The intrinsic resistance
is Rp = 6.45 kΩ.

B. MTL Model for MWCNTs

A similar model can also be derived for MWCNT inter-
connects, whose cross-section is depicted in Fig. 2 [7]–[9].
This alternative configuration leads to a multiconductor model
similar to that in Fig. 3, where the conductors correspond to
the different shells of the MWCNT structure. Again, the wave
propagation can be described by means of (1), where the p.u.l.
quantum parameters Lk,ii, Cq,ii and R′ii take the same form as
in (2) and (3), whereas Le and Ce are computed with classical
analytical formulae for multiple coaxial structures.

III. EQUIVALENT SINGLE CONDUCTOR MODEL

Since the nanotubes are short-circuited at both ends and
excited in common-mode configuration, it is possible to derive
an equivalent single-conductor transmission-line model like
the one shown in Fig. 4, characterized by the scalar p.u.l.
parameters R′, Lk, Le, Cq , Ce [8], [10]. This simplified model
unavoidably introduces some approximations but it is much
simpler than the one of Fig. 3 and requires less information
for the computation of model parameters.

V1 V4

Equivalent line
R′ = R′

ii/nc,
Lk = Lk,ii/nc , Le

Cq = ncCq,ii , Ce

Rp/2nc Rp/2nc

T1 T2 T1

V2 V3

I1 I2 I3 I4

Fig. 4. Single-conductor equivalent transmission-line model of a CNT
interconnect.

The underlying hypothesis is that identical currents flow into
the different terminals of the multiconductor transmission line
of Fig. 3. Owing to this, for both a SWCNT bundle and a
MWCNT the p.u.l. resistance and the kinetic inductance turn
out to be weighted by the actual number of conductive CNTs
nc, i.e.,

R′ =
R′ii
nc

=
h

8nce2λmfp
, Lk =

Lk,ii
nc

=
h

8nce2νF
. (4)

The quantum capacitance is Cq = ncCq,ii for the SWCNT
bundle, and

Cq = αnc + βr1 + γ (5)

for the MWCNT case [8]. In the latter equation r1 is the
inner shell radius expressed in nanometers, α = 2.56× 10−2

nF/m, β = 7.525× 10−2 F/m2 and γ = 9.887× 10−2 nF/m.
Nevertheless, for structures consisting of a relatively small
number of CNTs, the magnetic inductance and the quantum
capacitance can be neglected, leading to a model that is even
simpler.

It is worth noticing that the classical p.u.l. parameters for
the structures of Fig. 1 and Fig. 2 are computed by considering
the geometrical parameters defining the external shape of the
cross-sections, i.e., the radius Rb and the eight h. In turn, the
electrostatic capacitance and magnetic inductance write:

Ce = 2πε0/cosh−1(h/Rb), Le = µ0ε0C
−1
e . (6)

In the case of a SWCNT bundle, the radius Rb can be
easily computed by assuming a regular distribution of the
nanotubes arranged in a predefined geometrical shape (e.g.,
an hexagon). In this case, simple analytical formulae can be
used, as suggested in [10]:

Rb = a+ ∆(Ns − 1), (7)

where ∆ = 2a + δ and Ns is the number of SWCNTs
constituting the external side of the hexagon, that is related
to the total number of nanotubes Nc by

Nc = 1 +

Ns∑
i=1

6(i− 1); (8)

in this study, the intertube distance δ is assumed to be 0.34 nm.
It is important to remark that the scheme of Fig. 4 can

be further improved by including the effects of the nonideal
metallic contacts of the nanotube. This can be easily done by
means of two lumped series resistors with values depending
on the manufacturing process. Without loss of generality,
the above contact resistances are neglected in the test cases
considered in this study.

