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A B S T R A C T

This thesis is concerned with application of statistical methods – namely,
random matrix theory (RMT) and belief propagation (BP) – in distributed
inference problems in wireless communication networks. The term “dis-
tributed inference” denotes, in general, detection/estimation involving mul-
tiple network nodes (“sensors”) that collect physical measurements and com-
municate with each other. Such problems can be classified as homogeneous,
where all nodes observe the same hidden variable, or heterogeneous, where
a different hidden variable exists for each node.

The first part of the thesis focuses on a homogeneous inference problem,
i.e., multi-sensor signal detection in cognitive radio networks. Techniques
based on the eigenvalues of sample covariance matrices are employed. The
performance of such methods is analyzed mathematically, by using RMT re-
sults.

The second part addresses several heterogeneous inference problems: 1.
distributed localization (in a hybrid scenario with GPS and terrestrial range
measurements); 2. signal detection in non-uniform radio environments; 3.
cooperative signal detection in the presence of malicious users. For each of
these problems, BP-based Bayesian inference methods are adopted. In cases 1

and 2, in particular, the BP algorithm is implemented in a decentralized fash-
ion, by exploiting the correspondence between statistical graph and physical
network structure. Finally, a variation of the BP algorithm is proposed, pro-
viding improved performance in the case of graphs containing cycles.
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Part I

B A C K G R O U N D





1
D E T E C T I O N A N D E S T I M AT I O N I N W I R E L E S S
N E T W O R K S

1.1 introduction and definitions

Over the past few decades, voice and data communications have been revo-
lutionized by the diffusion of a variety of new wireless technologies: mobile
communication systems (GSM, EDGE, HSPA, UMTS), wireless Internet (Wi-Fi
– IEEE 802.11, WiMAX – IEEE 802.16), low-power networks (wireless sen-
sor networks (WSNs) and wireless personal area networks (WPANs) – IEEE
802.15.4, Zigbee), satellite navigation systems (Global Positioning System
(GPS), Galileo), and the upcoming cognitive radio (CR) paradigm (first adopted
in wireless regional area networks (WRANs) – IEEE 802.22).

From a signal processing perspective, several aspects of the operation of
the above systems can be formulated as distributed inference problems. In-
ference denotes in general detection or estimation of some hidden variables,
based on a set of observable data. Inference problems, when applied to wire-
less networks, are distributed in that they are performed cooperatively by a
number of intercommunicating wireless devices (often referred to as sensors).

The following terminology can be used to classify distributed inference
problems.

• According to the problem configuration: if all sensors observe the same
hidden variable, inference problems are defined homogeneous or global;
if different sensors may observe different, localized events, inference
problems are referred to as heterogeneous or local.

• According to the architecture: distributed systems may be centralized
(if there is a fusion center which processes the data sent from the other
sensors), or decentralized (if all sensors behave as peers and work with-
out a central control unit)1.

In this thesis statistical methods are used to address both the aforemen-
tioned types of problems. In particular, random matrix theory will be ap-
plied to the design and performance evaluation of homogeneous detection
problems, where a covariance matrix can be constructed from signal sam-
ples received by multiple sensors (assuming a centralized architecture). Then,

1 Note that this terminology is not universal: in the literature sometimes the word “distributed”
is used as a synonym of “decentralized”. To avoid any ambiguity, in this thesis the term
“distributed” is used with a general meaning of “multi-sensor”, and then a distinction is
made between centralized and decentralized architectures.

3



4 1 detection and estimation in wireless networks

Problem Goal Observations
Type of hidden
variable

Signal detection in
noise

Test hypothesis
H = 1 (signal
present) vs. H = 0

(no signal)

Received signal
samples

Binary

(Cooperative)
localization

Estimate the position
of a wireless device
in a network

Peer-to-peer or
satellite (GPS)
distance
measurements

Continuous,
2-D or 3-D

Surveillance
systems / sensor
networks

Infer the presence of
an object or event in
a certain area

Physical
measurements
(temperature, light
etc.)

Discrete

Table 1.1: Examples of distributed inference problems.

belief propagation will be used to address heterogeneous detection and estima-
tion problems, where statistical dependencies among variables of the problem
are represented by means of probabilistic graphical models. In some cases,
the graphical model can be mapped to the physical network structure, thus
enabling decentralized implementation.

1.2 applications

Some examples of inference problems in wireless networks are summarized
in Table 1.1. The first example (signal detection) is a classic signal processing
problem, with traditional application in radar systems, and of great interest
nowadays for its application to spectrum sensing in CR networks. Since the
variable to be estimated is binary, signal detection is formulated as a binary
hypothesis testing problem. Localization is, on the contrary, an example of
inference problem involving continuous variables: the position of a wireless
device is a 2-D or 3-D vector. The third example can be thought of as an
extension of signal detection to a multiple hypothesis setting, where the
status of an object or event is modeled as a discrete variable taking values in
a M-ary alphabet.

This work presented in this thesis addresses in particular the problem of
signal detection, applied to CR networks, and the problem of cooperative
localization combining peer-to-peer and GPS measurements (hybrid localiza-
tion). A more detailed description of these two problems and their contexts
of application is provided next.
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1.2.1 Spectrum Sensing in Cognitive Radio Networks

The concept of dynamic spectrum allocation (DSA) was proposed as a part
of the CR paradigm, originally introduced by J. Mitola in 1999 ([81]; see also
[43, 1]). The DSA approach is based on the coexistence of different types of
users in the same frequency bands: primary (licensed) users, that are the au-
thorized owners of a given band, and secondary (unlicensed) users, that are
allowed to opportunistically reuse the band when primary users are silent.
The idea of DSA is motivated by extensive measurements performed by the
Federal Communications Commission (FCC), revealing that fixed frequency
assignment is highly inefficient both from a temporal and from a spatial
point of view: in other words, some parts of the spectrum are strongly under-
utilized in certain areas and/or time of the day, whereas other frequencies
(e.g., the 2.4 GHz band) are overcrowded. Therefore, DSA is seen as a promis-
ing solution to enable a more efficient spectrum usage, leading to higher
data rates and more room for different, coexisting wireless systems.

In a DSA network, secondary users (SUs) must constantly monitor the spec-
trum, in order to identify unused spectrum portions (usually called white
spaces or spectrum holes) and to promptly vacate them when a primary user
(PU) starts transmission. This process, called spectrum sensing, is the key
enabling feature of DSA and, by extension, of CR systems. Ideally, spectrum
sensing should be efficient, reliable and reactive at the same time. Design
of high-performance sensing techniques has been one of the most important
research challenges of the past decade in the domain of wireless communi-
cations (see, for instance, [39, 121, 13, 168]).

The main challenge in spectrum sensing is the detection of low-power sig-
nals with high reliability. For example, the IEEE 802.22 WRAN standard [47],
which regulates the use of white spaces in U.S. TV bands, requires detection
of wireless microphone signals with power as low as −118dBm with error
probabilities (both false-alarm and missed-detection) not exceeding 10%. Al-
though such stringent sensing requirements were later removed by an FCC

decision in 2010 [33] in favor of a database-oriented approach, spectrum
sensing is still expected to play a major role in next-generation wireless tech-
nologies.

One way to improve the performance of spectrum sensing is collabora-
tion among multiple devices: collaborative (or cooperative) spectrum sensing
schemes, first introduced in [40, 80], provide increased robustness to fading
or physical obstacles (“hidden node problem”), and substantially increase
detection probability compared to single-user sensing. Following the defini-
tions given in Sec. 1.1, cooperative sensing is a distributed inference problem
(in particular, a problem of binary detection). This thesis addresses the prob-
lem of multi-sensor signal detection in various configurations:

• Homogeneous, centralized signal detection: all sensors observe the same
signal and send the received signal samples to a fusion center; a covariance
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matrix is constructed from all received signal samples. Note: sensors
may be in this case multiple antennas of a single receiver.

• Homogeneous, centralized signal detection with hard individual decisions
sent to the fusion center, with possibly malicious users (i.e., users that
send wrong sensing reports in order to alter the final decision on spec-
trum occupancy). In this case, the goal is for the fusion center to max-
imize the detection performance while identifying and properly coun-
teracting the attacks.

• Heterogeneous, decentralized signal detection: sensors in different loca-
tions may observe different signals, originated from different PUs. Thus,
instead of a unique hidden variable indicating signal presence/absence
for the entire network, here each sensor has to infer the value of a dif-
ferent binary state variable. The problem can be properly addressed
by a decentralized algorithm, exploiting statistical correlations among
neighboring nodes.

1.2.2 Hybrid Cooperative Localization

Global navigation satellite systems (GNSS) are the state-of-the art technology
to perform localization in wireless networks, and their usage is widespread
in a variety of civilian and military applications. In particular, the Global
Positioning System (GPS) [54], developed in 1973 by the U.S. Department
of Defense, has provided military support since the first Gulf war and is
commonly used in vehicle navigation and portable devices.

However, global navigation satellite systems (GNSS) fail in some critical
scenarios, such as in natural/urban canyons, under tree canopies, indoors,
at high latitudes, in presence of electromagnetic interference. The failure, in
the first three cases, is due to satellite signals being unable to sufficiently
penetrate physical obstacles; in case of high latitude, it is due to geometric
conditions (satellite orbits range from 0° to 55° latitude), so that the received
GPS signal is affected by strong uncertainty; finally, harmful interference may
result from terrestrial wireless systems or intentional jamming. The above
shortcomings result in reduced localization availability and/or accuracy in
several practical scenarios and, in military applications, can lead to a loss of
lives on the ground as well as a tactical disadvantage in urban warfare [41].

To cope with this problem, odometers and inertial sensors can be used
to track the receiver position via dead reckoning when GNSS is unavailable
[116]. The main problem with dead reckoning is the error drift over time, so
that the sensors are reliable for only very short periods of time (on the order
of some seconds). Alternatively, the use of hybrid positioning has been pro-
posed [79], where the receiver relies on terrestrial radio-frequency (RF) sig-
nals, such as GSM/UMTS, DVB, and Wi-Fi, in order to extract position-related
measurements (e.g., signal strength, time of flight, or Doppler shift). Such
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methods, called “systems of opportunity”, rely on the presence of fixed ter-
restrial infrastructure, which may not always be available.

To reduce the reliance on fixed infrastructure, peer-to-peer cooperative meth-
ods have been proposed in [48, 19, 158], especially in the context of in-
door wireless ad-hoc and sensor networks. Typically, GNSS data is not ex-
ploited by devices, thus these methods still require a limited local infras-
tructure to provide a geographical reference. In this thesis, the case of hy-
brid GNSS-cooperative localization is considered, where information received
from satellites is combined with peer-to-peer range measurements, exchanged
among network nodes. This approach, proposed in [101, 14, 16], requires de-
vices to be equipped with a multifunction receiver comprising (i) a GNSS

receiver; (ii) an RF system for short/medium distance peer-to-peer ranging
(e.g., Ultra Wide-Band (UWB) or Wi-Fi); and (iii) a communication system
(which may coincide with the ranging system). In this way, wireless net-
works achieve increased positioning availability for GNSS-denied nodes and
increased accuracy for GNSS-challenged nodes.

Hybrid cooperative localization can be naturally formulated as a distributed
heterogeneous inference problem, where hidden variables to be estimated are
nodes’ positions (2-D or 3-D vectors) along with nodes’ biases with respect
to satellite clock. It will be shown that in this case the statistical problem
structure admits a one-to-one mapping to the physical network, therefore
the problem can be addressed by a fully decentralized architecture without a
fusion center.

1.3 structure and contributions of this thesis

The thesis is organized as follows: Part ii (Chapters 2 through 4) is dedi-
cated to homogeneous, multi-sensor signal detection for CR networks; Part
iii (Chapters 5 through 9) focuses on belief propagation and its application to
distributed and decentralized inference in wireless networks. In particular:

• Chapters 2 and 3 investigate detection methods based on the received
signal covariance matrix, applying tools from RMT. The work presented
in this part builds upon previous works, in particular [167, 17, 9, 73],
where eigenvalue-based detection techniques were first introduced. Orig-
inal contributions are performance analysis and improved design ex-
pressions of the aforementioned detectors. Specifically, results include:

1. Analysis of false-alarm probability of the eigenvalue-ratio detec-
tor (ERD), and accurate expression of the decision threshold as a
function of the target false-alarm rate.

2. Performance analysis (detection probability) of the ERD.

3. Performance analysis (detection probability) of the generalized
likelihood ratio test (GLRT).
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4. Comparison of GLRT and Roy’s largest root test (RLRT) perfor-
mance, and quantification of the impact of noise level knowledge.

5. Introduction of Hybrid Roy’s largest root test (HRLRT), a detector
able to close the gap between GLRT and RLRT by exploiting past
observations.

• Chapter 4 presents, as a case study, an application of the CR paradigm
to WSNs or WPANs operating in the 2.4 GHz ISM band. Contributions in-
clude theoretical results (eigenvalue-based and energy-based detection
of discontinuous signals, design of ad hoc spectrum sensing strategies,
optimization of sensing period) and implementation of a frequency-
agile wireless sensor network (FA-WSN) prototype.

• Chapter 5 introduces probabilistic graphical models, the BP algorithm,
and explains how BP can be applied to distributed inference in wire-
less networks allowing, sometimes, for fully decentralized implemen-
tations.

• Chapter 6 presents hybrid cooperative localization techniques based
on the BP algorithm run over a wireless network. Contributions are:

1. Development of a mathematical framework for hybrid coopera-
tive localization, including a mapping between the network and a
factor graph (FG).

2. Derivation of a decentralized positioning algorithm, named hybrid
sum-Product algorithm over a wireless network (H-SPAWN), based
on BP on the previously defined FG model.

3. Introduction of an efficient parametric message representation to
reduce computational complexity and communication overhead.

4. Performance comparison of the proposed algorithm with two al-
gorithms based on conventional estimation methods: least squares
estimation and Kalman filtering.

5. Derivation of the Cramér-Rao bound (CRB), i.e., the lower bound
of the achievable performance of any (unbiased) hybrid localiza-
tion technique.

