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Abstract 

 

In this work, the use of foam-like glass-ceramic scaffolds as trabecular coatings on ceramic prosthetic 

devices to enhance implant osteointegration is proposed. The feasibility of this innovative device was 

explored in a simplified, flat geometry: glass-ceramic scaffolds, prepared by polymeric sponge 

replication and mimicking the trabecular architecture of cancellous bone, were joined to alumina square 

substrates by a dense glass coating (interlayer). The role played by different formulations of starting 

glasses was examined, with particular care to the effect on the mechanical properties and bioactivity of 

the final coating. Microindentations at the coating/substrate interface and tensile tests were performed to 

evaluate the bonding strength between the sample’s components. In vitro bioactive behaviour was 

assessed by soaking in simulated body fluid and evaluating the apatite formation on the surface and 

inside the pores of the trabecular coating. The concepts disclosed in the present study can have a 

significant impact in the field of implantable devices, suggesting a valuable alternative to traditional, 

often invasive bone-prosthesis fixation. 

 

Keywords: Bioactive glass; Coating; Prosthesis; Osteointegration; Scaffold.  
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1. Introduction 

 

Over the last two decades, the approach towards an optimal fixation of orthopaedic and dental implants 

changed and evolved towards “bone-conservative” solutions [1,2]. Specifically, the researchers’ 

attention progressively moved from simple mechanical fixation to host tissue(s), which involves the use 

of screws, threaded implants or polymeric cements, towards a physico-chemical bond able to minimize 

bone resection/loss and maximize implant osteointegration. This goal can be achieved by coating the 

implant with a bioactive material, that also allows to protect the substrate from corrosion or degradation 

by biological fluids and agents, which is a crucial issue especially for metal implants [3].  

From a general viewpoint, bioceramic coatings can be manufactured by a wide variety of methods, 

including gravity-controlled deposition [4-8], sol-gel dipping [9], spin coating [10], plasma spraying 

[11], sputtering [12] and electrophoretic deposition [13]. At present, the most accepted and 

commercialized bioceramic coating is thermally sprayed hydroxyapatite (HA) [11]. HA coatings can 

promote faster and stronger bonding to bone in comparison with the loosely adherent layer of fibrous 

tissue at the implant interface in other cementless fixation, but exhibit a durability that is strongly 

related to coating properties, such as microstructure, surface texture and presence of pores/cracks that 

can vary greatly [11,14,15]. In fact, control of variables in plasma spraying is quite complicated and, 

therefore, small changes to processing variables can vastly affect the properties of the final coating. 

Furthermore, noticeable problems of HA coatings are due to material thermal instability: high 

processing temperatures might induce HA decomposition into soluble calcium phosphate compounds, 

that undergo undesired fast resorption in vivo [14]. 

Several researchers proposed bioactive glasses as a promising alternative to HA to manufacture coatings 

on prosthetic implants [3-7,9,10,16]. It was widely demonstrated that bioactive silicate glasses are able 

to strongly bond to bone creating a stable interface [17,18] and their dissolution products have a 

stimulatory effects on the genes of cells towards a path of tissue regeneration and angiogenesis [19,20]. 

An interesting challenge of tissue engineering concerns the compositional design of bioactive glass 

coatings in order to induce specific cell responses at the genetic level [21]. From a manufacturing 
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viewpoint, fabrication of high-quality glass coatings on both metal and ceramic elements is a complex 

issue due to poor coating adhesion and/or glass degradation during the coating procedure, which 

eventually ensues in unsatisfactory mechanical properties. In such a context, Verné and co-workers 

[4,6,7] and Tomsia and co-workers [5,16,21] dedicated significant efforts over the last ten years to 

optimize glass compositions and processing parameters to obtain bioactive coatings with high adhesion 

strength. Tomsia et al. [16] also emphasized the potential of graded glass or glass/HA coatings, in an 

attempt to obtain excellent adhesion at the coating-implant interface and high bioactive properties of 

coating surface. Apart from being used to manufacture coatings, bioactive glasses are often designed to 

act as porous templates (scaffold) to enhance tissue regeneration and in-growth [22,23]. In this case, 

structural bio-mimicry of scaffold with respect to cancellous bone and morpho-architectural effect – it is 

known that tissue in-growth is favoured by a porous structure per se [24] – are coupled to the tissue 

regenerative potential of the glass due to its bioactivity [17,18].    