IV. IMPACT OF PROCESS VARIATION

A detailed discussion of the technological aspects impacting
the electrical performance of nanotube interconnects is out
of the scope of this paper. Reference [14] provides a use-
ful overview aimed at (i) identifying the potential sources
of variation on SWCNT bundle interconnects based on the
structure of Fig. 1, (ii) quantifying the expected statistical
distribution of each type of variation based on current exper-
imental results, and (iii) calculating the relative impact of
each source of variation on the model parameters and on the
electrical performance of the interconnect, thus highlighting
the variations that will be important for future nanotube
bundle-based interconnect solutions.

Among the different sources of variations, in this paper
we select and focus on three parameters that have been
demonstrated to be major sources of uncertainty with a large
impact on the interconnect performance. Namely, the number
of conducting nanotubes, the height of the bundle over the
ground plane and the diameter of a single nanotube.

As outlined in Sec. II, a nanotube bundle like the one of
Fig. 1 is composed by nc conducting nanotubes, where nc
is approximately one third of the total number Nc. More
precisely, if a nanotube has a probability r=1/3 to behave
as a metallic conductor, the probability density function of
the discrete variable nc is the binomial distribution. However,
when the total number of conductors is large enough (and this
always occurs in practice), the binomial distribution can be
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Fig. 5. Binomial probability function (bars) and its approximation via a
Gaussian distribution (continuous thick line). The two probability plots are
obtained for a total number of nanotubes Nc = 169 and for a probability
r = 1/3 of conduction.

effectively approximated by the continuous normal distribution
with expected value rNc and variance rNc(1−r) (see Fig. 5).
Also, as suggested in [14], the two remaining uncertain
parameters, i.e., the height h and diameter d of Fig. 1, can
be effectively represented by Gaussian random variables.

Based on the above discussion, the three selected parameters
write 

nc = n̄c(1 + σnξ1)

h = h̄(1 + σhξ2)

d = d̄(1 + σdξ3),

(9)

where ξ1, ξ2 and ξ3 are independent random variables with
standard normal distribution (i.e., with zero mean and unit
variance), n̄c, h̄, d̄ are the mean values of the parameters and
the σ coefficients are their corresponding normalized standard
deviations.

It is relevant to remark that the three normalized dis-
tributions are assumed to be statistically independent even
if some correlation among the parameters may exists (e.g.,
see [21]). This information, however, can be taken into account
a-posteriori since the proposed PC method allows for the
generation of an extended model of a circuit element and of its
response expressed in terms of a known parametric function
of the uncertain quantities. When the correlation among the
random parameters is known and available, the statistical
information of the system response (e.g., expressed in terms
of its probability distribution) can be computed from the
advocated parametric response by exploiting this information.

V. STOCHASTIC SIMULATION OF NANOINTERCONNECTS

This Section summarizes the proposed procedure for the
stochastic simulation of a nanointerconnect that is described by
either the full MTL model of Fig. 3 or the simplified equivalent
of Fig. 4.

For the sake of clarity and simplification, the formal devel-
opment of our discussion is based on the ESC model. Some
additional details on the extension to the MTL model will be
given later on.

The proposed strategy is the following: (i) generate ex-
tended stochastic models of the different parts composing the

cascaded structure that will be able to include the effects
of the statistical variation of model parameters, i.e., of the
stochastic parameter defined by (9), and (ii) simulate the entire
structure in the frequency-domain by suitably concatenating
these models.

In this study, the different cascaded blocks are represented
in terms of their transmission matrix in the Laplace domain.
The transient response is achieved by harmonic superposition.
Finally, the source and load elements of Fig. 4 are assumed
to be described by linear Thevenin equivalents.

A. Model of Lumped Blocks.

The two-port identical lumped elements defined by the
series resistors of Fig. 4 are represented by their transmission
matrix T1. As an example, in the absence of parameter
uncertainty, the electrical law governing the block on the left
writes

[
V2
I2

]
︸ ︷︷ ︸
X2

=

[
T1,11 T1,12
T1,21 T1,22

]
︸ ︷︷ ︸

T1

[
V1
I1

]
︸ ︷︷ ︸
X1

=

[
1 −Rp/2nc
0 1

]
X1; (10)

the same relation involving the port vectors X4 and X3 is
used to represent the lumped block on the right.