• Chapter 7 is focused on decentralized BP as a tool to perform dis-
tributed signal detection in heterogeneous radio environments, with
scattered sensors possibly observing different signal sources. Contri-
butions include:

1. Development of a probabilistic graphical model based on Markov
random fields (MRFs) for heterogeneous signal detection, and map-
ping of the MRF to the physical network.

2. Derivation of a decentralized signal detection algorithm, that com-
bines a peer-to-peer collaborative spectrum sensing approach (based
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on BP over the previously defined MRF) with local Neyman-Pearson
tests, allowing for a precise control of the false-alarm probability
of each node.

3. Introduction of a learning method that results in automatic clus-
tering of nodes which experience similar radio conditions (thus
achieving performance similar to cluster-wise cooperative energy
detection, without fusion centers and without prior knowledge of
clusters).

• Chapter 8 applies graphical models (FGs and the BP algorithm) to the
problem of cooperative signal detection (spectrum sensing) in the pres-
ence of misbehaving sensors. Contributions are:

1. Definition of a statistical attack model for malicious sensors in
cooperative spectrum sensing.

2. Study of the impact of the considered attack model on the perfor-
mance of cooperative spectrum sensing.

3. Development of a Bayesian approach that combines the tasks of
spectrum sensing, identification of malicious nodes, and estima-
tion of attack probabilities of such nodes.

4. Derivation of a BP algorithm that, adopted by the fusion center,
performs efficiently the above Bayesian joint estimation. Two ver-
sions of the algorithm (“joint” and “sequential”) are proposed.

5. Theoretical and numerical performance analysis of the proposed
algorithm. The key result is that, if nodes behave maliciously only
with a certain probability, they should not be excluded from the
decision process, but their data (properly weighted based on es-
timation of the attack probability) can be beneficial in terms of
detection performance.

• Chapter 9 investigates “reweighted” variants of the classic BP algo-
rithm, providing superior performance in many scenarios of practical
interest. In particular, a novel technique, called uniformly reweighted
belief propagation (URW-BP), is proposed. URW-BP lends itself well to de-
centralized implementation and is shown to outperform standard BP in
applications such as distributed detection and cooperative localization
when FGs contain cycles.

Finally, Part iv contains summarizing conclusions and remarks.





Part II

M U LT I - S E N S O R S I G N A L D E T E C T I O N A N D
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2
P R O B L E M F O R M U L AT I O N

2.1 notation

In the following, upper-case boldface letters indicate matrices, lower-case
boldface letters indicate vectors, symbols T and H indicate respectively the
transpose and conjugate transpose (Hermitian) operators, tr(·) is the trace of
a matrix, ‖ · ‖ is the Euclidean norm of a vector, diag(x) indicates a square
diagonal matrix whose main diagonal entries are taken from the vector x,
IN is the identity matrix (of size N if specified), M,N and M,N are M×N
matrices of zeros or ones, respectively; the symbol , stands for “defined
as”, the symbol ∼ for “distributed with law”, a.s.−→ indicates almost sure con-

vergence, and D−→ convergence in distribution; I{α} is the indicator function
which takes value 1 when condition α is true and 0 otherwise.

2.2 mathematical model

Consider a cooperative detection framework in which K receivers (or antennas)
collaborate to sense the spectrum, which may be occupied by P primary
signals (with K > P)1.

Denote with yk be the discrete baseband complex sample at receiver k,
and define the K× 1 received vector y = [y1 . . . yK]

T containing the received
signal samples at K sensors. The goal of the detector is to discriminate be-
tween two hypotheses:

• H0 (absence of primary signal). The received vector contains only
noise:

y|H0
= v (2.1)

• H1 (presence of primary signal). The received vector contains both
signal and noise:

y|H1
= x+ v =Hs+ v (2.2)

where:

1 As will be clarified in the following, the condition K > P is required by covariance-based
methods, because if K 6 P the sample covariance matrix lacks the necessary degrees of
freedom to distinguish signal components from noise. If the exact value of P is unknown, K
must be chosen greater than the maximum possible number of primary signals.

13
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- The K × 1 vector v = [v1 . . . vK]
T

∼ NC(K,1,σ2vIK) is a vector
of circularly symmetric complex Gaussian (CSCG) noise samples,
each with variance σ2v.

- The P× 1 vector s = [s1 . . . sP]
T contains the primary signal sam-

ples originated from P different signal sources (PUs). The primary
signals are assumed to be complex, zero-mean and mutually in-
dependent with covariance matrix

E[ssH] = diag(σ21, . . . ,σ2P) , Σ (2.3)

where σ2p is the variance of the p-th primary signal.

- The K× P complex matrix H , [h1 . . .hP] is the channel matrix,
whose columns hp =

[
hp1, . . . ,hpK

]T are the channel vectors rel-
ative to primary user p = 1, . . . ,P.

The signal-to-noise ratio (SNR) is defined (under H1) as

ρ ,
E ‖x‖2
E ‖v‖2 =

E (|x1|
2 + . . .+ |xK|

2)

E (|v1|2 + . . .+ |vK|2)
. (2.4)

By definition:

ρ =
tr Rx
Kσ2v

=
tr HΣHH

Kσ2v
=

∑P
p=1 ‖hp‖2σ2p
Kσ2v

=

P∑
p=1

ρp (2.5)

where the SNR of user p is defined as

ρp ,
‖hp‖2σ2p
Kσ2v

(2.6)

2.2.1 The Statistical Covariance Matrix and its Spectral Properties

Consider the statistical covariance matrix of the signal vector x =Hs:

Rx , E[xxH] =HΣHH. (2.7)

Let ζ1 > . . . > ζK be the eigenvalues of Rx (without loss of general-
ity, sorted in decreasing order), and ζ , [ζ1, . . . , ζK]. Since the signal co-
variance matrix Rx has rank P, ζ contains K − P zero eigenvalues: ζ =

[ζ1, . . . , ζP, 0, . . . , 0]. The remaining P non-zero eigenvalues ζi are expressed
by the following property.

Lemma 1. The P non-zero eigenvalues ζ1, . . . , ζP are the roots of the (reduced)
degree P equation:

det
(
HHH − z Σ−1

)
= 0 (2.8)

where Σ−1 = diag(σ−21 , . . . ,σ−2P ).
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Proof. The eigenvalues ζ are the roots of the characteristic equation det (Rx − zIK) =
0 which can be simplified by applying the generalized matrix determinant
lemma [12]:

det
(
HΣHH − zIK

)
=

= det(Σ) det(−zIK) det
(
Σ−1 −

1

z
HHH

)
=

=

 P∏
p=1

σ2p

 (−z)K−P det
(
HHH − z Σ−1

)
(2.9)

where the first factor is constant with respect to z and the second term gives
rise to the (K − P) trivial solutions ζP+1, . . . , ζK = 0. Since Σ is diagonal,
Σ−1 = diag(σ−21 , . . . ,σ−2P ). The non-zero signal eigenvalues ζ1, . . . , ζP thus
result from the reduced-degree characteristic equation (2.8), which has de-
gree P instead of K.

Let us now consider the statistical covariance matrix of the received vector
y:

R , E[yyH]. (2.10)

Because of (2.1) and (2.2), the covariance matrix is equal to, respectively:

R =

{
σ2vIK (H0)

Rx + σ
2
vIK (H1)

(2.11)

Let `1 > . . . > `K be the eigenvalues of R (sorted in decreasing order),
and ` , [`1, . . . , `K] the corresponding vector. It can be immediately verified
that under H0 all the eigenvalues of R are equal to the noise variance, while
under H1 the first P eigenvalues contain a signal component:

` =

{
σ2v1,K =

[
σ2v, . . . ,σ2v

]
(H0)

ζ + σ2v1,K =
[
ζ1 + σ

2
v, . . . , ζP + σ2v,σ2v, . . . ,σ2v

]
(H1)

(2.12)

The Single Signal Case (P = 1)

The single signal case is by far the most important scenario of interest in CR,
because (i) typically a SU observes one PU signal only, and (ii) if multiple sig-
nal are present at the same time, detection performance depends essentially
on the strongest one (i.e., the nearest PU).

When P = 1, a number of simplifications apply. First of all the channel
matrix H is simply a vector h1 = [h11 . . . h1K]

T and the signal vector s is a
scalar: x = h1s1.

Thus, the signal covariance matrix reduces to

Rx = σ21h1h
H
1 (2.13)
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and the unique signal eigenvalue is readily found to be

ζ1|P=1 = ‖h1‖2σ21 (2.14)

Finally, the SNR simplifies to:

ρ|P=1 =
‖h1‖2σ21
Kσ2v

. (2.15)

2.2.2 Sample Covariance Matrix

In practice, the statistical correlation matrix R is estimated through a sample
covariance matrix. Define the parameterN as the number of samples collected
by each receiver during the sensing window. It is assumed that consecutive
samples are uncorrelated and that, within the sensing window, all involved
random processes (signals and noise) remain stationary and the channels are
memoryless and constant.

Denote by s(n) the transmitted P × 1 source vector at time n and define
the P×N matrix

S , [s(1) . . . s(N)] (2.16)

Similarly, let v(n) and y(n) be, respectively, the noise and received vectors
(of size K× 1) at time n, and the corresponding K×N matrices

V , [v(1) . . .v(N)] (2.17)

Y , [y(1) . . .y(N)] =HS +V (2.18)

The K×K sample covariance matrix R(N) is thus defined as

R(N) ,
1

N
Y Y H (2.19)

Denote with λ1 > . . . > λK the eigenvalues of R(N) (without loss of general-
ity, sorted in decreasing order). Eigenvalue-based detectors use such eigenval-
ues to infer the presence of signal.

2.3 eigen-based detection

Ideally, as N → ∞, the sample covariance matrix R(N) converges to the
statistical covariance matrix R. The spectral properties of R, summarized
by (2.12), motivate the adoption of the largest sample eigenvalue (λ1) as a test
statistic to discriminate between hypotheses H0 and H1: it would be suffi-
cient to check whether λ1 is equal to the other eigenvalues. For finite N, on
the contrary, sample eigenvalues are random variables characterized by a
probabilistic behavior, which gives rise to possible detection errors.

The following tests have been proposed in the CR literature:
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T
f
(
T
|
H
0
)

P
fa

 t

Figure 2.1: False-alarm probability for a generic test statistic T .

• Roy’s largest root test (RLRT), originally developed in [120], and ap-
plied to spectrum sensing in [150]:

TRLRT ,
λ1
σ2v

. (2.20)

• Eigenvalue-ratio detector (ERD), introduced in the CR literature by [167,
17, 166]:

TERD ,
λ1
λK

. (2.21)

• Generalized likelihood ratio test (GLRT), introduced quite recently in
signal processing [7] and CR [9, 73], but previously proposed and stud-
ied in the statistics literature, e.g., [52, 126]:

TGLRT ,
λ1

tr (R(N))
. (2.22)

Remark. The term GLRT is very general and can be applied to a variety
of estimation problems. In this thesis, GLRT is referred to the specific
detector proposed in [9], and derived from the signal model introduced
in Sec. 2.2 assuming single signal (P = 1), unknown channel vector h,
and unknown noise variance σ2v. Other GLRT detectors have been later
introduced in [130] under different assumptions.

Following the terminology of [168], the RLRT is “semi-blind”, as it requires
exact knowledge of the noise variance, whereas the other tests are “blind”,
as they implicitly estimate the noise variance from the data.

Given a detector that uses a generic test statistic T and a decision threshold
t, performance can be characterized by two probabilities.

• Probability of false alarm (signal is absent but it is erroneously detected),
defined as

Pfa , Pr(T > t|H0) = 1− FT |H0
(t). (2.23)
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Figure 2.2: Detection probability for a generic test statistic T .

• Probability of detection (signal is present and correctly detected), defined
as

Pd , Pr(T > t|H1) = FT |H1
(t). (2.24)

The symbol FT |Hi
(t) in (2.23) and (2.24) denotes the cumulative distribution

function (CDF) of T under hypothesis Hi. The probability of missed detection
can be then defined as the complementary of Pd:

Pmd , 1− Pd. (2.25)

Detection and false-alarm probability are represented graphicaly in Figs. 2.1
and 2.2. In order to evaluate the performance of the considered detectors,
it is necessary to express analytically the distributions of the corresponding
test statistics TRLRT, TERD, and TGLRT, under both hypotheses H0 and H1. This
is done in the next chapter by applying asymptotic results from RMT.
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In this chapter, the performance of the eigenvalue-based detectors intro-
duced in Sec. 2.3 is analyzed using RMT tools. Preliminary mathematical
result are first presented in Sec. 3.1. Then, false-alarm and detection proba-
bilities of RLRT, ERD, and GLRT are expressed in Sec. 3.2. Finally, the impact
of noise level knowledge is studied in Sec. 3.3.

3.1 results from random matrix theory

3.1.1 Definitions

The following distribution functions will be used in the following.

3.1.1.1 Tracy-Widom Distribution

The Tracy-Widom distributions were first introduced in [136]. The second-
order Tracy-Widom CDF, FW2

(x), can be defined as

FW2
(x) = det(1−Ax)

where Ax is the operator acting on L2((x,+∞)) with Airy kernel A(u, v) =
Ai(u)Ai ′(v)−Ai ′(u)Ai(v)

u−v where Ai(u) = 1
2π

∫∞ejπ/6∞e5jπ/6 ejua+j 13a3da is the com-
plex Airy function.

The Tracy-Widom distribution also admits an alternative expression. Let
q(u) be the solution of the Painlevé II differential equation

q ′′(u) = uq(u) + 2q3(u) (3.1)

satisfying

q(u) ∼ −Ai(u), u→ +∞ (3.2)

Then

FW2
(x) = exp

(
−

∫+∞
x

(u− x)q2(u)du

)
(3.3)

19
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3.1.1.2 Airy-type Distributions

These distributions are defined in [5] as an extension of the Tracy-Widom
distribution for k > 1

FAk(x) = det(1−Ax)·

· det
(
δmn− <

1

1−Ax
s(m), t(n) >

)
16m,n6k

where <,> is the real inner product of functions in L2((x,+∞)), and

s(m)(u) =
1

2π

∫∞ejπ/6
∞e5jπ/6 ejua+j

1
3a
3 1

(ja)m
da

t(m)(u) =
1

2π

∫∞ejπ/6
∞e5jπ/6 ejua+j

1
3a
3

(ja)m−1da

For k = 0 it reduces to the W2.