In this article, we merged the concepts of bioactive coating and bone-like scaffold to investigate the 

feasibility of highly innovative glass-derived trabecular coatings on alumina substrates. This novel class 

of coatings represents a significant advance over traditional, dense coatings; the basic idea of the 

research was disclosed in a patent recently deposited by the authors [25]. Referring to the context of hip 

joint prosthesis, the authors proposed a monoblock acetabular cup that can be anchored to the patient’s 

bone without using either cement or metal-back, but by means of a bioactive trabecular coating able to 

promote implant osteointegration (Fig. 1). The “driving force” of this work can be resumed in the motto 

“Naturae imitatio”, as the authors’ goal was to develop a bioactive coating to be lastly used on 

prosthetic devices that closely mimicked the 3-D pore architecture of cancellous bone, thereby 

enhancing bone in-growth and ensuring a stable anchorage of the implant to host bone thanks to its 

porous network and bioactive properties. 

 

2. Materials and methods 

 

2.1. Starting materials 
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2.1.1. Preparation 

 

High-purity (> 99.5%) dense alumina 1-mm thick sheets (Goodfellow, Cambridge, UK) were used as 

ceramic substrates for fabricating all the samples described in this work. Alumina sheets were cut by 

means of a rotating diamond wheel (Accutom 5 Machine, Struers) to obtain square 10 mm × 10 mm 

plates. 

The glasses used in this work are listed in Table 1; they all were prepared by melting the raw products in 

a platinum crucible in air and then by quenching the melt in cold water to obtain a “frit”, that was 

subsequently ground by a 6-balls zirconia milling and eventually sieved by stainless steel sieves 

(Giuliani Technologies, Italy) to the desired particle size. For reader’s better understanding, it is worth 

anticipating here that all glasses used in this work will be converted, by high-temperature thermal 

treatments, into glass-ceramic (GC) materials.  

 

2.1.2. Characterization 

 

SCK [6] and CEL2 [26,27] were studied by the authors in previous reports; the characterization of 

SCNA is reported in detail in the present work as it was only partly investigated elsewhere for other 

biomedical applications [28].  

As-poured SCNA underwent wide-angle (2θ within 10-70°) X-ray diffraction analysis (XRD) by using a 

X’Pert diffractometer (Bragg-Brentano camera geometry with Cu K incident radiation; working 

conditions: 40 kV, 30 mA). 

The behaviour of compacts of SCNA powders upon heating was monitored by hot-stage microscopy 

(HSM) (Expert System Solutions instrument) performed in air atmosphere; HSM set-up is described 

elsewhere in detail [29].  

Differential thermal analysis (DTA) was carried out on SCNA by using a DTA7 Perkin-Elmer 

instrument; experimental set-up is described elsewhere in detail [29]. The characteristic temperatures of 
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the material, i.e. glass transition temperature (Tg), onset crystallization temperature (Tx) and peak 

crystallization temperature (Tc), were assessed directly from the DTA plots.  

Linear thermal expansion coefficient () of SCK, CEL2 and SCNA were calculated from their molar 

compositions (percentage of oxides) by using SciGlass Professional 7.3 software according to the 

method proposed by Priven [30]. 

 

2.2. Dense coating (interlayer) 

 

2.2.1. Manufacturing 

 

The dense coatings (interlayer) on alumina substrates were prepared via controlled deposition of SCK, 

CEL2 or SCNA powders (the 75-106 μm range for glass particles was selected as the optimal one) 

followed by thermal treatment. To manufacture dense coating, a suspension of glass powders in ethanol 

was poured onto the alumina plates placed in a beaker [6]; the glass powder had settled on the substrates 

overnight. By knowing the bottom area (Ab) of the beaker, the glass density (ρg) and the desired layer 

thickness (t), the mass (m) of glass necessary for the deposition can be easily calculated as tAm bg ; 

the interlayer thickness was planned to be ~200 μm. The beaker was then placed in an oven at 90 °C for 

6 h to remove the exceeding ethanol and to dry the “green” coating completely. Lastly, the so-prepared 

samples were thermally-treated under different conditions depending on the glass used to manufacture 

the coating (see the section 2.4.1.). 

 

2.2.2. Characterization 

 

The samples were embedded in epoxy resin, cut, carefully polished by #600 to #4000 SiC grit papers, 

silver-coated and finally investigated by scanning electron microscopy (SEM; Philips 525 M operating 

at 15 kV) equipped with electron dispersive spectrometer (EDS; Philips EDAX 9100) for compositional 

analysis. 
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The coatings also underwent wide-angle XRD analysis to detect the presence of crystalline phases after 

the thermal treatment. 

