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Highlights

• Circuit-oriented model of surface-channel diamond FETs presented for

the first time;

• Nonlinear equivalent circuit based on the III-V HEMTs Chalmers ap-

proach;

• Model validated under power operation against RF power measure-

ments;

• Application to polycrystalline and single-crystal diamond FET tech-

nologies described.
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Abstract

The paper presents a large-signal nonlinear circuit-oriented model for poly-

crystalline and single-crystal H-terminated diamond MESFETs implemented

within the Agilent ADS design suite. The DC characteristics of such devices

suggest that the channel free charge control law may be modeled using the

same strategy adopted for III-V HEMTs. For this reason, the well-known

nonlinear Chalmers (Angelov) circuit model was chosen as the starting point

for the development of the present non-linear diamond MESFET model.

Model fitting was performed against DC and multibias small signal measure-

ments, with good agreement. Model validations versus large-signal (power)

measurements point out the accuracy of the proposed approach to simulate

the behavior of H-terminated diamond MESFETs under large-signal opera-

tion.
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1. Introduction

As well known, diamond has in principle outstanding semiconductor prop-

erties (such as high carrier mobility, high breakdown field, and record ther-

mal conductivity) that can be profitably used for the development of power

radio-frequency (RF) and microwave FETs [1]. Although diamond devices

were first demonstrated almost twenty years ago [2], only during the last

few years, advances in growth techniques both for single-crystal and poly-

crystalline diamond substrates (see [3] for a review), have led to devices

able to exhibit reproducible RF behavior and power characteristics [4]-[8].

Of the two approaches currently pursued to achieve charge control, namely

extrinsic acceptor doping with boron [9], and hydrogen (H) surface termina-

tion [10], results from the literature seem to point out that H-terminated

surface-channel MISFETs [11] and MESFETs [4]-[8] have demonstrated su-

perior performances in terms of cutoff frequency (e.g. 45 GHz for 0.1µm gate

length polycrystalline H-terminated MESFETs, [6]). For this reason, the rest

of the work will focus on H-terminated MESFET technology.

Despite stability problems that still have to be overcome from a techno-

logical standpoint, the current availability of large-signal characterizations

[5], also carried out by the present authors [8], suggest that the diamond

technology may be close to the stage where devices can be exploited in the

design of power circuits (typically power amplifiers or oscillators). To this

aim, a large-signal, circuit-oriented model for the nonlinear simulation of di-

amond devices is needed, and, to be effectively exploited in the circuit design
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phase, it has to be implemented within a CAD commercial simulator. In

this work we present, for the first time, a circuit-based nonlinear model of

surface channel diamond FETs based on the Chalmers model approach [12],

and embedded within the ADS Agilent CAD tool.

The use of the Chalmers approach (first proposed for the modeling of High

Electron Mobility Transistors, HEMTs, on III-V semiconductors), rather

than of other available circuit-oriented models, was suggested by a possi-

ble analogy between the behavior of H-terminated diamond MESFETs and

III-V HEMT. In HEMTs, the free charge density of a two-dimensional carrier

(typically electron) gas induced in a quantum well by modulation doping [13],

is controlled by a Schottky contact through a non-conducting interface layer,

and the charge control law exhibits a typical saturation behavior for large

values of the controlling voltage. Although in H-terminated diamond devices

the composition of the very thin interface layer and the physical mechanism

inducing the quantized hole channel are still controversial, the electrical be-

havior of such devices shows features (such as the current saturation with

gate voltage), which are consistent with the specific tanh-like shape of the

charge control law on which the Chalmers circuit model is based. The re-

sults shown in the present paper clearly suggest that, at least at an empirical

level, the Chalmers approach indeed seems to be an excellent candidate for

the large-signal simulation of H-terminated diamond MESFETs.

2. Experimental

The devices characterized and modeled in the present paper are H-ter-

minated MESFETs grown on large grain size polycrystalline diamond sub-
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strates supplied by Element Six. The devices are fabricated with the process

described in [7, 8]. They exploit a coplanar two-finger layout with I-shaped

gate electrodes with 200 nm and 50 µm gate length and width respectively,

and are printed by a single-layer electron beam lithography process. Two

sets of device were fabricated, referred in the following as first and second

generation. In the latter, source and drain pad thickening was carried out

to improve the electrical contact with the RF measurement probe tips, and

to overcome probe scratching issues observed in the first generation devices.