3.1.1.3 Finite Gaussian Unitary Ensemble Distributions

FGk(x) = (2π)−k/2

(
k∏

m=1

m!

)−1

·

·
∫x
−∞ . . .

∫x
−∞

∏
16m<n6k

|ξm − ξn|
2 ·

k∏
m=1

e−
1
2ξ
2
mdξ1 . . . dξk

In the case k = 1, it is simply a zero-mean, unit-variance Gaussian distribu-
tion:

FG1(x) =
1

2π

∫x
−∞ e−

1
2ξ
2

dξ

3.1.2 Asymptotic eigenvalue distributions under H0

Under H0, since the columns of Y are zero-mean independent complex
Gaussian vectors, the sample covariance matrix R(N) is a complex Wishart
matrix [155].

The fluctuations of the eigenvalues of Wishart matrices have been thor-
oughly investigated by RMT (see [137] and [3] for an overview). The key idea
of RMT is that in many cases the eigenvalues of matrices with random entries
turn out to converge to some fixed distribution, when both the dimensions of
the signal matrix tend to infinity with the same order. For Wishart matrices
the limiting joint eigenvalue distribution has been known for many years
[75]; then, more recently, also the marginal distributions of single ordered
eigenvalues have been found.
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By exploiting some of these results, it is possible to express the asymp-
totical values of the largest and the smallest eigenvalue of R(N) as well as
their limiting distributions. The following theorem summarizes a number of
relevant results.

Theorem 1. Convergence of the smallest and largest eigenvalues under H0.
Let

c ,
K

N
(3.4)

and assume that for K,N→∞
c→ c ∈ (0, 1) (3.5)

Define:

µ±(c) ,
(
c1/2 ± 1

)2
(3.6)

ν±(c) ,
(
c1/2 ± 1

) (
c−1/2 ± 1

)1/3
(3.7)

Then, as N,K→∞, the following holds:

(i) Almost sure convergence of the largest eigenvalue

λ1
a.s.−→ σ2v µ+(c) (3.8)

(ii) Convergence in distribution of the largest eigenvalue

N2/3
λ1 − σ

2
v µ+(c)

σ2v ν+(c)

D−→W2 (3.9)

(iii) Almost sure convergence of the smallest eigenvalue

λK
a.s.−→ σ2v µ−(c) (3.10)

(iv) Convergence in distribution of the smallest eigenvalue

N2/3
λK − σ2v µ−(c)

σ2v ν−(c)

D−→W2 (3.11)

where W2 is the Tracy-Widom law of order 2, defined in Appendix 3.1.1.1.

Proof. The claims of this theorem follow from different results of RMT, up
to some changes of variables and using a uniform notation. Proofs of the
original theorems appear in the references listed below.
Claims (i) and (iii) descend from the work by Marchenko and Pastur [75],
later extended by Silverstein, Bai, Yin, et al. [3].
Claim (ii) was proved, under the assumption of Gaussian entries, by Johans-
son [51], Johnstone [53] and Soshnikov [129], and generalized to the non-
Gaussian case by Péché [96].
Claim (iv) derives from a very recent result by Feldheim and Sodin [34].
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3.1.3 Case H1: Reduction to Spiked Population Model

Under H1, the received signal matrix Y contains some Gaussian entries, like
in the Wishart case, along with a certain number (P) of signal components. In
order to put into evidence the spiked structure of R(N), the received signal
matrix Y (2.17) needs to be rewritten in the form

Y = TZ (3.12)

where T is a block matrix of size K× (P+K) defined as

T =
[
1
σv
HΣ1/2 IK

]
(3.13)

and Z, of size (P+K)×N, is defined as

Z =

 σvΣ−1/2S

V

 (3.14)

This decomposition has been chosen such that all the entries zij of Z (1 6
i 6 P+K, 1 6 j 6 N) have the following properties:

E zij = 0 (3.15)

E |zij|
2 = σ2v (3.16)

which are necessary conditions for Theorem 2 to hold. The covariance matrix
becomes then

R(N) =
1

N
TZZHTH (3.17)

which is exactly the model of [6], [5] and [35].
Finally, denote with t1, . . . , tK the eigenvalues of TTH. It follows from

the structure of T that P eigenvalues are different from 1 (without loss of
generality, they are assigned the first P positions: t1 > . . . > tP) and the re-
maining K− P are ones. To express the P “spike eigenvalues” (that represent
the perturbation with respect to the pure-noise model), it is observed that

TTH =
1

σ2v
HΣHH + IK (3.18)

and the eigenvalues t1, . . . , tP result from the solution of

det
(
HΣHH − σ2v(t− 1)IK

)
= 0

s.t. t 6= 1
(3.19)

The structure of the problem is identical to that of (2.8), with the change of
variable z = σ2v(t− 1). Therefore, the “spike eigenvalues” tp are linked to
the non-zero eigenvalues of the signal covariance matrix, ζp, by the relation

tp =
ζp

σ2v
+ 1, 1 6 p 6 P (3.20)
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In general, the values of ζp are calculated using (2.9); in the case of single
primary user (P = 1), the simplified expression (2.14) can be used, which
yields

t1|P=1 = ‖h‖2
σ21
σ2v

+ 1 (3.21)

3.1.3.1 Relation between spike eigenvalues and SNR

The spike eigenvalues are related with the SNR; this fact turns out to be
useful especially in the case of P = 1. From (3.20) it follows that

P∑
p=1

tp =
1

σ2v

P∑
p=1

ζp + P (3.22)

but, from the eigendecomposition of HΣHH and from (2.5) it follows that

P∑
p=1

ζp = tr HΣHH = ρKσ2v (3.23)

hence
P∑
p=1

tp = Kρ+ P (3.24)

Therefore, in the case of one primary user (P = 1), the (unique) spike eigenvalue
may be expressed directly as a function of the SNR:

t1|P=1 = Kρ+ 1 (3.25)

Note that, by exploiting the property (3.23), one could also obtain (2.14) with-
out resorting to the characteristic equation.

In the case of multiple primary signals (P > 1), the sum of the spike eigen-
values is related to the SNR, but not the single eigenvalues. Therefore, to
compute the tp (in particular t1, which is needed to apply Theorem 2), it is
necessary to know the channel matrix and the power of primary signals and
use (2.8).

3.1.4 Asymptotic eigenvalue distributions under H1

The following theorem provides a useful result on the convergence of the
largest eigenvalue in spiked population models.

Theorem 2. Convergence of the largest eigenvalue under H1. Again, assume
that for K,N→∞

c =
K

N
→ c ∈ (0, 1) (3.26)

In addition, assume that for all i, j s.t. 1 6 i 6 P+K, 1 6 j 6 N:
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(A1) E zij = 0

(A2) E (< zij)
2 = E (= zij)

2 = σ2v
2

(A3) ∀k > 0, E |zij|
2k <∞ and E (< zij)

2k+1 = E (= zij)
2k+1 = 0

(A4) E (< zij)
4 = E (= zij)

4 = 3
4σ
4
v

Define:

µs(t1, c) , t1
(
1+ c

t1−1

)
(3.27)

νs(t1, c) , t1
√
1− c

(t1−1)2
(3.28)

Then, as N,K→∞, the following holds:

(i) Almost sure convergence of the largest eigenvalue: phase transition phenomenon
If t1 > 1+ c1/2:

λ1
a.s.−→ σ2vµs(t1, c) (3.29)

If t1 6 1+ c1/2:

λ1
a.s.−→ σ2v µ+(c) (3.30)

(ii) Convergence in distribution of the largest eigenvalue
Let m (with 1 6 m 6 P) be the multiplicity of the first spike eigenvalue t1.
If t1 = . . . = tm > 1+ c1/2:

N1/2
λ1 − σ

2
v µs(t1, c)

σ2v νs(t1, c)
D−→ Gm (3.31)

If t1 = . . . = tm = 1+ c1/2:

N2/3
λ1 − σ

2
v µ+(c)

σ2v ν+(c)

D−→ Am (3.32)

If t1 < 1+ c1/2:

N2/3
λ1 − σ

2
v µ+(c)

σ2v ν+(c)

D−→W2 (3.33)

where Am and Gm are distribution laws defined in Appendix 3.1.1.2 and
3.1.1.3, respectively.

Proof. The proof of claim (i) is due to Baik and Silverstein [6]; claim (ii) was
found by Baik, Ben Arous and Péché [5] under the additional assumption of
zij Gaussian with unit variance, and was generalized into this form by Féral,
Péché [35] using results from Bai and Yao [4].
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3.1.4.1 Remarks

validity of the assumptions All the assumptions (A1)-(A4) are ver-
ified exactly for the noise part of Z, whose entries are complex Gaussian
random variables. For the signal part, the first two assumptions are guar-
anteed by construction of Z: (A1) is given by (3.15) and (A2) is equivalent
to (3.16) (provided that the variance of s is equally distributed between real
and imaginary part, which is true for all types of complex signals used in
communications). Assumption (A3) is also verified in practical cases.

Assumption (A4) is satisfied exactly by Gaussian signals, while there exist
several types of signals (e.g. PSK, QAM) whose fourth moment is lower than
that of a Gaussian random variable. However, since the type of primary sig-
nal is usually unknown at the secondary users, the Gaussian assumption is
reasonable in general. In addition, since P < K, most of matrix Z is repre-
sented by the noise part which does always satisfy (A4): therefore the theo-
rem can be applied in almost all practical cases, even when this assumption
does not hold exactly. The approximation introduced in this way is small
and becomes negligible when the SNR of the primary signal is low, as shown
by numerical simulations.

phase transition phenomenon The first important result implied
by the theorem is the existence of a critical value of t1 that determines whether
a signal component is identifiable or not. This behavior is called phase tran-
sition phenomenon. In fact, when t1 6 1+ c1/2, the largest eigenvalue of the
covariance matrix converges to the same value as in the pure-noise model,
whereas for t1 > 1+ c1/2, it converges to a larger value: µs(t1, c) > µ+(c).
This property makes it possible to detect the presence of signals.

In case of P = 1, the critical value can be expressed directly in terms of the
SNR using (3.25):

ρ >
1√
KN

(3.34)

This relation also allows to determine the minimum number of samples for the
detector to be able to identify signals with a given SNR.

limiting distributions The second claim of the theorem clarifies how
the largest eigenvalue converges to the asymptotical limit. For non-identifiable
components, the limiting distribution is the same as in the case of no signal.
For components with eigenvalues placed exactly on the critical point, the
limiting distribution is a generalization of the one encountered in the previ-
ous case: in fact, for m = 0, A0 reduces to the Tracy-Widom law (Sec.3.1.1.2).
Components above the critical value result in distributions Gm, which for
m = 1 reduce to normal distributions. Note that both the events of eigen-
values exactly equal to the critical point and of eigenvalues with multiplicity
larger than one are asymptotically events with zero probability. The results con-
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cerning these cases are mentioned for completeness, but are not important
for practical applications.

The following theorem gives insight into the asymptotic distribution of
smallest eigenvalue.

Theorem 3. Distribution of the K−P smallest eigenvalues under H1. Assume
that for K,N→∞

c =
K

N
→ c ∈ (0, 1) (3.35)

and that tp > 1 + c1/2 for 1 6 p 6 P, the eigenvalues λP+1, . . . , λK of R(N)

have asymptotically the same limiting distribution as those of a (K− P)× (K− P)

Wishart matrix.

Proof. The result follows from the proof of Lemma 2 in [60].

3.2 false-alarm and detection probability analysis

3.2.1 RLRT

3.2.1.1 False-alarm Probability and Decision Threshold

The RMT results given in Sec. 3.1 make it possible to express directly the
performance of the RLRT detector, in the asymptotic regime K,N → ∞. Sim-
ulation results show that asymptotic expressions can be used as accurate
approximations even for realistic numbers of samples N and sensors K.

From Theorem 1, the false-alarm probability of RLRT is given by

Pfa(RLRT) = Pr (TRLRT > tR|H0) ≈ 1− FW2
(
tR − µ+
ξ+

)
, (3.36)

where tR is the decision threshold, FW2(·) is the CDF of the second order
Tracy-Widom distribution W2, µ+ is given by (3.6), and

ξ+ , N−2/3ν+ (3.37)

with ν+ given by (3.7).
In practice, the decision threshold tR can be selected as a function of a

required false-alarm rate Pfa = α, by inverting (3.36):

tR(α) = µ+ + ξ+F
−1
W2(1−α). (3.38)

The values of F−1W2(·) can be computed numerically (see for example [26])
and stored in a look-up table.
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3.2.1.2 Detection Probability

Similarly, the RLRT detection probability is given asymptotically by Theorem
2. Assuming identifiable signals (ρ > 1√

KN
) and distinct eigenvalues (event

with probability one for any number of signals P), the limiting distribution
of λ1 is a normal distribution, hence

Pd(RLRT) = Pr (TRLRT > tR|H1) ≈ Q
(√

N
tR − µs
νs

)
. (3.39)

where µs, νs are given by (3.27), (3.28), and where Q(z) , 1√
2π

∫∞
z e

−x2/2dx

is the tail probability of a standard Gaussian distribution N(0, 1).
In case of a single signal with SNR ρ, the above result can be written as

Pd(RLRT)|P=1 ≈ Q
[
√
N
tR−(1+Kρ)(1+ 1

Nρ)
(1+Kρ)

√
1− 1

NKρ2

]
(3.40)

≈ Q
[√
N
(

tR
1+Kρ − 1

)]
. (3.41)

3.2.2 ERD

3.2.2.1 False-alarm Probability and Decision Threshold

The results of Theorem 1 allow, through some algebraic manipulations, to
determine the limiting distribution of the test statistic TERD under H0.