Vickers indentation (HV) tests were performed at the interface between glass-derived dense coatings 

and alumina substrate in order to evaluate, from a qualitative viewpoint, the adhesion between the two 

materials. The indentations were made by means of a Leitz micro-Vickers penetrator using the 

maximum load (5 N) available for the instrument. The samples were incorporated in resin, cut and then 

carefully polished by #600 to #4000 SiC grit papers before the tests. An effective joining between 

coating and substrate should involve no propagation of cracks along the interface between the two 

different materials, which would lead to coating delamination [31,32]. 

Finally, in order to assess quantitatively the adhesion strength of the coatings, tensile tests were 

performed on the samples according to ASTM standards [33,34] by using a Syntech 10/D machine 

(MTS Corp.) with cross-head speed set at 1 mm min-1. Briefly, each sample were glued to two loading 

fixtures (steel cylinders with a diameter of 16 mm) by using an epoxy resin (Araldite® AV 119, Ciba-

Geigy) able to withstand a maximum stress of ~40 MPa (as declared by the manufacturer). At room 

temperature, the adhesive agent is a gel; its polymerization was achieved by a thermal treatment in oven 

(130 °C/1 h). The failure tensile stress σt (MPa) was calculated as 
t

t
t

A

L
 , where Lt (N) is the 

breaking-off load and At (mm2) is the resistant section area measured after the test. 

 

2.3. Trabecular coating (scaffold) 

 

2.3.1. Fabrication 

 

Glass powders sieved below 32 μm were used as starting materials for scaffolds fabrication. GC-CEL2 

and GC-SCNA scaffolds to be employed as trabecular coatings were produced through sponge 

replication method, according to a processing schedule described elsewhere [27]. Commercial open-

cells polyurethane (PU) sponge (apparent density 20 kg m-3), used as a sacrificial templates, was 
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manually cut by a surgical scalpel in thin blocks (thickness 4 mm) properly oversized with respect to 

the dimensions of the alumina plates (10 mm × 10 mm) that they should coat: this was necessary to take 

into account the scaffold volumetric shrinkage occurring due to sintering. 

 

2.3.2. Characterization 

 

Scaffolds structure and morphology were evaluated through SEM to assess pores size, shape and 

distribution.  

The volumetric shrinkage Sv (%), due to the PU template removal and to the glass softening-sintering, 

was estimated by geometrical measurements before and after the thermal treatment as 

100
0

0 








 


V

VV
S s

v , where V0 is the volume of the glass-coated sponge before the thermal treatment 

and Vs is the volume of the final scaffold. 

The porosity content  (%vol.) was calculated by geometrical weight-volume evaluations as 

100
0

0 








 




 s , where 0 is the density of non-porous material and s is the density of the 

scaffold (weight/volume ratio including the contribution of the pores). 

The scaffolds strength was evaluated through compressive tests (Syntech 10/D machine, cross-head 

speed set at 1 mm min-1) on dry cubic ~103-mm3 samples; the compressive strength c (MPa) was 

obtained as 
c

c
c

A

L
 , where Lc (N) is the maximum compressive load registered during the test and Ac 

(mm2) is the resistant area perpendicular to the load axis [27]. 

In vitro tests were carried out by soaking the scaffolds in acellular simulated body fluid (SBF) prepared 

according to Kokubo’s recipe [35]. Cubic ~103-mm3 samples were soaked for 7 days and 1 month in 30 

ml of SBF maintained at 37 °C; every 48 h the samples were gently washed with distilled water and the 

solution was replaced by fresh SBF to simulate fluid circulation in the human body. After soaking, the 

samples were dried at room temperature and then investigated through SEM and EDS.  
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2.4. Complete plane samples 

 

2.4.1. Preparation 

 

After manufacturing dense coatings on alumina plates and scaffolds, these two elements were joined 

together in order to obtain a complete sample that reproduced, in a simplified plane geometry, the 

device depicted in Fig. 1. Three different approaches, hereafter referred to as methods I, II and III, were 

followed to fabricate these “plane” samples (Fig. 2). The search for an ever increasing ease of 

processing, as well as the achievement of better results especially in terms of coating adhesion, was the 

leitmotiv driving the methods evolution. 

By method I, coatings based on SCK particles (range within 75-106 μm) were manufactured on alumina 

plates via controlled deposition as described in the section 2.2.1. Afterwards, the green coating was 

directly introduced into a furnace at 1300 °C, thermally treated for 5 min and finally annealed at 650 °C 

for 3 h. On this SCK-derived layer, a second coating was manufactured via controlled deposition by 

using CEL2 powders in the 75-106 μm range; then, a GC-CEL2 scaffold, previously prepared as 

described in the section 2.3.1., was stacked on the green CEL2 coating and the whole system was 

thermally treated at 1000 °C for 3 h. Before the stacking procedure, the GC-CEL2 scaffold was 

carefully polished by SiC grit paper in order to smooth its surface in an attempt to improve its adhesion 

to the underlying layer. The presence of the green CEL2 layer between the SCK coating and the GC-

CEL2 scaffold was expected to improve the adhesion at the GC-SCK coating/GC-CEL2 scaffold 

interface. 