The fabricated devices were characterized under DC, small-signal at differ-

ent bias points, and large-signal conditions using the active load-pull bench

described in [8].

3. Model theory

The Chalmers (Angelov) microwave FET large-signal model (first pre-

sented in [12, 14]) is a widely exploited general-purpose circuit-oriented model.

Contrarily to other, previously proposed JFET, MESFET or MOSFET large-

signal models, the Chalmers model incorporates features that make it par-

ticularly well suited to simulating III-V High Electron Mobility Transistors

(HEMTs). In particular, the DC trancharacteristics are approximated by a

hyperbolic tangent function of the gate to source voltage VGS, in agreement

with the physics-based channel free charge control model exhibiting a linear

region and then saturation, suggested for AlGaAs/GaAs HEMTs by Rob-

lin et al. [15]. The surface-hydrogenated polycrystalline diamond MESFETs

initially considered in this research (see [8]) showed measured DC output

characteristics in which the drain current is almost independent from VGS in
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the linear region (see Fig.[5] in [8] and Fig. 2 in the present paper). This can

be related to the saturation of the channel hole mobile charge for large VGS

absolute values. Although the detailed physical mechanism of the charge con-

trol in surface-hydrogenated diamond MESFETs is still object of discussion

(see [16]-[18]), the, at least extrinsic, similarity between the charge control

in diamond MESFETs and III-V HEMTs, suggests to apply the Chalmers

approach to diamond devices, with encouraging results not only concerning

the devices considered initially [8], but also other devices from literature [5].

The implemented model (see Fig. 1 for the circuit scheme) exploits an

analytical expression of the intrinsic drain current as a function of the gate

to source and drain to source voltages, VGS and VDS respectively [12]:

IDS = Ipk (1 + tanh(Ψ)) tanh(αVDS)(1 + λVDS) (1)

where Ipk is the drain current at which the maximum transconductance gmpk

occurs, and the function Ψ is a power series centered at Vpk (the gate voltage

corresponding to gmpk):

Ψ = P1(VGS − Vpk) + P2(VGS − Vpk)
2 + P3(VGS − Vpk)

3... (2)

The hyperbolic tangent term tanh(αVDS) in eq. 1 accounts for the drain cur-

rent saturation as a function VDS, being α the parameter that controls the

sharpness of the transition from the linear to the saturation region, while

factor (1 + λVDS) models the non zero output conductance in the saturation

region.

Similar analytic functions are adopted for the non-linear bias-dependent
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capacitances CGS and CGD:

CGS =CGS0 (1 + tanh(Ψ1)) (1 + tanh(Ψ2)) (3)

CGD =CGD0 (1 + tanh(Ψ3)) (1 + tanh(Ψ4)) (4)

where

Ψ1 =P0gsg + P1gsgVGS + P2gsgV
2
GS + P3gsgV

3
GS + ... (5)

Ψ2 =P0gsd + P1gsdVDS + P2gsdV
2
DS + P3gsdV

3
DS + ... (6)

Ψ3 =P0gdg + P1gdgVGS + P2gdgV
2
GS + P3gdgV

3
GS + ... (7)

Ψ4 =P0gdd + (P1gdd + P1ccVGS)VDS + P2gddV
2
DS + P3gddV

3
DS + ... (8)

The model has been implemented within the Agilent ADS CAD suite, which

has been exploited in all simulations shown [19]. Additional details on the

model implementation (that is slightly different from the one proposed in the

original Angelov papers [12, 14]) can be found for example in [19].

4. Results and Discussion

4.1. Model extraction from DC and small-signal multibias measurements

The extraction of the model is carried out on the basis of DC and scatter-

ing multibias measurements according to the following steps: first, parasitics

elements (drain, source and gate parasitic inductances and resistances) are

extracted from cold FET measurements; then, the static DC characteristics

are fitted by optimizing the parameters of the static intrinsic model; finally,

the dynamic part of the model (gate-source, gate-drain and drain-source ca-

pacitances) is extracted from S-parameters data measured in different bias

conditions (multibias S-parameters), and at several frequencies.
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To test the model strategy to different diamond-based devices, the extrac-

tion approach has been applied to the first and second device generations, on

polycrystalline diamond and, as a further test, also to a single crystal device

taken from the literature [5]. In this latter case, due to lack of detailed in-

formation on the small-signal behavior, and on the adopted large-signal load

termination, the model validation has been limited to DC behavior.