In order to apply claims (ii) and (iv), define:

L1 , N
2/3 λ1 − σ

2
v µ+(c)

σ2v ν+(c)
(3.42)

LK , N2/3
λK − σ2v µ−(c)

σ2v ν−(c)
(3.43)

Both L1 and LK converge in distribution to the Tracy-Widom law W2:

fL1(z), fLK(z)→ fW2
(z) (3.44)

where fW2
(·) represents the probability distribution function (PDF) associ-

ated with the law W2.
Then, TERD can be written as

TERD =
λ1
λK

=
N−2/3ν+(c)L1 + µ+(c)

N−2/3ν−(c)LK + µ−(c)
(3.45)

Notice that the term σ2v is canceled out in the ratio (this is the reason that
makes the ERD “blind” with respect to the noise power). Denote by l1 and
lK , respectively, the numerator and the denominator of (3.45), and by fl1(z)
and flK(z) their limiting PDFs for N,K→∞. These distributions are the same
as those of L1 and LK, up to a linear random variable transformation:

fl1(z) =
N2/3

ν+(c)
fW2

(
N2/3

ν+(c)
(z− µ+(c))

)
(3.46)
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For the denominator, it must be observed that ν−(c) < 0 for the considered
range c ∈ (0, 1). Thus

flK(z) =
N2/3

|ν−(c)|
fW2

(
N2/3

|ν−(c)|
(µ−(c) − z)

)
= −

N2/3

ν−(c)
fW2

(
N2/3

ν−(c)
(z− µ−(c))

)
(3.47)

To express the distribution of TERD, observe that fl1(l1) and flK(lK) are
asymptotically independent in virtue of a classic result by Lawley [64] stat-
ing that the pairwise correlations of sample eigenvalues decreases at a rate
O(1/N). Thus,

fl1,lK(l1, lK) ≈ fl1(l1)flK(lK) (3.48)

Then, using the formula for the quotient of random variables [24], the result-
ing ratio distribution writes:

fTERD|H0
(t) =

[∫+∞
−∞ |x|fl1,lK(tx, x)dx

]
· I{t>1}

=

[∫+∞
0

xfl1(tx)flK(x)dx

]
· I{t>1} (3.49)

where the lower integration limit has been changed to 0 instead of −∞, since
the covariance matrix is positive-semidefinite therefore all the eigenvalues
are non-negative; the condition t > 1 is necessary to preserve the order of
the eigenvalues, since the distributions are defined under the assumption
l1 > lK.

Finally, let FTERD|H0
(t) be the CDF corresponding to (3.49). For N and K

large enough, the following approximation holds:

Pfa(ERD) = Pr(TERD > tE|H0) ≈ FTERD|H0
(tE). (3.50)

The above expression can be inverted numerically to find the decision thresh-
old tE as a function of a false-alarm rate Pfa = α. Similar as in the case of
RLRT, the values of tE of interest can be computed offline and stored in a
look-up table.

Note that the distribution of TERD for finite N and K can also be expressed
exactly, by adopting a different approach [111]. The drawback of the exact
approach is its complexity, which makes implementation difficult when K
and N are large.

3.2.2.2 Detection Probability

The detection probability of the ERD can be expressed by combining the
results of Theorem 2 and of Theorem 3.



3.2 False-Alarm and Detection Probability Analysis 29

A similar approach as in the case of H0 is adopted. Define again

L1 , N
1/2 λ1 − σ

2
v µs(t1, c)

σ2v νs(t1, c)
. (3.51)

By Theorem 2, assuming identifiable signals and distinct eigenvalues, vari-
able L1 has a limiting Guassian distribution:

fL1(z)→ N(0, 1). (3.52)

By Theorem 3, the distribution of the smallest eigenvalue is not affected
by the presence of “spikes” and claims (iii) and (iv) of Theorem 1 can be
applied also in this case with the only difference that, instead of c (3.4), now

c ′ =
K− P

N
(3.53)

Thus,

LK , N2/3
λK − σ2v µ−(c

′)

σ2v ν−(c
′)

(3.54)

still converges in distribution to the Tracy-Widom law

fLK(z)→ fW2
(z). (3.55)

Then the test statistic TERD becomes

TERD =
λ1
λK

=
N−1/2νs(t1, c)L1 + µs(t1, c)
N−2/3ν−(c ′)LK + µ−(c ′)

(3.56)

Denote with l1 and lK, respectively, the numerator and the denominator of
TERD and with fl1(z) and flK(z) their limiting PDFs for N,K→∞. Through a
random variable transformation, these distributions may be expressed as

fl1(z) =
(N/2π)1/2

νs(t1, c)
exp

[
−

N

2ν2s(t1, c)
(z− µs(t1, c))2

]
(3.57)

flK(z) =
N2/3

|ν−(c ′)|
fW2

(
N2/3

|ν−(c ′)|
(µ−(c

′) − z)

)
(3.58)

Since fl1(l1) and flK(lK) are asymptotically independent, the resulting limit-
ing ratio distributions is

fT |H1
(t) =

[∫+∞
−∞ |x|fl1,lK(tx, x)dx

]
· I{t>1}

=

[∫+∞
0

xfl1(tx)flK(x)dx

]
· I{t>1} (3.59)

where, like in the previous case, the domain of integration has been restricted
to non-negative values, and the condition t > 1 is necessary to ensure that
l1 > lK.

Finally, denoting with FT |H1
(t) the CDF corresponding to the PDF in (3.59),

the following approximation holds for K,N large enough:

Pd(ERD) = Pr(TERD > tE|H1) ≈ FTERD|H1
(tE), (3.60)

where tE is the ERD decision threshold.
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3.2.3 GLRT

3.2.3.1 False-alarm Probability and Decision Threshold

Asymptotically, as both N,K → ∞, the random variable TGLRT follows a
second-order Tracy-Widom distribution like TRLRT [10], hence in first approx-
imation the GLRT decision threshold tG(α) can be computed like tR(α) (3.38).
However, as described in [87], this approximation is not very accurate for tail
probabilities of TGLRT for small values of K. In [87] the following improved
expression was derived:

Pr
[
TGLRT − µ+

ξ+
< s

]
≈ FW2(s) −

1

2NK

(
µ+

ξ+

)2
F ′′W2(s),

where µ+ is given in (3.6) and ξ+ in (3.37). Hence,

Pfa = α = Pr(TGLRT > tG) = Pr
(
TGLRT − µ+

ξ+
>
tG − µ+
ξ+

)
≈ 1− FW2

(
tG − µ+
ξ+

)
+

1

2NK

(
µ+

ξ+

)2
F ′′W2

(
tG − µ+
ξ+

)
.

The above equation can be numerically inverted to find the required thresh-
old tG(α).

3.2.3.2 Detection Probability

To derive an explicit approximate expression for the detection performance
of the GLRT under H1, it is first observed that

1

K

K∑
j=1

λj =
1

K

λ1 + K−1∑
j=2

λj

 . (3.61)

Then, the GLRT can be rewritten as

λ1 > t̃(α)

∑K
j=2 λj

K− 1
(3.62)

with

t̃(α) =
K− 1

K− tGLRT(α)
tGLRT(α). (3.63)

Assuming the presence of a sufficiently strong signal (asymptotically, ρ >
1√
KN

), the largest sample eigenvalue is (with high probability) due to a sig-
nal whereas the remaining eigenvalues, λ2, . . . , λK, are due to noise. Let

Z ,
1

K− 1

K∑
j=2

λj (3.64)
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denote their mean. As discussed in [60] (Eq.12), asymptotically in N, the
random variable Z is Gaussian distributed with variance O

(
1

N(K−1)

)
, and

with a mean value that is slightly biased downwards:

E

[
Z

σ2v

]
= 1−

1

N

Kρ+ 1

Kρ
+O

(
1

N2

)
. (3.65)

Then recall that, by Theorem 2, λ1/σ2v is asymptotically Gaussian distributed.
For a large number of sensors (K � 1), the fluctuations of Z are relatively
much smaller than those of λ1, hence (3.62) can be approximated as

(1+Kρ)

(
1+

K− 1

NKρ

)
+
1+Kρ√
N

η1 > t̃(α) ·E
[
Z

σ2v

]
, (3.66)

where η1 ∼ N(0, 1) is a standard Gaussian random variable. Therefore,

Pd(GLRT)≈Q
[√
N

(
t̃(α)

(
1

Kρ+ 1
−

1

NKρ

)
−
K− 1

NKρ
−1

)]
. (3.67)

Note that the above analysis assumes the presence of a single signal, as the
GLRT (2.22) is specifically designed for this scenario.

3.3 single signal detection : impact of noise level knowledge

This section is focused on the case of single-signal detection and compares
the performance of different eigen-based tests under this condition. A deriva-
tion is presented based on a Neyman-Pearson test formulation, considering
the cases of known and unknown noise variance (σ2v) and then the impact of
a priori noise level knowledge is discussed.

3.3.1 Neyman-Pearson Test Formulation

3.3.1.1 Known Noise Variance

If P = 1 and σ2v is known, both hypotheses H0 and H1 are simple. When
testing a simple hypothesis against a simple alternative, in general, the most
powerful test is given by the Neyman-Pearson likelihood ratio [89]. In the
considered scenario, with unknown channel vector h, the eigenvalues of the
sample covariance matrix R are sufficient statistics for the NP test (see [84]–
p.11, and [61]–Sec.III-A), which can be written as

LRT =
p(λ1, · · · , λK|H1)
p(λ1, · · · , λK|H0)

. (3.68)

In the asymptotical regime N → ∞, with given signal strength ρ and noise
variance σ2v, the above criterion can be shown [84, 61] to depend only on the
largest eigenvalue (λ1), i.e., it reduces to Roy’s largest root test [120] TRLRT

(2.20).
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Notice that energy detection (ED), another commonly used criterion for
known noise level, is suboptimal to RLRT in the sense of the Neyman-Pearson
lemma. It can be written as

TED ,
1

KNσ2v

K∑
k=1

N∑
n=1

|yk(n)|
2 =

‖Y ‖2F
KNσ2v

where ‖ · ‖F denotes the Frobenius norm. Since ‖Y ‖2F = tr(Y Y H), it follows
that TED = 1

Kσ2v

∑K
i=1 λi. Therefore, asymptotically in N, ED has reduced

statistical power compared to RLRT as it tests against the noise level the sum
of all eigenvalues, instead of just λ1.

3.3.1.2 Unknown Noise Variance

When σ2v is unknown, H0 and H1 are composite hypothesis and the Neyman-
Pearson lemma does not apply. A common procedure is the GLRT, obtained
from

GLRT =
suph,σ2v

p(Y |H1)

supσ2vp(Y |H0)
. (3.69)

The GLRT procedure, that in the considered model leads to TGLRT (see [10],
Sec. II), can be considered optimal in a combined Neyman-Pearson/Bayesian
sense [83].) Note that, since

1

TGLRT
=

∑K
i=1 λi
λ1

= 1+

∑K
i=2 λi
λ1

,

the GLRT is equivalent (up to a nonlinear monotonic transformation) to

TGLRT ′ =
λ1

1
K−1

∑K
i=2 λi

. (3.70)

The denominator of TGLRT ′ is the maximum likelihood (ML) estimate of the
noise variance assuming the presence of a signal [149], hence the GLRT can
be interpreted as a largest root test with an estimated σ̂2v instead of the true
(unknown) σ2v. Clearly, the GLRT is equivalent to the ERD if K = 2. On the
contrary, the ERD is more general than the GLRT as it is applicable for any
value of P < K.

3.3.2 Impact of Noise Level

3.3.2.1 Performance Gap between RLRT and GLRT

Next, the expressions for the detection performance of RLRT and GLRT are
compared in presence of a single signal. The following result quantifies the
performance gap in terms of SNR required by the two methods to achieve
the same detection probability at a fixed false alarm rate.
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Proposition 1. Let ρR(α,β) and ρG(α,β) be the signal-to-noise ratios re-
quired by RLRT and GLRT to achieve the same detection probability Pd = β at
the same false alarm rate α. Then, for sufficiently large K and N,

ρG(α,β)
ρR(α,β)

≈ t̃G(α)
tR(α)

+
1

KρR

t̃G(α) − tR(α)

tR(α)
. (3.71)

Proof. The result follows by setting (3.39)=(3.67), and neglecting O(1/N)

terms.

3.3.2.2 Hybrid RLRT

Given the potentially large performance gap due to not knowing the noise
level, a natural question is whether this gap can somehow be overcome. In
this section a novel hybrid approach is proposed, whereby the noise is esti-
mated using auxiliary noise-only samples. To this end, assume that the noise
variance is constant over adjacent time slots. This is a reasonable assumption
in several CR scenarios, in case of thermal noise and constant or slowly-
varying temperature. In this case, instead of estimating the noise within
the sensing slot, an independent noise estimation is performed in auxiliary
“noise-only" H0 slots where the primary signal is known to be absent1. In
each such slot the noise variance can be estimated by using all the sample
eigenvalues or, equivalently2, by measuring the average sample energy:

σ̂2v =
1

K

K∑
i=1

λi =
1

KN

K∑
k=1

N∑
n=1

|yk(n)|
2 . (3.72)

Under the assumption that noise variance is (locally) constant, the estimation
can be averaged over S successive noise-only slots:

σ̂2v(S) =
1

KNS

S∑
i=1

K∑
k=1

N∑
n=1

|yk(n, i)|2 , (3.73)

where the notation yk(n, i) stands for n-th sample in i-th time slot. The esti-
mate σ̂2v(S) can then be used to replace σ2v in the RLRT statistic. The resulting
method is denoted Hybrid-RLRT (HRLRT). Its test statistic is

TH ,
λ1
σ̂2v(S)

. (3.74)

As shown next, the performance of the HRLRT is superior to that of the GLRT

and nearly achieves that of RLRT after a small number of auxiliary slots (e.g.,
S = 1 or 2).

1 In absence of prior knowledge, H0 slots can be identified by a GLRT with a suitably low false
alarm rate.

2 By definition of Frobenius norm: ‖Y ‖2F = tr(Y Y H).
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Next, analytical results are provided to characterize the performance of the
proposed detector. Define for the HRLRT asymptotic false-alarm probability,

Pfa(HRLRT) , lim
K,N→∞,K/N=c

Pr (TH > tH|H0) (3.75)

and detection probability

Pd(HRLRT) , lim
K,N→∞,K/N=c

Pr (TH > tH|H1) . (3.76)

These quantities can be expressed as follows.