When the problem becomes stochastic, with some random
parameters expressed as in (9), we must consider the entries
of (10) as random quantities. In turn, (10) becomes a stochastic
equation leading to randomly-varying voltages and currents:

X2(ξ) = T1(ξ)X1(ξ), (11)

where vector ξ collects the random variables ξi which the
system depends on.

PC is a powerful tool allowing to solve in a clever way
stochastic equations [17]. The idea behind this technique
is the approximation of a random variable in terms of a
truncated series of orthogonal polynomials that are functions
of a predefined standard distribution. As a clarifying anal-
ogy, we can think of these polynomials as the sinusoidal
functions in the Fourier series expansion. As an example,
for the case of Gaussian random variables, the univariate
orthogonal basis functions are the Hermite polynomials φ0=1,
φ1=ξ1, φ2=(ξ21 − 1),. . . . When dealing with multiple random
variables, these basis functions are replaced by a product
combination – that preserves orthogonality – of univariate
polynomials, thus leading to a multivariate version of the
Hermite polynomials, as exemplified in Tab. II for three
random variables.

For the current application, both the voltage and current
variables of (11) as well as the matrix T1, can be represented
in terms of a truncated series. For instance, the second-order
expansion of the element 21 of matrix T1 with n̄c = 60 and
σn = 0.1 writes

T1,21(ξ) = − Rp
2nc

= − Rp
2n̄c(1 + σnξ1)

≈ −Rp
2
·

·
(
1.68 10−2φ0(ξ)− 1.73 10−3φ1(ξ) + 1.77 10−4φ4(ξ)

)
,

(12)
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TABLE II
HERMITE POLYNOMIALS FOR THE CASE OF THREE RANDOM VARIABLES
(n = 3, ξ = [ξ1, ξ2, ξ3]T ) AND A SECOND ORDER EXPANSION (p = 2).

index k order p k-th basis φk < φ2k >

0 0 1 1

1 1 ξ1 1

2 1 ξ2 1

3 1 ξ3 1

4 2 ξ21 − 1 2

5 2 ξ1ξ2 1

6 2 ξ1ξ3 1

7 2 ξ22 − 1 2

8 2 ξ2ξ3 1

9 2 ξ23 − 1 2

where the coefficients of the expansion are computed accord-
ing to the formulas of Table III. It should be noted that
some coefficients are zero since in this particular case the
element only depends on ξ1. As a brief summary, we may say
that in general the above expansion terms can be computed
via the projection of a nonlinear multivariate function of the
random variables ξ1, ξ2, . . . onto the orthogonal polynomials
φk. Readers are referred to [18], [22] and references therein for
a comprehensive and formal discussion of polynomial chaos
application to discrete circuits.

In general, for the matrix T1, the complete PC expansion
writes

T1(ξ) =

P∑
k=0

= T1,kφk(ξ), (13)

where P + 1 is the total number of terms that generally lies
within the range from two to twenty for practical applications
and the T1,k matrices are the expansion matrices.

For a predefined order (e.g., p = 1 that means P = 4),
the use of (13) in (11), along with a similar expansion of the
unknown voltage and current variables, yields

X2,0φ0(ξ) + X2,1φ1(ξ) + X2,2φ2(ξ) + X2,3φ3(ξ) =

(T1,0φ0(ξ) + T1,1φ1(ξ) + T1,2φ2(ξ) + T1,3φ3(ξ)) ·
(X1,0φ0(ξ) + X1,1φ1(ξ) + X1,2φ2(ξ) + X1,3φ3(ξ)) .