Typical measured and simulated DC output and trans-characteristics are

compared in Fig. 2 for the first device generation, showing a good agree-

ment. The crowding of the output characteristics in the linear region (-

4 V< VDS < 0 V) corresponds to a reduced VGS control on the drain current,

as highlighted from the transcharacteristic plot, consistently with the previ-

ously discussed 2D hole gas concentration saturation well approximated by

the tanh-like charge control model. A similar behavior has been observed

also for the 2nd generation devices, as shown in Fig. 3. This second set of

devices showed slightly inferior performance, with respect to the first gen-

eration one, that can be attributed to the technological process variability.

Finally, Fig. 4 presents a comparison between the measured and simulated

DC output characteristics and transcharacteristics for the single-crystal FET

(100 nm and 100 µm gate length and width, respectively) reported in [5]. In

this example, the charge control behavior is markedly more linear than in

our in-house devices; it is worth noticing that it is still well captured by the

model.

The extraction of the equivalent circuit model is completed with the iden-

tification of the parameters of the capacitive components. This is done by

fitting the S-parameters as a function of frequency, for different bias points.
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An example of measured and fitted S-parameters, for a bias point close to

the one exhibiting the maximum transconductance, is shown in Fig. 5 for the

first device generation.

4.2. Validation against large-signal power measurements

To conclude the model validation, large-signal simulations have been car-

ried out in order to evaluate the RF power performance of the first and

second generation devices under class A operation, using the optimum load

impedances derived from load-pull measurements [20, 21]. Fig. 6 compares

the simulated against measured Pin-Pout curves, gain and power added effi-

ciency (PAE) at 2 GHz for the first generation devices biased at VDS = −14 V

and VGS = −1 V. A similar comparison os reported in Fig. 7 for a sec-

ond generation device measured at 1 GHz and biased at VDS = −14 V and

VGS = −1.15 V.

Both examples stress the model capability to accurately predict the non-

linear device dynamic performance over a wide range of RF input power, in

terms of output power, gain, and power added efficiency.

5. Conclusions

We have presented a large-signal nonlinear circuit-oriented model for

polycrystalline and single-crystal H-terminated diamond MESFETs imple-

mented within the Agilent ADS design suite; the model is derived from the

Chalmers (Angelov) approach, starting from an analogy between the charge

control laws in III-V HEMTs and in diamond FETs. Good agreement has

been found between the simulated and experimental data in DC, small-signal
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and RF power (large-signal) conditions, for both polycrystalline and single-

crystal H-terminated diamond devices.
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Figure 2: Above: comparison between the measured (symbols) and modeled (solid lines)

output characteristics of a first generation device with VDS from 0 V to -14 V, and VGS from

0.9 V to -3 V (upper curve) with -0.3 V step. Below: corresponding measured (symbols)

and modeled (solid lines) transcharacteristics for VGS from 1.5 V to -3 V, and VDS from

0 V to -14 V; VDS step is -0.5 V in the range (0, -4 V), and -2 V in the range (-4 V, -14 V).
15



-V , VDS

-I
m

A
/m

m
D

S
, 

2 4 6 8 10 12 140 16

10

20

30

40

50

60

0

70
V = -3 VGS

Figure 3: Comparison between the measured (symbols) and modeled (solid lines) output

characteristics of a second generation device with VDS from 0 V to -15 V, and VGS from

0 V to -3 V (upper curve) with step of -0.5 V.

16



1 2 3 4 5 6 7 8 90 10

50

100

150

200

250

300

0

350

-V , VDS

-I
, m

A
/m

m
D

S

V = -3.5 VGS

V = 0.5 VGS

-V ,VGS

-I
, m

A
/m

m
D

S

0.0 0.5 1.0 1.5 2.0 2.5 3.0-0.5 3.5

50

100

150

200

250

300

0

350

V  from 0 to -10 VDS

Figure 4: Above: comparison between the measured (symbols) and modeled (solid lines)

output characteristics of the single-crystal FET (100 nm and 100 µm gate length and

width, respectively) reported in [5] with VDS from 0 V to -10 V, and VGS from 0.5 V to

-3.5 V (upper curve) with step of -0.5 V. Below: corresponding measured (symbols) and

modeled (solid lines) transcharacteristics.

17



S(2,2)

S(1,1)

S(1 2)

S(2,1)

Figure 5: Comparison between measured (symbols) and modeled (solid lines) scattering

parameters of a fist generation device at the bias point VDS = −14 V, VGS = −0.9 V.
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