Proposition 2. Let D , 2KNS. in the joint limit K,N → ∞ with K/N → c ∈
(0,∞), the asymptotical HRLRT false alarm and detection probabilities are
given by

Pfa(HRLRT) = 1− F0(tH), Pd(HRLRT) = 1− F1(tH), (3.77)

where

F0(t) ,
√
D
4π

∫∞
−∞ FW2

(
tx−µ+

ξ+

)
e−D(x−1)2/4dx, (3.78)

and where F1(t) is the distribution corresponding to the density:

f1(z) ,
b(z) · c(z)
a3(z)

√
D

2
√
πσ1

erf
(
b(z)/a(z)√

2

)
+

√
D/2

a2(z) · πσ1
e
− 1
2

(
µ2s
σ2
1

+D
2

)
(3.79)

with

a(z) =

√
1

σ21
z2 +

D

2
, b(z) =

µs

σ21
z+

D

2
, c(z) = e

1
2
b2(z)

a2(z)
− 1
2

(
µ2s
σ2
1

+D
2

)
(3.80)

with µ+ and ξ+ given by (3.6), (3.37), µs given by (3.27), and σ1 , N−1/2νs
(3.28).

Proof. The variable XD , σ̂v
2(S)/σ2v is the sum of the squares of D = 2KNS

real-valued Gaussian random variables, hence it has a chi-square distribu-
tion with D degrees of freedom. Next, under H0, λ1/σ2v is asymptotically
distributed according to the second-order Tracy-Widom law with centering
and scaling parameters µ+ and N−2/3ν+ = ξ+. Therefore, under the null
hypothesis H0,

Pr[TH < tH] = Pr
[
λ1/σ

2
v

XD
< t

]
=

∫
FW2

(
tXD − µ+

ξ+

)
p(XD = x)dx

where p(XD) is the density of the random variable XD. For large D, XD
converges to a Gaussian variable: σ̂

2
v(S)
σ2v

D−→ N(1, 2D), which yields Pfa in
(3.77).

Under H1, λ1/σ2v is asymptotically distributed as a normal variable N(µs,σ21)
with parameters µs (3.27) and N−1/2νs = σ1 (3.28). The PDF of the ratio be-
tween two normal random variables can be expressed in closed-form [45]
and is given by (3.79). Then, Pd(HRLRT) = 1− F1(tH).

The above expression of Pfa(HRLRT) can be inverted numerically to find
the decision threshold tH(α).
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Figure 3.1: Eigenvalue ratio CDF obtained using the novel ratio-distribution ap-
proach vs. empirical CDF, asymptotical approach [17], and semi-
asymptotic approach [167]. N = 1000, K = 50.

3.4 simulation results

3.4.1 ERD Performance

Fig. 3.1 represents the eigenvalue ratio CDF resulting from the novel analyti-
cal approach (Sec. 3.2.2.1) compared to the empirical distribution, computed
by Monte-Carlo simulation, and to the distributions obtained using previ-
ously proposed approaches: the asymptotical approach of [17], and the semi-
asymptotic approach of [167]. The number of samples is set to N = 1000 and
the number of cooperating receivers to K = 50. The analytical CDF, based
on the limiting eigenvalue ratio distribution, matches with the empirical
data, whereas the asymptotic one (which is simply a step function) and the
semi-asymptotic one are very unbalanced because the considered parame-
ters (N = 1000 samples and K = 50 receivers), although large, are still far
from the asymptotical region. From the detector’s point of view, this means
that neither the asymptotic nor the semi-asymptotic approach allow to set
the decision threshold correctly according to the target Pfa.

Fig. 3.2 provides a performance comparison of the considered eigenvalue-
based detectors, plus the traditional energy detector using a cooperative
equal gain combining scheme [71]. This type of plot, commonly used for
signal detection and called Complementary-ROC, represents the achievable
probability of missed detection Pmd = P(T < γ|H1) vs. the target Pfa. The
simulation parameters are again N = 1000 and K = 50; the SNR under H1
is ρ = −21 dB. Such low values of SNR are typically used to evaluate de-
tectors in critical conditions (e.g., in the case of “hidden node”). For energy
detection, a noise uncertainty of 0.25 dB is assumed, whereas ERD is insen-
sitive to noise power uncertainty. The ROC plot shows that the novel ratio-
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Figure 3.2: Complementary ROC: novel ratio-distribution approach vs. asymptotical
approach, semi-asymptotic approach, and energy detection (with noise
uncertainty). N = 1000, K = 50, SNR= −21dB.

distribution threshold provides lower probabilities of missed detection than
the other approaches for any given probability of false alarm. Since the new
algorithm uses a nearly-exact distribution, it allows to choose the lowest pos-
sible threshold for a given target Pfa, i.e., to obtain the minimum value of
Pmd.

For instance, given a target Pfa of 10−1, the novel approach provides a
Pmd of 1.0 · 10−2, while the semi-asymptotic approach would give 6.5 · 10−2.
The asymptotical approach, as previously mentioned, does not allow any
control of Pmd vs. Pfa since the threshold is fixed. The pair of (Pfa,Pmd)
it achieves is represented by a dot in the figure, at (4 · 10−3, 1.15 · 10−1);
this value of Pmd = 1.15 · 10−1 is a lower bound that cannot be improved
regardless of the target Pfa, as highlighted by the straight dashed line.

Figures 3.3 and 3.4 show the convergence of the empirical CDFs to the
analytical CDFs of the ERD test statistic under H0 and H1. Four different
couples of {N,K} have been considered while keeping their ratio c fixed at
0.1. Remarkably, even though the CDFs are asymptotic, they still provide an
accurate approximation of the empirical distributions even for low K and N.

In the case H0, as N and K increase the CDF tends to a step function,
because the largest and the smallest eigenvalues converge (almost surely)
to the values µ+(c) and µ−(c), respectively; the variance, on the contrary,
depends also on N (it gets smaller for larger N).

For the case H1, a scenario with P = 1 is considered. To make the compar-
ison more evident, t1 is fixed instead of the SNR (ρ and t1 are linked by a
factor K, so they can not remain both constant with different K). In particular
the value t1 = 2 is chosen (larger than the critical value 1+

√
c = 1.3162 for

all the considered couples of {N,K}). Similarly as in the previous case, the



3.4 Simulation Results 37

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Probability of false alarm vs. decision threshold: convergence

γ

P
fa

 =
 1

 −
 F

T
|H

0(γ
)

 

 
N=40, K=4, empirical
N=40, K=4, analytical
N=80, K=8, empirical
N=80, K=8, analytical
N=200, K=20, empirical
N=200, K=20, analytical
N=500, K=50, empirical
N=500, K=50, analytical

Figure 3.3: False-alarm probability: convergence, for a fixed c = K/N = 0.1.

CDFs turn out to converge to a step function corresponding to the almost
sure asymptotical limits of the eigenvalues.

3.4.2 RLRT and GLRT Detection Probability

In Fig. 3.5 the accuracy of the analytical expressions of RLRT (3.39) and GLRT

(3.67) detection probability are evaluated for realistic number of sensors K
and samples N. The first panel refers to the case of (K,N) = (6, 80) and
the second panel to (K,N) = (10, 200). In both cases, the false alarm rate is
α = 0.5%. The analytical expressions of the detection probability based on
RMT provide an excellent match with simulation results.

3.4.3 SNR Gap Between RLRT and GLRT

Fig. 3.6 illustrates the SNR gap in dB between the GLRT and RLRT. The analyti-
cal expression (3.71) is compared to simulation results and proves to be very
accurate also for finite, realistic values of K and N. In accordance to the the-
oretical formula (3.71), the performance gap increases for (i) small number
of sensors and (ii) low signal strength. This highlights the impact of noise
variance estimation for eigenvalue-based sensing. As shown in the figure,
for typical settings with a small number of sensors, the gap may be signifi-
cant, up to 6 dB for the values considered in the figure (K = 3, ρRLRT = −15

dB). As the number of sensors increases, the noise estimate is more accurate
and the performance gap between GLRT and RLRT becomes negligible. In the
limit K → ∞, they achieve the same detection performance, (as expected
from theory, [10]). Nonetheless, even for K = 10 with ρR = −10 dB the gap
is still of the order of 1 dB.
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Figure 3.4: Missed-detection probability: convergence, for a fixed c = K/N = 0.1.
P = 1, t1 = 2.

3.4.4 HRLRT Performance

HRLRT simulation results are presented in Fig. 3.7. The first panel shows the
accuracy of the expressions of HRLRT false-alarm and detection probability
given by Proposition 3, again for realistic values of K and N. The second
panel shows the performance of the HRLRT when the noise variance is in-
dependently estimated over an increasing number S of auxiliary noise-only
slots. Note that the HRLRT substantially improves the performance of GLRT

already for S = 1 or S = 2. At S = 5 the performance of HRLRT is nearly the
same as that of RLRT.
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Figure 3.5: Comparison of simulated and analytical detection performance curves
of RLRT and GLRT methods for different values of K,N.
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4
C A S E S T U D Y: S P E C T R U M S E N S I N G I N L O W- P O W E R
N E T W O R K S

4.1 introduction

Networks of low-power short-range wireless devices, such as wireless sen-
sor networks (WSNs) are used in a variety of applications, including envi-
ronmental and industrial monitoring, surveillance, traffic control, healthcare,
domotics, and military applications. In the future, it is envisaged that such
devices will be communicating through the Internet protocol (IP), in par-
ticular IPv6, participating in a wide-scale network of interconnected objects,
called the Internet of things (IoT) [139]. The increasing number and dense
deployment of low-power wireless devices involves potential coexistence is-
sues. Specifically, WSN devices are subject to interference for the following
reasons.

• Most of current WSNs, e.g., based on IEEE 802.15.4 and Zigbee, do not
implement advanced frequency selection features. Therefore, if interfer-
ence occurs on the operating channel, communication can be seriously
degraded.

• WSNs communicate in unlicensed bands, typically the 2.4 GHz ISM

band, which is shared by other technologies, including IEEE 802.11

Wi-Fi and Bluetooth.

• WSN devices use relatively low transmit power, hence they are poten-
tially vulnerable to several sources of interference. Wi-Fi, due to its
high transmission power, represents today the main source of interfer-
ence for WSNs.

For the above reasons, fixed frequency assignment does not provide reli-
able network operation. A possible solution is offered by adopting dynamic
spectrum allocation (DSA) mechanisms, or frequency agility (FA), thus extend-
ing the CR paradigm [81] to low-power networks.

In this chapter, several aspects related to the implementation of frequency
agility (FA) features in WSNs are presented and analyzed. The resulting FA-WSNs

are spectrum-aware, i.e., they constantly monitor the occupancy state of all
possible channels, and reallocate themselves to the best available channel in
real-time when interference is detected on the current operating channel.

The chapter is organized as follows. Sec. 4.2 introduces a mathematical
system model. Sec 4.3 illustrates spectrum sensing and channel selection
strategies, and investigates the tradeoff between sensing time and achieved

43
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throughput by numerical results. Sec. 4.4 describes a real FA-WSN prototype
and presents experimental results to evaluate its performance. Sec. 4.5 gives
mathematical results about the detection of discontinuous signals (of interest
for FA-WSN).

4.2 system model

The key capabilities of a FA-WSN are: (i) spectrum sensing, i.e., monitoring the
occupancy state of the spectrum of interest, including the current operating
channel as well as other potential channels; (ii) selection of a new channel
whenever the current one is undergoing excessive interference; and (iii) au-
tomatic reallocation of the network to the new selected channel. Next, a net-
work operation model and a simple mathematical model for the interfering
signal are introduced.

4.2.1 Network Operation Model

The spectrum sensing and channel selection framework can be formalized as
follows. The available spectrum consists of a set ofNc channels, denoted as C.
In IEEE 802.15.4, the ISM band contains Nc = 16 channels: C = {c11, . . . , c26}.
Ideally, the operation of the proposed FA-WSN can be divided into three
phases:

1. Spectrum sensing phase, of duration Ts, where the network (more specif-
ically, a subset of designated spectrum sensing nodes) scans the spec-
trum in order to estimate the occupation state of each channel. The
test statistic for spectrum sensing consists of Ns samples per channel,
taken with a sampling period of ts (depending on hardware), such that

Ts = NsNcts. (4.1)

2. Processing phase, of duration ∆, where the spectrum sensing informa-
tion is processed, a “best channel” c∗ is selected and, if harmful inter-
ference is detected on the current channel, a channel switch procedure
towards c∗ is initiated.

3. Communication phase, of duration Tc, where nodes communicate on the
current operational channel.

Let Tf be the system time frame duration. According to the above model,
Tf = Ts +∆+ Tc.

Note: The duration of the processing phase ∆ can be considered negligible
if no channel switch is performed, whereas it is significantly longer in case
of a channel switch procedure. In the considered system, it is assumed that
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normal network operation is suspended until the network has completed re-
allocation on the new channel c∗. Clearly, frequency reallocation introduces a
delay but allows for increased throughput in the subsequent communication
phase. This tradeoff will be investigated by simulations and experimental re-
sults.

4.2.2 Interfering Signal Model

Denote by yc(n) a generic sample of the interfering signal (e.g., Wi-Fi) re-
ceived at time n on channel c. Denoting as xc(n) the interfering signal, de-
fine two alternative hypothesis H0 and H1 such that

yc(n) =

{
xc(n) + v(n) under H1

v(n) under H0
(4.2)

where v(n) ∼ NC(0,σ2v) is circularly symmetric complex Gaussian (CSCG)
noise. Let

Px(c) , E|xc(n)|
2 (4.3)

and

Py(c) , E|yc(n)|
2, (4.4)

which is equal to Px(c) + σ2v under H1 and to σ2v under H0.
Denote as p(c) the probability of occurrence of H1 for channel c; the prob-

ability of H0 is then 1− p(c). Note that received samples are considered as
independent from each other (no correlation between consecutive samples
is taken into account), because the sampling time of WSN devices is limited
by hardware constraints, and is typically larger than the burst duration of
interfering (e.g., Wi-Fi) signals. The WSN transmit power is denoted as PWSN.
It is assumed that

σ2v < PWSN 6 Px(c). (4.5)

Typical values are: σ2v ≈ −95dBm, PWSN ≈ −75dBm; Px(c) ∈ [−75,−55]dBm
(for Wi-Fi). Real measurement results are reported in [97].