(14)

Projection of (14) on the first four Hermite polynomials
leads to the following augmented system, where the random
variable ξ does not appear, due to projection integral[

Ṽ2

Ĩ2

]
︸ ︷︷ ︸

X̃2

=

[
T̃1,11 T̃1,12

T̃1,21 T̃1,22

]
︸ ︷︷ ︸

T̃1

[
Ṽ1

Ĩ1

]
︸ ︷︷ ︸

X̃1

. (15)

According to the above equation, the new vectors Ṽ =
[V0, . . . ,V3]T and Ĩ = [I0, . . . , I3]T are defined to collect
the different coefficients of the polynomial chaos expansion

TABLE III
HERMITE POLYNOMIAL CHAOS DEFINITIONS AND PROPERTIES.

Object e.g., network function or parameter T(ξ)

that depends on ξ = [ξ1, ξ2, . . . , ξn]T

Expansion T(ξ) =
∑P
k=0 Tk · φk(ξ)

Orthogonal basis Hermite polynomials {φk(ξ)}
(e.g., see Tab. II for the case n = 3)

Number of terms P + 1 = (p+ n)!/p!n!

Inner product < φk, φj >=
∫
<n φk(ξ)φj(ξ)W (ξ)dξ

Weighting function W (ξ) = 1√
(2π)n

exp(− 1
2
ξT ξ)

Orthogonality < φk, φj >=< φ2k > δkj

Expansion coefficients Tk =< Y, φk > / < φ2k >

Mean T0

of the unknown voltage and current variables. Each block of
T̃1 takes the following form

T̃1,ij =


T1,ij,0 T1,ij,1 T1,ij,2 T1,ij,3
T1,ij,1 T1,ij,0 0 0
T1,ij,2 0 T1,ij,0 0
T1,ij,3 0 0 T1,ij,0

 , (16)

where T1,ij,k denotes block ij of the k-th expansion coefficient
of matrix T1.

It is worth noticing that equation (15) belongs to the same
class of (10) and plays the role of the set of equations of
a multiterminal circuit element, whose number of terminals
is (P+1) times larger than in the original circuit. However,
for small values of P (as typically occurs in practice) the
additional overhead in handling the augmented equations is
much less than the time required to run a large number of
MC simulations.

B. Model of Distributed Lines.
Similarly, the extended two-port description of the trans-

mission line can be obtained via the orthogonal projection
of the telegraph equations governing the signal propagation
along the single equivalent line of Fig. 4. The above projection
leads to an extended set of multiconductor transmission line
equations, with augmented matrices R̃, L̃ and C̃ that collect
the expansion coefficients of the p.u.l. parameters with the
same relation as in (16). Readers are referred to [19] and [20]
for additional details on the extended model derivation.

The augmented multiconductor equation is then used to
generate the transmission matrix defining the extended char-
acteristics T̃2 of block T2 [12]

X̃3 = T̃2X̃2 = expm

(
−
[

0 R̃ + sL̃

sC̃ 0

]
L
)
X̃2, (17)

where L is the line length and the interpretation of the new
variables is straightforward.
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C. Boundary Conditions and Simulation.

For the deterministic case, the simulation of an interconnect
like the one of Fig. 4 amounts to combining the characteristics
of the different circuit elements, including the driver and the
receiver, and solving the system. This is a standard procedure
as illustrated for example in [12] (see Ch.s 4 and 5).

As an example, when a multiport Thevenin equivalent
(defined by a voltage source ES and a series impedance ZS)
and an impedance (ZL) are used to describe the driver and
the receiver of Fig. 4, respectively, the port equations of the
terminations in the Laplace domain become{

V1(s) = ES(s)− ZS(s)I1(s)

V4(s) = ZL(s)I4(s),
(18)

where the port voltages and currents need to match the
equivalent characteristic of the cascade connection of the three
blocks T1T2T1.

Similarly, when the problem becomes stochastic, the aug-
mented equations (15) and (17) are used in place of the
deterministic ones together with the projection of the char-
acteristics of the source and the load elements on the first
(P + 1) polynomials. It is worth noticing that in this specific
example, no variability is included in the terminations and
thus the augmented characteristics of the source and load turn
out to have a diagonal structure with null contributions of
the projection of (18) on the k-th Hermite polynomials, with
k > 0.