In method II the double coating was manufactured as well as reported in method I. A CEL2-

impregnated sponge was stacked on the green CEL2 layer and the whole system was thermally treated 

at 1000 °C for 3 h (the CEL2 dense layer and CEL2-based trabecular coating were sintered at the same 

time). 
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With respect to methods I and II, in method III the samples manufacturing was simplified. Only one 

glass (SCNA) was used as starting material to prepare both the dense coating (interlayer) on alumina 

and the scaffold (trabecular coating). First, a SCNA green coating was prepared on the alumina plate 

and no thermal treatment of sintering was performed; afterwards, a SCNA-impregnated sponge was 

stacked on the green SCNA coating and, finally, the whole system was thermally treated at 1000 °C for 

3 h (1-step thermal treatment). 

In the light of the strict similarity between methods I and II, we will refer to them by the denotation 

“first embodiment”, whereas method III will be referred to as “second embodiment”. 

 

2.4.2. Characterization 

 

The samples were embedded in epoxy resin, cut, polished by #600 to #4000 SiC grit papers, silver-

coated and investigated by SEM. 

In vitro tests were also performed by soaking the samples in SBF, according to what was previously 

exposed in the section  2.3.2.   

 

3. Results and discussion 

 

3.1. Starting materials 

 

In order to fabricate the SCK-, CEL2- and SCNA-derived coatings, the glass particles were sieved 

within 75-106 μm, whereas glass powders sieved below 32 μm were used for scaffolding. 

Characterizations of SCK [6] and CEL2 [26,27,29] were previously reported by the authors; the results 

of SCNA investigation are included in the present work, as this glass was only partly analyzed 

elsewhere [28].     

The characteristic temperatures of SCNA, assessed directly by the DTA plot (not shown), are Tg = 690 

°C, Tx = 820 °C and Tc = 856 °C.  
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The glass-derived coatings and scaffolds obtained after treatment at 1000°C for 3 h were glass-ceramic 

(GC-SCNA), because a crystalline phase (CaSiO3, wollastonite) developed during the thermal treatment 

(XRD data not reported); biocompatibility of wollastonite is known since the mid 1980s [36,37].  

Previous studies showed that, after high-temperature treatments, also SCK [6] and CEL2 [26,27,29] are 

converted into glass-ceramic materials.  

The  values of the three glasses used in this work are shown in Table 1.  

 

3.2. First embodiment 

 

3.2.1. Dense coating (interlayer) 

 

As reported in the patent deposited by the authors [25], the presence of a glass-derived interlayer is 

necessary to increase the number of contact points and, accordingly, the bonding strength between 

alumina and trabecular coating. Although CEL2 was proved to have attractive features for biomedical 

use, [26,27,29], it appeared unsuitable to be used as a coating material on alumina since its α value 

(Table 1) was far from that of alumina (~8.5×10-6 °C-1). A good ’s “matching” between coating 

material (glass) and substrate (alumina) ensues in the fabrication of flawless, homogeneous and uniform 

coatings; therefore, also in the light of previous results [6], SCK was selected for producing the 

interlayer since its α value (Table 1) is closer to that of alumina. 

SCK powders were sieved within three size ranges, i.e. below 32 μm, within 32-75 μm and within 75-

106 μm, and then used to manufacture the coatings on small alumina plates. As clearly shown in Fig. 3a, 

the use of SCK particles below 32 μm led to unsatisfactory results (almost total absence of adhesion). 

SCK powders sieved within 32-75 μm were able to coat the alumina more uniformly, but the coating 

seemed to be divided in “islands” separated by cracks and void spaces (Fig. 3b). Finally, the coatings 

produced by using powders of larger size (Figs. 3c,d) were continuous and homogeneous; therefore, 

only glass particles within 75-106 μm were employed to manufacture the coatings. These results 
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confirm that glass particles size can influence the “quality” of the final glass-derived products 

(especially coatings), as shown in previous literature [29,38].  

CaSiO3 (wollastonite) was identified as the unique crystalline phase of GC-SCK in a previous work by 

the authors [6]. 