4.3 interference detection and dynamic channel selection

In this section the key features of FA-WSN, i.e., spectrum sensing and chan-
nel selection, are analyzed in details, and the tradeoff between duration of
the sensing phase and overall throughput achieved by the network is inves-
tigated.



46 4 case study : spectrum sensing in low-power networks

4.3.1 Spectrum Sensing

Several methods of spectrum sensing were proposed in the CR literature,
including matched filter detection [20], energy detection [138], cyclostation-
ary feature detection [30], eigenvalue-based detection [166]. Considering the
limitations of radio chip capabilities of typical WSN platforms, ED is the most
suitable spectrum sensing method for WSNs. For example, the considered
prototype – based on TelosB nodes [77], a very popular platform for WSNs
– includes a spectrum sensing application (see [113]), developed in TinyOS
[134], which performs ED by exploiting the built-in received signal strength
indicator (RSSI)” functionality of the TelosB radio transceiver (CC2420, see
[133]). At the end of the sensing time for a certain channel c (of duration
Ts/Nc), the receiver has collected Ns energy samples,[

|yc(1)|
2, . . . , |yc(Ns)|2

]
. (4.6)

4.3.2 Channel Selection Criteria

Based on the energy sample vector obtained on a given channel, different
parameters can be used to evaluate the level of interference and identify the
best channel. Next a capacity-based channel selection criterion is introduced,
followed by two simplified criteria.

4.3.2.1 Capacity-based Channel Selection

The overall goal of the sensing phase is to select the channel that maximizes
the expected throughput obtained in the subsequent communication phase.
Similar to [67], the optimal channel can be defined as

c∗cap = arg max
c∈C

E[Rc(Py)], (4.7)

where Rc is the throughput of channel c. Assuming Gaussian signals and
noise, the throughput can be expressed theoretically by the channel capacity
given by

Rc(Py) = log2

(
1+

PWSN

Py(c)

)
. (4.8)

E[Rc] can be expressed by averaging Rc over the distribution of Py(c). If
Px(c) is constant over the sensing time, the average only involves the distri-
bution of H0/H1, i.e.,

EPy [Rc] = Pr[H0]Rc(Py(c)|H0) + Pr[H1]Rc(Py(c)|H1).
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Recalling from (4.4) that Py(c)|H0 = σ2v and Py(c)|H1 = Px(c)+σ2v, it follows
that

EPy [Rc] =(1− p(c)) log2

(
1+

PWSN

σ2v

)
+ p(c) log2

(
1+

PWSN

Px(c) + σ2v

)
. (4.9)

If Px(c) is variable (e.g., due to fast fading, or variable interferer transmit
power in the sensing time, or bursty transmission), the average throughput
is given by

EPy [Rc] = EPxEPy|Px [Rc] = (1− p(c)) log2

(
1+

PWSN

σ2v

)
+ p(c)EPx log2

(
1+

PWSN

Px(c) + σ2v

)
.

In both cases, the average throughput cannot be computed explicitly by the
sensor nodes, as parameters p(c), Px(c), and the distribution of Px(c), are un-
known. However, EPy [Rc] can be estimated as follows (see also [113]). Com-
pute for each channel an empirical PDF, defined as a vector [πc(1), . . . ,πc(M)],
where M is the number of intervals used to quantize the range of energy
samples |yc(n)|

2 (4.6). Let e(k) (k = 1, . . . ,M) be the quantized energy value
associated to the k-th interval (e.g., the central value of such interval). Then,
the average throughput R(c) can be approximated as

EPy [Rc] ≈
M∑
k=1

log
(
1+

PWSN

1+ e(k)

)
πc(k). (4.10)

This method based on the theoretical notion of capacity can be simplified by
replacing Rc in (4.8) by approximate and more practical expressions of the
throughput.

4.3.2.2 Average Energy Channel Selection

A possible channel selection criterion can be derived by approximating the
average throughput as the throughput achieved under average interference
conditions, i.e.,

EPy [Rc(Py)] ≈ Rc(E[Py]) = log2

(
1+

PWSN

E[Py(c)]

)
. (4.11)

As a result of Jensen’s inequality, the above approximation is an upper bound
of the effective capacity1. Next it is shown that, for large number of samples,
the average energy is a sufficient statistic for maximizing (4.11). Define

TED(c) ,
1

Ns

Ns∑
n=1

|yc(n)|
2. (4.12)

1 The relation between EPy
[Rc(Py)] and Rc(E[Py]) is similar to that between the capacities of

a fading channel and an additive white gaussian noise (AWGN) channel.
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In the limit Ns → ∞, the sample average converges to the expected value,
TED(c)→ E[|yc(n)|

2], which from (4.2) equals σ2v + p(c)Px(c), i.e., E[Py(c)].
Then, since log(1+ PWSN/x) is a monotone decreasing function of x, max-

imizing (4.11) is equivalent to minimizing TED(c), i.e., selecting the channel
with minimum average energy. Hence, define

c∗ED = arg min
c∈C

TED(c). (4.13)

Note that the ED criterion is simpler than (4.7) and does not require compu-
tation of the empirical PDF

4.3.2.3 Outage Probability Channel Selection

Another criterion can be derived by approximating the WSN throughput
based on the following model: the transmission of a packet fails whenever
the interference is above a predefined level (denoted by γ), and it is suc-
cessful otherwise. For example, the CC2420 transceiver defines the level of
γ = −77dBm as the threshold for “clear channel assessment”, which is per-
formed before every transmission. Motivated by the above consideration,
Rc(Py) can be approximated by the following step function:

Rc(Py) ≈

 log2
(
1+ PWSN

σ2v

)
if Py < γ

0 if Py > γ
(4.14)

That is, Py is approximated as Py ≈ σ2v whenever Py is lower than γ, and
Py ≈ ∞ when larger than γ. The first event corresponds to absence of inter-
fering signal (H0) or presence of signal with negligible power (low values of
Px); the second case reflects the fact that any signal such that Py > γ causes
serious interference issues, hence the achievable WSN throughput is close to
zero.

Based on the above approximation, one can write

EPy [Rc] =

∫∞
0

Rc(Py)fPy(c)(Py)dPy

≈ log2

(
1+

PWSN

σ2v

) ∫γ
0

fPy(c)(Py)dPy

= log2

(
1+

PWSN

σ2v

)
Pr[Py(c) < γ].

Since log2
(
1+ PWSN

σ2v

)
is a constant, maximizing the above expression amounts

to selecting the channel with minimum

Pout(c) , Pr[Py(c) > γ], (4.15)

which is defined outage probability.
The outage probability can be estimated from the empirical PDF for any

threshold γ corresponding to one of the quantization levels. If γ is fixed,
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the outage probability can be computed simply by counting the number of
samples that are larger than γ. Thus, Pout(c) is approximated as Pout(c) ≈
Tout(c), with

Tout(c) ,
1

Ns

Ns∑
n=1

I{|yc(n)|
2 > γ}, (4.16)

where I{x} = 1 if x is true. The best channel according to the outage proba-
bility is then selected as

c∗out = arg min
c∈C

Tout(c). (4.17)

Note that this channel selection criterion is particularly appropriate in cases
where Px is not constant (e.g., fast fading or bursty signal), hence Py exhibits
significant fluctuations.

4.3.3 Sensing-Throughput Tradeoff

The following simulation results are aimed at evaluating numerically the
tradeoff between spectrum sensing duration and throughput, and at investi-
gating how channel selection criteria (average energy or outage probability)
affect performance. A WiFi-like interference model is adopted, as discussed
in Sec. 4.2. Assume Nc = 16 potentially available channels, with i.i.d. occu-
pation probabilities p(c) uniformly distributed in (0, 1) for each channel and
each frame. The interfering signal power Px(c) varies on a sample-by-sample
basis, according to a log-normal distribution with mean −65dBm and stan-
dard deviation of 5dB to take into account multipath propagation. The noise
level is −90dBm. Spectrum sensing is performed by a WSN node with sam-
pling period ts = 0.5ms and processing time is assumed as negligible (∆ = 0).
In the communication phase, the throughput is calculated assuming that a
packet is successfully transmitted if the interference power on the channel
is lower than γ = −75dBm. WSN packets are of size lp = 98 bytes and are
transmitted at a rate of tp = 29.3ms, resulting in an offered load of 26.7kb/s.

Given this setting, the achieved throughput as a function of the sensing
time is shown in Fig. 4.1 for two different values of frame duration. The
sensing time is expressed both in terms of absolute number of samples (up-
per axis) and “duty-cycle”, i.e., relative duration of the sensing phase over
the frame time (lower axis). Results indicate that: (i) an optimal sensing-
throughput value is clearly visible, in agreement with the results of [67]; (ii)
the optimal number of samples is relatively low: ∼ 20 for Tf = 5s, ∼ 30 for
Tf = 15s; (iii) as the frame duration increases, the achieved throughput gets
closer to the offered load; (iv) outage probability selection slightly outper-
forms the average energy criterion.

The exact location of the optimum in terms of number of samples de-
pends on several system parameters and assumptions, including above all
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Figure 4.1: Simulated throughput vs. sensing time. Wi-Fi traffic, i.i.d. samples with
random p(c) and Px(c) for different channels.

the ideal model of i.i.d. samples. More interestingly, the introduction of
spectrum sensing provides a remarkable throughput gain: for example, in
Fig. 4.1(b), the achievable throughput with spectrum sensing enabled nearly
reaches 25kb/s, whereas the throughput obtained without spectrum sensing
is about 21kb/s. These preliminary results suggest that the adoption of FA

features in WSNs can potentially lead to a significant performance improve-
ment, as it will be confirmed in the next section, where the performance of
a real FA-WSN is analyzed.
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4.4 realization of frequency-agile wsn

This section concentrates on implementation of FA features in WSNs based on
IPv6.The proposed model encompasses (i) the network architecture enabling
FA capabilities, (ii) FA extensions to a generic IP stack, and (iii) FA-related
system operations and their integration with regular WSN applications. All
the design aspects take into consideration the limited resources of WSN nodes
or similar devices.

4.4.1 FA Network Architecture

Fig. 4.2 shows the reference FA architecture. The network is divided into clus-
ters to improve scalability. Inside a cluster, nodes can be assigned different
roles:

• The Cluster Head (CH) connects the cluster to the Edge router (E), and
hence to the network backbone.

• Spectrum Sensing Nodes (SSNs) are capable of periodically performing
energy detection on each of the available channels. SSNs collect energy
samples as in (4.6), where such data can be used to determine the
spectrum occupancy state. SSNs can completely dedicate their resources
to spectrum sensing, or also contribute to normal network operations
after sensing (Data-SSNs).

• Non-SSNs are ordinary network nodes that carry out application-related
tasks, and do not participate in spectrum sensing.

Among the deployed nodes in an FA network, the number of SSNs is highly
dependent on the application specifications, e.g., the number of available
channels, the required detection responsiveness, and the area covered by the
network. For instance, in applications where it is essential to maintain a high
throughput, the number of deployed SSNs may be equal to the number of
available channels, with each SSN set with a high sensing duration, thus en-
suring maximum responsiveness and reliable detection. On the contrary, in
less demanding applications, a couple of SSNs would suffice to periodically
provide spectrum state information.

Note that the proposed network architecture only applies to FA features,
and does not necessarily have to coincide with the WSN architecture in nor-
mal operation mode.

Spectrum sensing information is communicated to an entity called the
Frequency Agility Manager (FAM). The FAM processes the spectrum sensing
data collected from the network and determines the spectrum occupancy
state. If the FAM detects that a critical level of interference is present in the
operating channel (OC), it generates an OC-switch command to reallocate
the network to the best available channel. In the current implementation, the
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Figure 4.2: Reference network architecture to enable FA features.

FAM is a centralized entity (physically located in the edge router); distributed
implementation over a number of nodes is possible as well.

4.4.2 Performance Evaluation of FA-IPv6-WSN

Now the performance of dynamic channel selection in the above described
FA-IPv6-WSN prototype is analyzed. The goal is to evaluate the throughput
achieved with and without FA features, i.e., spectrum sensing and frequency
reallocation, in presence of interference. The experimental test-bed is com-
posed of a cluster containing three SSNs: two SSNs completely dedicated to
energy detection, and one Data-SSN. All SSNs are connected to a CH which
controls the data between its cluster and an edge router that is connected
to a Control Center (cf. Fig. 4.2). During each time frame, the Data-SSN per-
forms spectrum sensing on one channel (indicated by the CH for an interval
Ts and then sends data (UDP packets) to the edge router for the rest of the
frame time. In the meanwhile, each of the two SSNs performs spectrum sens-
ing on other channels (again, indicated by the CH) for the same interval Ts,
and provides an SSN-Report every one second. Note that the CH manages the
spectrum sensing operation so as to avoid duplicate SSN-Reports for a chan-
nel. The Control Center then counts the number of data packets received
from the Data-SSN and calculates the average achieved throughput.

The introduction of the two SSNs beside the Data-SSN has the purpose
to ensure a reasonably fast detection of the whole spectrum while keeping
a relatively low spectrum sensing duty-cycle. Thus, the experimental setup
differs from the ideal model presented in Sec. 4.2.1 in that spectrum sensing
is performed on one channel per frame, instead of all channels in the sensing
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time. The rationale for such implementation is that every channel change for
the sensing node involves a delay that may be comparable to Ts, especially
when the number of samples per channel is low. For this reason, scanning
16 channels within each frame is not convenient in practice.

Then, in order to generate random, time-varying interference conditions
on the entire spectrum with no correlation between different channels, jam-
mer nodes are used. Jammers are IEEE 802.15.4 devices, programmed so as
to transmit interference at a rate of 72kb/s on a given channel for a certain
amount of time, and then move to another channel. Thus, multiple operating
jammers allow to emulate the desired interference conditions, which would
not be feasible using Wi-Fi.