Once the unknown voltages and currents are computed, the
quantitative information on the spreading of circuit responses
can be readily obtained from the analytical expression of the
unknowns. As an example, the frequency-domain solution of
the magnitude of voltage V4 with p=1, leads to

V4(jω, ξ) = V4,0(jω)φ0(ξ) + V4,1(jω)φ1(ξ)+

+ V4,2(jω)φ2(ξ) + V4,3(jω)φ3(ξ).
(19)

The above relation is a known nonlinear function of the
random variables in ξ that can be used to compute the PDF
of |V4(jω, ξ)| via standard techniques as numerical simulation
or analytical formulas.

D. Time-Domain Solution.

The time-domain response is obtained from the frequency-
domain solution by considering a periodic input source and
expressing it in terms of a truncated Fourier series

eS(t) ' ēS +

M∑
m=1

eSmej2πfmt + e∗Sme−j2πfmt, (20)

where ēS is the signal average over one period and eSm
is the complex Fourier coefficient for the m-th harmonic at
frequency fm. Being the system of Fig. 4 linear, its time-
domain behavior is in principle obtainable by the superposition
of the analyses carried out for all signal harmonics. For
the individual solution at frequency fm, the voltage source
of Fig. 4, appearing also in (18), is replaced by its m-th

TABLE IV
SOURCES OF VARIATION FOR THE EXAMPLE BUNDLE OF FIG. 1.

Variable Type Mean value
Relative
standard
deviation

metallic
conductors nc

Gauss.
rNc=169(1/3)

≈ 56.3

√
rNc(1− r)
rNc
≈ 11%

height h Gauss. 100 nm 11%

nanotube
diameter d

Gauss. 1 nm 17%

harmonic component, i.e., ES(sm) = ES(j2πfm) = eSm.
The time-domain expression of the output voltage v4(t, ξ) is
then obtained as a linear superposition of harmonics:

v4(t, ξ) = v̄4 +
∑M
m=1

[
V4(j2πfm, ξ)ej2πfmt+

+V ∗4 (j2πfm, ξ)e−j2πfnt
]
,

(21)

where v̄4 is the DC term, obtained from a DC calculation, and
the output coefficients V4(j2πfn, ξ) are computed according
to (19). The linearity of Fourier decomposition assures that the
PC structure is preserved also for the time-domain expression
of the output:

v4(t, ξ) = v̄4 + v4,0(t)φ0(ξ) + v4,1(t)φ1(ξ)+

+ v4,2(t)φ2(ξ) + v4,3(t)φ3(ξ),
(22)

where

v4,j(t) =
∑M
m=1

[
V4,j(j2πfm)ej2πfmt+

+V ∗4,j(j2πfm)e−j2πfmt
] (23)

with j = 0, 3. This is the expression that is used in practice
for the numerical validation in the next section.

E. Application to the Multiconductor Case

The application of the aforementioned steps to the mul-
ticonductor circuit of Fig. 3 is straightforward, since PC
is not limited to single-conductor lines, as shown in [20].
Specifically, the transmission matrices T1 and T3 become
block matrices, where each block is diagonal and has a size
of nc × nc. The expansion of each block is similar to (12)
but with coefficients made of matrices, filling the augmented
matrix blocks as shown in (16). As far as the transmission line
augmented matrix T̃2 is concerned, it can be computed with
the same procedure outlined in Sec. V-B.

VI. NUMERICAL RESULTS

In this Section, the proposed technique is applied to the
analysis of the test structure of Fig. 4, that describes a
L=100µm long SWCNT bundle placed over a ground plane.
A SWCNT is chosen for the stochastic analysis since it is
based on the information in reference [14], that provides a
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detailed description of process variations with realistic values.
Moreover, the ESC model is used, since it is simpler and
does not require a numerical evaluation of the classical p.u.l.
parameters. On the other hand, a validation of the ESC model
and its comparison with the full MTL model is out of the
scope of this paper and readers are referred to [7] and [10].