Fig. 4a shows the cross-section of the GC-SCK/GC-CEL2 interlayer after careful polishing; the SEM 

back-scattered mode, coupled with the compositional (EDS) analysis (Figs. 4b,c), allows of well 

distinguishing the different employed materials. The adhesion between GC-SCK coating and alumina is 

excellent, without any crack or defect at the interface, as well as the joining between GC-SCK and GC-

CEL2 layers. It is possible to distinguish two different regions in the GC-SCK coating, characterized by 

two different grey levels emphasized in the back-scattered mode (Fig. 4a). The EDS pattern reported in 

Fig. 4c shows that the upper layer (light grey) is constituted by calcium (Ca) and silicon (Si); therefore, 

we can hypothesize the presence of wollastonite in such a region, also considering that this phase was 

detected in SCK-derived coatings after thermal treatment above 900 °C in a previous work [6]. As 

shown in Fig. 4b, the region in contact with alumina (dark grey) contained silicon (Si), calcium (Ca) and 

potassium (K), typical for SCK composition, sodium (Na) that might have migrated here from the GC-

CEL2 layer, and aluminium (Al) that migrated here from the alumina substrate during the thermal 

treatment.  

The thickness of the GC-SCK coating was in the 170-190 μm range (Fig. 4a), which is close to the 

theoretical value set by controlled deposition (200 μm): this demonstrates that the gravity-guided 

deposition is an easy, effective method to tailor the coating thickness. 

Microindentations at the coating/substrate interface are commonly performed to evaluate the 

propagation of the cracks induced by the indenter, in order to preliminarily assess the “quality” of 

adhesion between the two materials [31]. Fig. 5 shows that the cracks did not propagate along GC-

SCK/alumina interface, but rather tended to be driven into the glass-ceramic coating (the “weaker” 

material). The good adhesion between the two elements was probably enhanced by the enrichment in 

Al3+ ions of the coating region near to the alumina substrate (Fig. 4b), which caused a modification of 
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the  of the coating material towards a value closer to that of alumina, thereby reducing interfacial 

stresses. 

 

3.2.2. Trabecular coating (scaffold) 

 

In the light of the results reported elsewhere by the authors [26,27,29], CEL2 may be considered an 

attractive material for producing the trabecular coating, as GC-CEL2 scaffolds exhibit attractive 

properties (e.g. mechanical strength comparable to that of cancellous bone, excellent bioactivity and 

biological compatibility) that are not described here in detail to avoid data duplication.  

 

3.2.3. Complete plane samples 

 

Qualitative differences in terms of adhesion at the alumina/interlayer and interlayer/trabecular coating 

interfaces of the samples prepared by methods I and II were investigated by SEM. Fig. 6a shows that, in 

the sample produced by method I, the adhesion between trabecular coating and interlayer is limited to 

few contact areas, i.e. the regions where GC-CEL2 scaffold and CEL2 layer were effectively in contact 

before sintering. In the sample obtained by method II (Figs. 6b,c), the adhesion between the two 

elements was found to be qualitatively better, as the CEL2-impregnated sponge could adhere more 

effectively to the CEL2 coating lying underneath, thereby increasing the number of contact areas. 

Furthermore, it should be considered that the joining between interlayer and trabecular coatings is 

strongly promoted by viscous flow sintering, that occurred more conspicuously in the case of method II 

– contact between a glass (CEL2) layer and a glass (CEL2)-coated sponge – than in method I – contact 

between a glass (CEL2) layer and a pre-sintered glass-ceramic (GC-CEL2) scaffold.  

The complete plane samples were tested in SBF to assess whether the alumina substrate might have a 

detrimental effect on in vitro bioactivity and, accordingly, on the osteointegrative potential of the 

proposed device. Fig. 7a shows that the treatment in SBF for 1 week does not seem to influence the 

adhesion at the various interfaces of the system (alumina/GC-SCK, GC-SCK/GC-CEL2, GC-
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CEL2/scaffold). In addition, the scaffolds struts were completely coated by a thick layer (30-50 μm) of a 

newly formed phase that grew also on the walls of the inner pores of the scaffolds (Fig. 7b), thereby 

demonstrating that the pores network was characterized by high interconnection. Compositional analysis 

performed on this newly formed layer showed its apatitic nature, with Ca/P molar ratio equal to 1.70. 

After soaking for 1 month in SBF, sample integrity does not seem to be modified by the in vitro 

treatment. The thickness of the newly formed apatitic phase significantly increased over time reaching 

up to ~100 μm, that is above twice the thickness measured after soaking in SBF for 1 week only: in fact, 

its presence can be distinguished also in the low-magnification SEM micrograph reported in Fig. 7c (see 

the white circles and arrows). Ca/P molar ratio was equal to 1.68, which is very close to the Ca/P ratio 

(1.67) of stoichiometric HA.    