Based on this setting, first the sensing throughput-tradeoff is evaluated,
similar to Sec. 4.3.3, and then the performance of a FA-enabled WSN is com-
pared against that of a regular WSN in terms of throughput and packet loss
rate under different interference conditions. The throughput is measured as
the number of packets successfully transmitted from the Data-SSN to the
edge router, given an offered load of 26.7kb/s (maximum achievable rate
without interference).

4.4.2.1 Sensing-throughput Tradeoff
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Figure 4.3: Throughput vs. sensing time: experimental results. Interference gener-
ated by 7 jammers operating on random channels.

Fig. 4.3 shows the achieved throughput as a function of the sensing du-
ration (number of samples or duty cycle) according to the previously de-
scribed implementation. Similar to Sec. 4.3.3, the sampling period is set to
ts = 0.5ms, the packet size to lp = 98 bytes, and the packet transmission
time is tp = 29.3ms, and the Data-SSN frame duration is Tf = 5s. In contrast,
one sensing window (of duration Ts) corresponds now to one channel in-
stead of all 16 channels. Interference is generated by 7 jammers, transmitting
at 0dBm and deployed in an indoor environment at different distances (5
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to 10m) from the spectrum sensing node. In this experiment, jammer chan-
nels are randomly selected every 60s independently for each jammer. Results
show that, when FA features are enabled, the achieved throughput increases
from 21.5kb/s to 24kb/s, similar to the simulation results presented in Fig.
4.1(a). A similar tradeoff between sensing time and throughput can be ob-
served as well: the throughput increases with the number of samples up
to an optimal value, and then decreases almost linearly. In the adopted ex-
perimental configuration, the optimal number of samples per channel turns
out to be around 190. A significant throughput improvement is observed not
only around the optimum, but for a large range of values ofNs. Clearly, such
improvement vanishes if the sensing period is too long (> 700 samples).

Performance has been evaluated also in terms of packet loss. The FA-IPv6-
WSN provides 3% packet losses, while the non-FA WSN has a 17% loss rate.

4.4.2.2 Comparison Between FA-IPv6-WSN and Ordinary IPv6-WSN

The proposed FA-IPv6-WSN and an ordinary IPv6-WSN with no FA capabili-
ties are now compared under different interference conditions in the con-
sidered test-bed configuration. For this purpose, define the interference duty-
cycle as the percentage of the experiment time during which the interference
is present. Also, in this experiment jammers, instead of being random, are
set to track and attack the network, i.e., they are equipped with FAM-scan
capability such that they find the FA-WSN operating channel and generate
interference on that channel. The performances of both networks are eval-
uated in terms of throughput and packet losses, for different interference
duty-cycles as well as two interference levels: one jammer (Fig. 4.4) and two
jammers (Fig. 4.5). For the FA-IPv6-WSN, the Data-SSN was set at the optimum
Ns.

Fig. 4.4(a) shows the average throughput comparison. It can be seen that
the network with no FA-features achieves higher throughput at lower inter-
ference duty-cycles, but its throughput drops slightly faster than the FA-WSN

network as interference increases. Observe that the FA-WSN starts to outper-
form the ordinary network at an interference duty-cycle of 65%. Fig. 4.4(b)
shows the comparison in terms of packet loss. Based on this metric, the
performance improvement of the FA networks is more evident, and can be
observed for any interference condition.

If the sources of interference are two jammers, as shown in Fig. 4.5(a)
and Fig. 4.5(b), the performance gap between FA and non-FA WSN becomes
larger. For instance, the FA-WSN is superior in terms of throughput already
at an interference duty cycle of 12%. It is to be noted that UDP transmissions
do not implement Acks, and therefore the improvements achieved by FA-
capable networks can be even greater in systems adopting for example TCP

transmissions.
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Figure 4.4: Comparison between FA-IPv6-WSN and ordinary IPv6-WSN, operating un-
der different interference duty-cycles generated by 1 Jammer: in terms
of (a)average throughput, and (b)packet losses.

4.5 detection of discontinuous signals

This section focuses on the problem of detecting signals characterized by
discontinuous occupation in the sensing window. This is the case in FA-WSN

and in similar applications where, on the one hand, the sampling frequency
may be limited by hardware capabilities and, on the other hand, the signal
to be detected may be bursty with a burst duration comparable to or lower
than the minimum sampling period. In this scenario, the performance of two
detectors – the classic single-user ED and the multi-sensor, eigen-based RLRT

is evaluated taking into account the signal occupancy probability.



56 4 case study : spectrum sensing in low-power networks

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 0  0.25  0.5  0.75  1

A
ve

ra
ge

 th
ro

ug
hp

ut
 (

kb
/s

)

Interference duty-cycle

FA features enabled, 2 jammers
FA features disabled, 2 jammers

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0  0.25  0.5  0.75  1

P
er

ce
nt

ag
e 

of
 lo

st
 p

ac
ke

ts
 (

%
)

Interference duty-cycle

FA features enabled, 2 jammers
FA features disabled, 2 jammers

(b)

Figure 4.5: Comparison between FA-IPv6-WSN and ordinary IPv6-WSN, operating un-
der different interference duty-cycles generated by 2 Jammers: in terms
of (a)average throughput, and (b)packet losses.

For completeness, the signal model is redefined below, adopting a con-
venient mathematical notation. Let y(n) be the received base-band signal
sample at time n and let N be the total number of samples collected by the
receiver during the sensing time. The set of samples received during the
sensing window is indicated by the N× 1 vector

y , [y(1) . . . y(N)] (4.18)

In the considered scenario, two possible hypotheses exist:

• Hfree: signal is absent for the entire duration of the sensing window
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• Hbusy: signal is present, with occupancy probability p1; the complemen-
tary absence probability is defined as p0 , 1− p1

The generic received signal sample in the first case can be written as

y(n)|Hfree = v(n) (4.19)

where v(n) is modeled as CSCG noise with zero mean and variance σ2v. In the
alternative case, the signal sample is

y(n)|Hbusy =

{
case 0: v(n) with probability p0

case 1: h s(n) + v(n) = x(n) + v(n) with probability p1

(4.20)

where s(n) is the transmitted signal sample, by assumption zero-mean and
with variance σ2s , and h represents the channel (modeled as constant during
the sensing window). The SNR at the single receiver is

ρ =
|h|2σ2s
σ2v

. (4.21)

Within the N-sample observation interval, let N0 and N1 the number of
samples where case 0 and case 1 occur, respectively, and define normalized
occupation/absence rates

p1 ,
N1
N

(4.22)

p0 , 1− p1 =
N0
N

(4.23)

Clearly, as N→∞, p0 → p0 and p1 → p1.
The occupancy rate p1 is a specific parameter of the signal to be detected.

For instance, consider a Wi-Fi signal with an over-the-air packet duration
of 2 ms and a packet rate of 90 pkt/s: in this case p1 is 0.18. Note that the
discontinuous signal model reduces to the usual signal model adopted in
most of the CR literature when p1 = 1. For simplicity, this section is focused
on the case of single signal.

4.5.1 Energy Detection

Consider the conventional single-user ED detection scheme. The test statistic
is the average energy of the received signal samples, i.e.,

TED ,
1

N
‖y‖2 = 1

N

N∑
n=1

|y(n)|2 (4.24)

To analyze ED performance, it is necessary to express the PDF of the test
statistic in case of discontinuous signal. The result is given by the following
theorem.
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Theorem 4. Asymptotical distribution of TED. For N0, N1 → ∞, the test
statistic TED is normally distributed

TED ∼ N
(
µ, ζ2

)
(4.25)

with

µ = σ2v(1+ p1ρ) (4.26)

σ2 =
1

N
σ4v [1+ p1g(ρ)] (4.27)

where g(ρ) is a function of the SNR, specific of the signal type, e.g.,

g(ρ) =

{
2ρ if x is complex PSK modulated

ρ2 + 2ρ if x is complex Gaussian
(4.28)

Proof. By definition of p0 and p1 the test statistic can be split into two sepa-
rate summations:

TED = p0
1

N0

N0∑
n=1

|v(n)|2 + p1
1

N1

N1∑
n=1

|x(n) + v(n)|2 (4.29)

The first component

T0 ,
1

N0

N0∑
n=1

|v(n)|2 (4.30)

is a sum of Gaussian random variables, so it follows a chi-square distribution
with 2N0 degrees of freedom up to a normalisation factor:

2N0

σ20
T0 ∼ χ

2
2N0

(4.31)

As N0 tends to infinity, the chi-square distribution converges to a normal
distribution:

N0 →∞ : T0(y) ∼ N
(
µ0,σ20

)
(4.32)

µ0 = σ
2
v, σ20 =

1

N0
σ4v (4.33)

The other component

T1 ,
1

N1

N1∑
n=1

|x(n) + v(n)|2 (4.34)

does not admit a closed-form PDF; however, the central limit theorem (CLT)
guarantees that for N1 → ∞ it converges to a normal distribution, with
mean and variance given by (cf. [67])

N1 →∞ : T1(y) ∼ N
(
µ1,σ21

)
(4.35)

µ1 = σ
2
v + σ

2
x = σ2v(1+ ρ) (4.36)

σ21 =
1

N1

(
E |x|4 − σ4x + σ

4
v + 2σ

2
xσ
2
v

)
(4.37)

The value of E |x|4 depends on the signal type, e.g,
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• E |x|4 = 2σ4x for complex Gaussian signals

• E |x|4 = σ4x for complex PSK modulated signals

More cases are listed in [67]. In general, it can be easily checked that

σ21 =
1

N1
σ4vf(ρ) (4.38)

where f(ρ) equals 2ρ+ 1 for PSK signals or (ρ+ 1)2 for Gaussian signals. By
exploiting the linearity of the sum of Gaussian random variables, TED is still
(asymptotically) Gaussian with

µ = p0µ0 + p1µ1 (4.39)

σ2 = p20σ
2
0 + p

2
1σ
2
1 (4.40)

which, after some algebra and letting g(ρ) = f(ρ) − 1, yield (4.26) and (4.27).
The occupancy rates p0, p1 have been replaced by their respective probability
values since N0,N1 →∞.

By using Theorem 4, the probability of detection for ED under discontin-
uous signal assumption can be expressed as:

Pd = Pr(TED > γ|Hbusy) = Q

(
γ− µ

σ

)
= Q

[
√
N

(
γ/σ2v − (1+ p1ρ)√

1+ p1g(ρ)

)]
(4.41)

Notice that the formula of the false-alarm probability does not depend on
p1 and is given as usual [138, 67] by

Pfa = Pr(TED > γ|Hfree) = Q

[√
N

(
γ

σ2v
− 1

)]
(4.42)

4.5.2 Eigenvalue-based Detection

Consider now multi-sensor detection, with K be the number of available
sensors, and let hk be the channel coefficient associated to the k-th sensor.
Channels are assumed to be constant during the sensing time, but different
from one receiver to another. Like in Sec. 2, a K×N received signal matrix
is available:

Y , [y1 . . .yK]
T (4.43)

The sample covariance matrix is then defined as

R(N) ,
1

N
Y Y H (4.44)
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It can be equivalently written in terms of the columns of Y , denoted by ỹ(n)
for n from 1 through N, as

R(N) =
1

N

N∑
n=1

ỹ(n)ỹH(n) (4.45)

which, for large N, approximates the statistical covariance matrix

R , E ỹỹH (4.46)

Let `1 > . . . > `K be the eigenvalues of R (without loss of generality, sorted
in decreasing order), and let λ1 > . . . > λK be the eigenvalues of R ′(N). The
RLRT statistic is TRLRT = λ1/σ

2
v, as defined in (2.20) It is now convenient to

define a “global” SNR

ρK ,
‖h‖2σ2s
σ2v

(4.47)

where h , [h1 · · ·hK]T . The following theorem extends an important results
from random matrix theory to the scenario of interest.

Theorem 5. Largest eigenvalue of the covariance matrix with discontinuous
signals. Assuming that s(n) is Gaussian and that all K receivers observe the same
signal with occupation rate p1 = N1/N→ p1, the following results hold.

(i) The largest eigenvalue of the statistical covariance matrix is

`1 = σ
2
v(p1ρK + 1) (4.48)

(ii) in the limit K,N→∞, the largest eigenvalue of the sample covariance matrix
converges to

λ1
a.s.−→ σ2v(p1ρK + 1)

(
1+

K− 1

Np1ρK

)
(4.49)

provided that

ρK >

√
K/N

p1
(4.50)

Proof. Since the occupation probability is homogeneous for all receivers, the
received signal vector at time instant n can be written, respectively, as

ỹ(n)|Hfree = ṽ(n) (4.51)

or

ỹ(n)|Hbusy =

{
ṽ(n) with probability p0

x̃(n) + ṽ(n) with probability p1
(4.52)
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with x̃(n) , hs(n). By linearity of the expectation operator, the covariance
matrix (4.46) is

R =

{
σ2vIK (Hfree)

p1Rx + σ
2
vIK (Hbusy)

(4.53)

with Rx , E x̃x̃H = σ2shh
H. This is a rank-1 matrix, whose only non-zero

eigenvalue is ζ = ‖h‖2σ2s . Therefore, the largest eigenvalue of R is

λ1 = p1λx + σ
2
v (4.54)

that is (4.48).
The second claim of the theorem is an extension of Theorem 2 presented

in Sec. 4.5.2. As discussed, e.g., in [61, 110], a signal is identifiable only if its
corresponding eigenvalue is greater than σ2v

√
c, with c , K/N. In the case

considered here, the signal eigenvalue turns out be p1λx (4.54); therefore,
the identifiability threshold is given by

p1λx > σ
2
v

√
c (4.55)

as if there were a signal with “virtual” SNR p1ρ. When this condition is
verified, random matrix theory results [6] ensure that, as N,K→∞,

λ1
σ2v

a.s.−→ (ρ ′ + 1)

(
1+

K− 1

Nρ ′

)
, (4.56)

which (replacing the SNR ρ ′ by p1ρ) yields (4.49). On the contrary, if the
condition is not verified, the largest sample eigenvalue converges to σ2v(1+√
c)2 thus making signals indistinguishable from noise.