As already outlined in the previous Section, the driver of
Fig. 4 is replaced by a Thevenin equivalent with a series
impedance ZS = 25 Ω. Similarly, the receiver is replaced
by the impedance ZL = 1/sCL, with CL = 10−2 pF. The
variability is provided by the number nc of conducting tubes,
the height h of the bundle above the ground plane and the
diameter d of the single nanotube (see eq. (9) and Table IV,
that summarizes the coefficients defined in agreement with
[14]). According to (7), the bundle radius Rb turns out to be
9.88 nm.

The approximate relations of Sec. V, are used to compute
the PC expansion of the unknowns and of the parameters of
the structure leading to (15) and (17).
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Fig. 6. Bode plots (magnitude) of the transfer function
H(jω)=V4(jω)/E(jω) of the example test case of this study (see
text for details). Solid black thick line: deterministic response; solid
black thin lines: 3-σ tolerance limit of the second-order polynomial chaos
expansion; gray lines: a sample of responses obtained by means of the MC
method (limited to 100 curves, for graph readability).
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Fig. 7. Probability density function of |H(jω)| computed for two different
frequencies. The distributions marked MC refer to 40,000 MC simulations,
and those marked PC refer to the response obtained via second-order poly-
nomial chaos expansion.

Figure 6 shows a comparison of the Bode plot (magnitude)
of the transfer function H(jω) = V4(jω)/E(jω) computed

via the advocated PC method and determined via a number of
MC simulations. In order to provide a quantitative statistical
information on the variability effects of system responses,
Fig. 7 compares the PDF of |H(jω)| computed for different
frequencies over a large number (40,000 in this case) MC
simulations, and the distribution obtained form the analytical
PC expansion of H(jω). The frequencies selected for this
comparison correspond to the vertical dashed lines shown
in Fig. 6. The good agreement between the actual and the
predicted PDFs and, in particular, the accuracy in reproducing
the tails and the large variability of non-Gaussian shapes of the
reference distributions, confirm the potential of the proposed
method. For this example, it is also clear that a PC expansion
with a very limited number of terms is accurate enough to
capture the dominant statistical information of the frequency-
domain system response.

In addition, Fig. 8 shows the surface of |H(jω)| computed
at f=100 GHz as a function of the variability parameters, for
two values of the PC expansion order p. To avoid multidi-
mensional plots and improve readability, the three-dimensional
plot shown in the Figure is a function of the two random
variables only, i.e., ξ1 and ξ2, for the nominal value of ξ3 (see
eq. (9)). Similar results can be obtained with different cuts of
the multidimensional surface. The above plot highlights that
the third order expansion is sufficient for the approximation
of the actual multidimensional surface for a wide range of
parameter variability.
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Fig. 8. Plot of |H(jω)| at f=100GHz as a function of the random
parameters ξ1 and ξ2 (see eq. (9)) and two different orders of the PC
expansion (see text for details). The surfaces are obtained by setting ξ3=0,
that corresponds to the nominal value of the nanotube diameter d. Light gray:
reference; dark gray: PC approximations.

Figure 9 collects similar results for the transient analysis
of the example nanointerconnect. The Figure shows the time-
domain response of the voltage v4(t) and its PDF computed
according to the procedure of Sec. V. The Thevenin voltage
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source mimics a digital driver producing a trapezoidal signal
with τ = 3 ps rise time and a period of 2 ns. To compute the
Fourier series of the source eS(t), according to (20), a number
200 of harmonics is considered.

In order to further validate the proposed method, Fig. 10
collects the time-domain response of the example nanoint-
erconnect with a different set of parameters. In particular,
the values of the line length L, the load capacitance CL
and the rise time τ are further reduced (i.e., L=20µm,
τ = 0.3 ps and CL = 10−4 pF). In this second time-domain
validation, the period of the voltage source eS(t) is set to
20 ps and 50 harmonics are considered to compute its Fourier
series expansion. Admittedly, the above parameters values are
somewhat extreme, but have been chosen in order to stress the
method and assess its performance for the prediction of the
variability of a response corrupted by the line reflections.