 

3.3. Second embodiment 

 

Although the feasibility of bioactive trabecular coatings on flat alumina substrates was successfully 

demonstrated by means of Methods I and II, such techniques required a multi-step processing schedule. 

Therefore, in view of a future transfer from “Lab-scale” to industrial application, the authors tried to 

simplify the fabrication process by adopting a single glass (SCNA) to manufacture both the dense 

interlayer and the trabecular coating. SCNA exhibited excellent coating ability on alumina (thanks to a 

good “ matching” between the two materials) and high-strength properties.          

  

3.3.1. Dense coating (interlayer) 

 

Dense GC-SCNA coatings were fabricated on square alumina plates via gravity-controlled deposition of 

glass powders sieved within 75-106 μm, as already optimized for SCK-derived coatings. 

From a macroscopic viewpoint, GC-SCNA coatings were similar to those reported in Figs. 3c,d, i.e. 

they were well adherent to the alumina substrate and exhibited a uniform thickness. These observations 

were confirmed by SEM investigations; Fig. 8 shows, at different magnifications, the interface between 
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alumina and coating: the GC-SCNA layer is homogeneous with thickness of ~200 μm, in agreement 

with the planned value (Fig. 8a), and no pores or flaws can be observed at the interface between the two 

materials, even at high magnification (Fig. 8b). The glass-ceramic nature of the coating is clearly visible 

in Fig. 8b, as needle-shaped “white” crystals, identified as CaSiO3 (wollastonite) and embedded in a 

“dark” amorphous matrix, are clearly distinguishable. 

Microindentations at the interface were employed to estimate the “quality” of joining between coating 

and substrate: in Fig. 9 the arrows show a small crack that propagates only through the coating, without 

detaching it from alumina. 

In order to obtain quantitative data on the GC-SCNA/alumina bonding strength, these plane coatings 

underwent tensile (adhesion) tests; failure stress was t = 20.6 MPa (SD = 4.2 MPa). If we refer to 

international standards, a tensile stress of at least 15 MPa is recommended, for instance, in the case of 

HA coatings on titanium alloys [39]. Therefore, the adhesion strength obtained for the GC-SCNA 

coatings seems to be promising and suggests an actual mechanical suitability of the prepared material 

for biomedical use. 

 

3.3.2. Trabecular coating (scaffold) 

 

SCNA-derived scaffolds were fabricated by sponge replication method [27]; the sintering temperature 

for scaffolding (1000 °C) was chosen on the basis of HSM results. 

Fig. 10 reports SEM micrographs of GC-SCNA scaffold showing that after the thermal treatment an 

excellent glass particles densification, as well as a satisfactory pores content, was successfully achieved. 

In Fig. 10a a bimodal distribution of scaffold pores – pores above 100 μm originated by the 3-D macro-

cells network of the PU template and pores below 10 μm – is clearly evident. Both large and small pores 

are homogeneously distributed along the section, demonstrating that the density of the scaffold is 

homogeneous in its whole volume without gradients of porosity. In Fig. 10b the very good sintering of 

scaffold struts is still more evident than in Fig. 10a, since it is not possible to distinguish the original 

SCNA particles. Fig. 10c puts into evidence the typical needle-like shape of CaSiO3 crystals (10-15 μm 
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in length) nucleated during sintering; the nature of these crystals was also confirmed by compositional 

analysis (EDS spectrum not shown). 

The volumetric shrinkage assessed of GC-SCNA scaffolds was Sv = 62.3 % (SD = 1.6 %) and their total 

porosity was  = 63.0 %vol. (SD = 1.3 %vol.), that is comparable to the pores content of natural 

cancellous bone (50-70%vol. [24]). 

The mean compressive strength of GC-SCNA scaffolds was c = 12.5 MPa (SD = 2.9 MPa); this value 

is more than twice higher than that obtained for GC-CEL2 scaffolds (5-6 MPa) with analogous 

porosity/architecture and manufactured by the same processing schedule [27]. The superior mechanical 

behaviour of GC-SCNA scaffolds can be ascribable to intrinsic material features, and more specifically 

to the different mechanical features of the crystalline phases nucleated in the two glass-ceramic 

materials. This hypothesis can be supported by following an approach based on the fact that, in 

principle, higher the density of a material, higher is its mechanical strength [29]. By comparing the 

densities of the crystalline phases detected by XRD in GC-SCNA and GC-CEL2 scaffolds, we observed 

that the density of CaSiO3 (~2.92 g cm-3) is higher than that of the major phase of GC-CEL2, 

Na4Ca4(Si6O18) (~2.85 g cm-3), which accordingly involves different mechanical strength of the two 

scaffolds. In addition, it is known that the presence of alumina in a glass formulation can contribute to 

increase the mechanical resistance of the material [23]; in the case of GC-SCNA, alumina is contained 

in the residual amorphous phase (CaSiO3 was the crystalline phase). By assuming Bioglass®-based 

scaffolds fabricated by sponge replication as a standard reference, the compressive strength of GC-

SCNA scaffolds is significantly higher than that of glass-ceramic Bioglass®-based scaffolds (0.3-0.5 

MPa with 89-92 %vol. porosity [40]; 1.3-2.5 MPa with 69-71 %vol. porosity [29]) and polymer-coated 

Bioglass®-derived scaffolds (1.0-1.5 MPa with 79-85 %vol. porosity [41]) reported up to now in the 

literature. This significant improvement of mechanical strength is due to both the composition of 

starting glass (SCNA vs. Bioglass®) and the optimization of processing schedule that led to sound, well-

densified scaffold struts [29].  

Unluckily, GC-SCNA scaffolds were characterized by only a slight bioactive behaviour. After 7 days of 

soaking in SBF, partial dissolution of the material and formation of very small, round-shaped CaP 
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particles on scaffold struts can be observed (Fig. 11); CaP agglomerates, however, did not grow in 

amount and thickness with the increase of soaking time and, accordingly, subsequent formation of a 

continuous and homogeneous apatite layer did not occur. The bioactive process is a sequence of ion-

exchange phenomena occurring between scaffold material and biological fluids [17] and in the present 

case the partial substitution of Si4+ ions with Al3+ ones in the tetrahedral units of the Al2O3-rich residual 

glassy phase of GC-SCNA led to a chemically stable network less prone to react with the surrounding 

environment. These results are consistent with the observations reported by Kokubo and co-workers for 

Al2O3- and wollastonite-containing biomedical glass-ceramics [42]. High stability of the residual 

amorphous phase of GC-SCNA scaffold during soaking in SBF was confirmed by weight 

measurements: after 3-month immersion, weight loss of ~3.3% and porosity increment of ~2.8 %vol. 

were registered, which involved only a mild decrease of the mechanical strength (–15.0% after soaking 

for 3 months in SBF). Accordingly, also the solution pH variations were quite moderate (maximum ~7.8 

after the early 48 h of soaking) with respect to the basal pH value of SBF (7.40); therefore, no cytotoxic 

effect due to pH increase is expected.  

 

3.3.3. Complete plane samples 

 

From a qualitative viewpoint, good adhesion at the alumina/GC-SCNA interlayer and GC-SCNA 

interlayer/trabecular coating were observed (Fig. 12). Trabecular coating and interlayer are composed 

by the same material (GC-SCNA) and, in correspondence of the contact areas, the interface between the 

two elements is not distinguishable.  

The major drawback of GC-SCNA, as discussed in the sect. 3.3.2., is its low bioactivity. Indeed a high 

bioactivity, i.e. the ability to form an apatite layer after contact with biological fluids, is a crucial added 

value for bone tissue engineering biomedical implants. However, GC-SCNA trabecular coatings are not 

to be deemed unsuitable for promoting osteointegration: in fact, although exhibiting a moderate 

bioactive behaviour, they could still lead to osteogenesis in vivo by virtue of the key role played by their 
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bone-like porous architecture [24]. Looking at future research work, improvement of material 

bioactivity by means of surface functionalization [43] could also be a valuable option.    

The second embodiment of the device, based on the use of a unique glass, is very attractive thanks to the 

ease of manufacturing; new bioactive glass formulations with low are currently under investigation to 

find a satisfactory compromise between bioactivity, mechanical properties and coating ability of the 

glass chosen to fabricate both the interlayer and the trabecular coating.     

 

4. Conclusions and perspectives 

 

In spite of the advances of the last decades, minimally invasive, safe and long-lasting anchorage of 

prosthetic elements to the patient’s bone still represents a great challenge that involves high cooperation 

among surgeons, biomechanical engineers and biomaterials researchers. In the present work, for the first 

time glass-derived scaffolds are proposed as osteointegrative trabecular coatings that are expected to 

induce biological fixation of prosthetic elements to bone. The feasibility of a trabecular coating on 

alumina exhibiting architectural features analogous to those of cancellous bone was successully 

demonstrated. The properties of the trabecular coating, in terms of mechanical behaviour and bioactivity 

potential, can be tailored by properly designing the composition of the starting glass. The present work 

is a pilot study that proves the applicability of trabecular coatings on flat (2-D) geometry but it should 

be considered that the majority of medical implants are characterized by complex, often curved shapes, 

like the semi-spherical one that is typical of the acetabular component of hip joint prostheses. Extension 

of the promising results achieved in the present work to curved geometry is not trivial and will require 

further research work in terms of glass composition design, scaffold shaping and coating techniques; the 

authors are currently working on these crucial issues in the course of a EU-funded project titled 