With the above time-domain comparisons and the good
agreement between the PDFs obtained from the PC model and
the corresponding set of MC simulations, the potential of the
proposed method is clearly confirmed, as already highlighted
for the frequency-domain analysis.
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Fig. 9. Top panel: transient response v4(t) for the nanointerconnect of
this study, with L=100µm, τ=3 ps and CL=10−2 pF. Solid black thick
line: deterministic response; solid black thin lines: 3-σ limits of the third-
order PC expansion; gray lines: a sample of responses obtained by means
of the MC method (limited to 100 curves, for graph readability). Bottom
panels: probability density function of the near-end crosstalk v4(t) computed
at different times. Of the two distributions, the one marked MC refers to
40,000 MC simulations, while the one marked PC refers to the response
obtained via the PC expansion

As far as the efficiency is concerned, it is relevant to
remark that the proposed PC method is faster by two orders
of magnitude with respect to the MC approach in computing
the probability functions of Fig. 7 (see Tab. V). This holds
even if for fairness we consider the computational overhead
required by the creation of the augmented set of equations (15)
and (17).

In summary, the proposed method allows to generate ac-
curate predictions of the statistical behavior of a realistic
nanointerconnect with a great efficiency improvement. More-
over, it offers an interesting and promising alternative to other
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Fig. 10. Transient response v4(t) for the nanointerconnect of this study (top
panel) and its PDF (bottom panel). The curves in this figure are computed
with L = 20µm, τ=0.3 ps and CL=10−4 pF. The same notation of Fig. 9
applies here.

TABLE V
CPU TIME REQUIRED BY THE COMPUTATION OF THE CURVES OF FIG. 7

BY MEANS OF THE MC AND OF THE PROPOSED PC-BASED METHODS.

Method Order p Overhead Simulation time

MC – – 44 min

PC 2 4.5 sec 7.8 sec

PC 3 5.3 sec 8.7 sec

stochastic methods such as Stochastic Collocation Method
(SCM) [23]. Perhaps, the most appealing feature is that PC
provides a single stand-alone model that inherently includes
the effects of variability instead of being somewhat based
on the processing of a set of system responses (e.g., their
interpolation in the case of SCM). This means that the model
is generated only once and it can be used for the simulation
of realistic structures with possibly different source and load
conditions as well as integrated into more complex circuits,
without the need of recomputing the model coefficients. Fur-
thermore, it belongs to the same class as the original one and
thus it can be solved using the same deterministic procedure
or solver. Finally, the magnification of the system complexity
is probably smaller in PC than in SCM, although unlike SCM
the resulting PC model is fully coupled and this suggests that
a trade-off between these two methods exists according to the
number of random variables and order of accuracy.

VII. CONCLUSIONS

This paper deals with the generation of an enhanced model
for the stochastic analysis of a CNT interconnect structure
that includes the effects of process variation. The proposed
approach is based on the available state-of-the-art deterministic
models of a nanointerconnect that are expressed via an equiv-
alent transmission-line formulation. The governing electrical
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laws of the adopted models turn out to contain uncertain
parameters related to geometrical or material properties of
the structure, that can be considered as random quantities.
Polynomial chaos theory is then employed to address the
stochasticity of the problem. This procedure, by means of an
Hermite polynomials expansion of the structure parameters
and of the electrical unknowns, leads to an extended set of
equations belonging to the same class of the deterministic
ones. The solution of such equations provides a quantitative
prediction of the statistical information of the parameters
variability effects on the interconnect response.

The strengths of the approach expressed in terms of
both accuracy and efficiency has been demonstrated via the
frequency- and time-domain analysis of a realistic nanoint-
erconnect with three uncertain parameters. Although further
investigations are worth to be considered for highlighting the
impact of process variations on nanotube interconnects via the
proposed methodology, they are planned as a next step and
therefore out of the scope of this paper, that is limited to the
model derivation.
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