“Monoblock acetabular cup with trabecular-like coating” (MATCh, GA 286548), whose achievements 

will be the object of future publications. Utmost attention will be also devoted by the authors to the 

transfer of the most suitable manufacturing techniques from Lab-scale to industrial set-up. Under this 

perspective, the use of high-strength scaffolds as key components of implantable devices to promote 
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their osteointegration is highly innovative and could lead to the birth of a new generation of prostheses 

with relevant impacts from clinical, commercial and patient’s life quality viewpoints. This device can 

allow ceramic/ceramic coupling, characterized by excellent wear resistance, and the presence of the 3-D 

trabecular glass-derived layer between cup and host bone can minimize the stiffness mismatch at their 

interface; therefore, the present research can potentially carry a significant innovation especially in the 

ceramic-on-ceramic joint prosthesis field.          
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Tables 

 

Table 1 

Features of the glasses used for manufacturing the samples. 

Glass Composition (%mol.) Melting conditions 

(heating rate: 10 °C min
-1

) 

α (×10
-6

 °C
-1

) 

SiO2 P2O5 CaO Na2O MgO K2O Al2O3 

SCK 50 - 44 - - 6 - 1500 °C/1 h 10.06 

CEL2 45 3 26 15 7 4 - 1400 °C/1 h 12.83 

SCNA 57 - 34 6 - - 3 1550 °C/1 h 8.70 
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Figure  

 

Fig. 1. Scheme of the innovative acetabular cup disclosed in the patent deposited by the authors [36]: 

this monoblock ceramic implant is constituted by three elements: (i) a bioinert ceramic substrate, that 

articulates directly with the (prosthetic) femur head; (ii) a bioactive trabecular coating, i.e. a glass-

derived scaffold, that aims at promoting implant osteointegration to patient’s pelvis bone; (iii) a glass-

derived (pore-free or minimally porous) interlayer, able to improve the adhesion between alumina 

substrate (cup) and trabecular coating (scaffold). 
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Fig. 2. Different strategies adopted for fabricating complete plane samples; note that methods I and II 

involve a graded GC-SCK/GC-CEL2 interlayer between alumina substrate and trabecular coating. 

 

 

Fig. 3. GC-SCK coatings manufactured by using SCK powders belonging to different size ranges: (a) 

below 32 μm, (b) within 32-75 μm, (c) and (d) within 75-106 μm. 
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Fig. 4. GC-CEL2/GC-SCK coatings: (a) SEM investigation (back-scattering); compositional analysis on 

(b) the black circle and (c) the black square areas. 

 

 

Fig. 5. Microindentation at the alumina/GC-SCK interface (load: 5 N): the cracks propagated along the 

GC-SCK coating and the interface did not delaminate. 
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Fig. 6. SEM micrographs, at different magnifications, of the samples fabricated by (a) method I (the 

white circles emphasize the regions of discontinuity between GC-CEL2 scaffold and underlying 

coating) and (b, c) method II. 

 

 

 

 

Fig. 7. In vitro bioactivity after soaking in SBF (SEM analysis): (a) complete sample overview after  

soaking for 1 week; (b) apatite layer formed on pores walls in the inner region of the trabecular coating; 

(c) micrograph of the whole sample after soaking for 1 month (the pores walls where the growth of 

apatite is more evident are emphasized). 

 

 

 

 

 



 29 

Fig. 8. SEM micrographs GC-SCNA coating on alumina plates: (a) sample overview and (b) detail of 

the substrate/coating interface. 

 

 

Fig. 9. Microindentation at the alumina/GC-SCNA interface (load: 5 N); the white arrows “follow” the 

direction of crack propagation. 
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Fig. 10. GC-SCNA scaffolds: (a,b) SEM micrographs of scaffold cross-section section at different 

magnifications; (c) needle-shaped wollastonite crystals on a scaffold strut. 

 

 

 

 

Fig. 11. High-magnification SEM micrograph of GC-SCNA scaffold surface after soaking for 7 days in 

SBF. 
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Fig. 12. SEM micrograph of a sample produced by Method III (second embodiment). 

 

 

 

 

 