The above theorem provides the asymptotical mean value of the test statis-
tic λ1/σ2v. However, to characterise the detection probability, it is necessary
to understand how λ1 is distributed around the value (4.49). It is known
that the fluctuations of the largest eigenvalue in spiked population models
are asymptotically Gaussian; in the general case of covariance matrices con-
structed from homogeneous sets of data, their variance is known as well
[5, 61]. Unfortunately in the case of discontinuous signals this result cannot
be applied since the signal entries do not have the same variance: the result
becomes more and more inaccurate as p1 departs from 1.

To derive a better approximation of the variance, the sample covariance
matrix (4.44) is expressed as

R ′(N)|Hbusy = p0R0(N0) + p1R1(N1) (4.57)

where

R0(N0) ,
1

N0

N0∑
n=1

ṽ(n)ṽ(n)H (4.58)

R1(N1) ,
1

N1

N1∑
n=1

[x̃(n) + ṽ(n)][x̃(n) + ṽ(n)]H (4.59)
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are the partial covariance matrices constructed, respectively, from the only-
noise and from the signal-plus-noise samples.R0 is a Wishart matrix andR1
a standard spiked-population covariance matrix. For both these matrices, the
asymptotical distribution of the largest eigenvalue can be expressed exactly:
a Tracy-Widom distribution of second order [3] for the largest eigenvalue of
R0, a Gaussian distribution for that of R1.

Since the variance of the only-noise component is negligible compared to
the signal component, the variance of λ1 can be approximated as the variance
of the largest eigenvalue of R1(N1) normalised by p21:

Var[λ1] ≈ p21
1

N1
σ4v(ρK + 1)2

(
1−

K− 1

N1ρ
2
K

)
(4.60)

This approximation turns out to be very accurate for all values of ρK above
the identifiability threshold, and for all p1 in (0, 1).

Then, the detection probability of Roy’s largest root test, under discontin-
uous signal assumption, is

Pd = Pr(TRLRT > γ|Hbusy) ≈ Q
(
γ− µd
ξd

)
(4.61)

with

µd = (p1ρK + 1)

(
1+

K− 1

Np1ρK

)
(4.62)

ξd =
p1√
N1

(ρK + 1)

√
1−

K− 1

N1ρ
2
K

(4.63)

Similarly as for ED, also in this case the false alarm probability is not affected
by the discontinuous occupancy. Its asymptotical expression, for K,N → ∞
with c = K/N→ c finite is still given by

Pfa = Pr(TRLRT > γ|Hfree) = 1− FTW2

(
γ− µ+
ν+

)
, (4.64)

as discussed in Sec. 3. Even though all the expressions derived in this sec-
tion and in the previous one are based on asymptotic assumptions, they are
accurate enough for practical purposes already for relatively small values of
K and N.

4.5.3 Numerical Results

In the subsequent Fig. 4.6, the detection probability of the two considered
methods is analyzed as a function of the SNR with a fixed Pfa = 0.1%. Fig.
4.7 shows ROC curves, i.e., plots of Pd as a function of Pfa. Finally, Fig. 4.8
shows the detection probability as a function of the number of samples, for
fixed Pfa and SNR.
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The results show a good match between simulation results and the analyt-
ical model developed in this work. Even though all formulas are obtained
under the assumption of N,K→∞, they turn out to be accurate for the con-
sidered values of K and N which are realistic and far from the asymptotic
limits. Also, the approximate value ξd used to model the variance of the
RLRT test statistic is consistent with the empirical distributions.

The detection probabilities computed using a “traditional” approach (i.e.,
assuming p1 = 1) are significantly distant from the ones obtained in a dis-
continuous signal scenario, both for p1 = 0.3 and for p1 = 0.7. From the
detection point of view, it means that neglecting the factor p1 leads to signif-
icant overestimation of the detection probability, with serious consequences
on the reliability of CR systems that must meet tight requirements in terms
of missed-detection rate. For this reason, it is advisable to design the deci-
sion threshold considering the worst-case condition in terms of p1 and ρ, so
as to ensure a missed-detection probability always lower than the maximum
allowed level.
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ED: p1 = 0.7, N = 100
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Figure 4.6: Pd vs. SNR for ED and RLRT, with fixed false-alarm rate Pfa = 0.1%. Case
of Gaussian signals.
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ED: p1 = 0.7, N = 100, ρ = −6dB
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RLRT: p1 = 0.7, N = 50, K = 8, ρK = 0dB
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Figure 4.7: ROC for the considered methods. Case of Gaussian signals.
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ED: p1 = 0.7, ρ = −3dB
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RLRT: p1 = 0.7, K = 8, ρK = 0dB
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Figure 4.8: Pd vs. N for ED and RLRT, with fixed false-alarm rate Pfa = 0.1%. Case
of Gaussian signals.
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P R O B A B I L I S T I C G R A P H I C A L M O D E L S A N D
D I S T R I B U T E D I N F E R E N C E

5.1 inference through message passing

5.1.1 Bayesian Inference

Several problems in wireless networks can be formulated as Bayesian infer-
ence problems. In general, consider a vector of N hidden variables

x = [x1, x2, . . . , xN] (5.1)

and a (fixed) vector of observations y. The goal of a Bayesian inference
procedure is to compute the marginal a posteriori probabilities for each of the
variables of interest, i.e.,

p(xn|y) =
∑
x\{xn}

p(x|y). (5.2)

of each of the hidden variables. In the above expression, notation x \ {xn}

indicates all elements of x except xn, and summation is performed over the
support of every variable involved. Discrete variables are assumed; in the
case of continuous variables, the summation should be simply replaced by
an integral, as follows:

p(xn|y) =

∫
p(x|y)d{x \ {xn}}, (5.3)

where d{x \ {xn}} denotes integration with respect to all elements of x except
xn over their respective supports.

Function p(x|y) is the joint a posteriori probability and, by using the well-
known Bayes rule, it can be written as

p(x|y) =
p(y|x)p(x)
p(y)

. (5.4)

Bayesian inference problems can be conveniently represented in a graphical
form by using probabilistic graphical models, as will be discussed next.

5.1.2 Factor Graphs and Belief Propagation

Direct computation of p(xn|y) is often intractable, due to the high-dimensional
nature of x. Practical algorithms can be developed relying on the factoriza-
tion of both p(y|x) and p(x). The factorization depends on conditional inde-
pendence of the variables and is problem-specific.

69
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Once factorized, the posterior probability p(x|y) can be conveniently repre-
sented through a factor graph (FG), i.e., a bipartite graph where each variable
is represented by a variable node and each factor of the probability function
as a factor node. By convention, variable nodes are typically depicted as cir-
cles, factor nodes as squares. Edges connect each factor node to all variables
nodes corresponding to the arguments of the factor.

FGs allow for an efficient computation of the marginal probabilities of in-
terest, by applying belief propagation (BP) and specifically the sum-product
algorithm (SPA). This iterative procedure is based on message passing be-
tween factor and variable nodes in the graph, and produces as a result beliefs
for every variable node, updated at each iteration. Beliefs are approxima-
tions of the marginal probabilities of interest. It is well-known that, if the FG

is cycle-free [62] or contains one cycle at most [152], beliefs converge to the
marginal a posteriori probabilities, hence BP is said to be exact. Otherwise,
convergence of beliefs is not guaranteed [85]. In this case, the BP algorithm
is sometimes referred to as “loopy” belief propagation (LBP). Although there
is no theoretical guarantee of convergence, loopy belief propagation (LBP) is
still successfully used as an approximate inference tool in many practical ap-
plications, the most famous of which being low-density parity-check (LDPC)
and turbo decoding [76, 153].

Message update rules are expressed as follows. Denote with f(xf) a generic
factor connected to a subset of variables xf ⊂ x; consider then a variable
xi ∈ xf, connected to factors F (including f). Then, messages sent from vari-
able node xi to factor node f have the form

µxi→f(xi) ∝
∏

g∈F\{f}

µg→xi(xi) (5.5)

and messages from factor node f to variable node xi are defined as

µf→xi(xi) ∝
∑

xf\{xi}

f(xf)
∏

xj∈xf\{xi}

µxj→f(xj). (5.6)

Thus, messages to and from variable node xi are probability functions hav-
ing xi as argument. The proportionality sign in (5.5) and (5.6) indicates the
existence of proportionality factor such that the distribution sums/integrates
to 1. However, messages do not necessarily need to be normalized at every
iteration. Note that the summation in (5.6) must be replaced by an integral
in the case of continuous variables.

Messages of type (5.5) and (5.6) are exchanged iteratively by every fac-
tor and variable nodes in the graph. For any variable node xi, beliefs are
computed as the product of all incoming messages:

b(xi) ∝
∏
f∈F

µf→xi(xi). (5.7)

After a sufficient number of iterations, beliefs are used as approximations of
the marginal probabilities p(xi|y).
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Figure 5.1: Markov random field (top) and factor graph (bottom) of the factorization
p(x|y) ∝ φ1(x1)φ2(x2)φ3(x3)ψ12(x1, x2)ψ23(x2, x3).

At the first iteration, all messages can be initialized as uniform distribution
functions. Message scheduling (e.g., whether to update first messages from
factors or messages from variables) has no impact on final results in the non-
loopy case. On the contrary, scheduling may sometimes affect results when
cycles are present.

5.1.3 Pairwise Factors: Markov Random Fields

Several problems of practical interest admit a factorization of the form

p(x|y) ∝
N∏
n=1

φn(xn)

L∏
l=1

ψl(xl1 , xl2), (5.8)

where two types of factors exist:

• single-variable factors φn, representing individual prior distributions of
variables xn, and

• pairwise factors ψl, representing an a priori inter-dependency between
variables xl1 and xl2 .

In this case, the FG model can be simplified by representing only variables as
vertices of a graph, and pairwise factors as edges. Single-variables need not
be depicted explicitly as they are connected to each variable. Such a model
is referred to as Markov random field (MRF). Fig. 5.1 illustrates FG and MRF

models for a simple factorization with three variables and two pairwise fac-
tors. Note that sometimes the short-hand notation ψij(xi, xj) is used instead
of ψl(xl1 , xl2).

When adopting a pairwise MRF representation, the message passing rules
(5.5) and (5.6) can be expressed directly in a variable-to-variable form. Thus,
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given two neighboring nodes xi and xj, and denoting by Ni the set of neigh-
boring nodes of xi, the message from xi to xj is

µxi→xj(xj) ∝
∑
xi

φi(xi)ψij(xi, xj) ∏
xn∈Ni\{xj}

µxn→xi(xi)

 . (5.9)

Beliefs are updated as

bi(xi) ∝ φi(xi)
∏
xn∈Ni

µxn→xi(xi). (5.10)

5.2 application to wireless networks

5.2.1 Network Message Passing

The BP algorithm, run over FG or MRF models, is a powerful tool to address
efficiently inference problems involving a large number of variables. Thus,
probabilistic graphical models are constructed by representing hidden vari-
ables of the problem as variable nodes, and statistical dependencies among
those variables as factors (FG) or edges (MRF).

In the case of heterogeneous detection/estimation problems in wireless net-
works, each hidden variable is typically associated to a node of the net-
work, so that a one-to-one correspondence between vertices of the graph
(variable nodes) and physical network nodes can be established. If statistical
dependencies among hidden variables are pairwise, messages exchanged ac-
cording to the BP algorithm (5.9) can be implemented as real messages (i.e.,
packets) exchanged over the wireless network. This approach, called network
message passing [158], gives rise to a fully decentralized implementation of BP

and can be applied to a variety of problems. In other problems, when multi-
ple hidden variables exist but cannot be directly mapped to physical nodes,
BP can be still adopted as an efficient tool to perform Bayesian inference in
a wireless network, although adopting a centralized implementation. In the
centralized case, BP messages are updated internally by the fusion center
using the information coming from multiple, distributed sensor nodes.

5.2.2 Examples

Three examples of application of BP in wireless network are considered in
this thesis.

1. Hybrid cooperative localization. Variables to be estimated are posi-
tions of nodes in a wireless network; observations are range (peer-
to-peer distance) and pseudorange (distance from satellite) measure-
ments. The problem is modeled by pairwise factors accounting for
range measurements and individual factors as likelihood functions of
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pseudorange measurement. Such a model makes it possible to imple-
ment BP as a network message passing algorithm. Thus, hybrid coop-
erative localization is formulated as a heterogeneous, decentralized estima-
tion problem with continuous, multi-dimensional hidden variables (2-D or
3-D position vectors).

2. Multi-sensor signal detection in heterogeneous environments. The
problem involves binary hidden variables representing signal presence/ab-
sence at different sensor locations. As a graphical model, a MRF repre-
sentation can be adopted: individual factors account for the likelihood
of nodes’s noisy observations (received signal samples), and pairwise
factors model statistical interdependency between the state of each
node and that of its neighbors (as a result of the unknown spatial
location of signal sources). Thus, the problem is formulated as a het-
erogeneous, decentralized detection problem with discrete hidden variables.

3. Multi-sensor signal detection with malicious sensor nodes. The con-
sidered scenario is a cognitive network performing cooperative spec-
trum sensing, such that distributed sensors send a binary decision to
a fusion center. It is assumed that some of the sensors may be mali-
cious and deliberately send wrong sensing reports with a certain “at-
tack probability”. Thus, two types of variables need to be estimated
by the fusion center: a global, binary variable indicating signal pres-
ence (common to all sensors), and K variables indicating the type and
probability of attack of each of the K sensors. Such variables are mod-
eled as continuous variables in the range [−1, 1]: the sign indicates the
type of attacker, the absolute value represents the attack probability.
In this case, BP is run by the fusion center to estimate all hidden vari-
ables of interest. The inference problem is formulated as a centralized
detection/estimation problem, involving a mixture of homogeneous and
heterogeneous hidden variables.

The above applications are presented in details in the subsequent Chapters
(6, 7, 8) of this thesis. Then, a variation of the BP algorithm will be introduced
in Chapter 9.
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6.1 mathematical formulation

Consider a network composed by a set of agents M of cardinality M and a
set of satellites S of cardinality S. Time is slotted t0, t1, . . . , tk and will be
simply denoted by the discrete time index k. Referring to a particular agent
m ∈ M, denote by M

(k)
m the neighbors, i.e., the subset of peers agent m can

communicate with at time k, and by S
(k)
m the subset of satellites it can see.

Position variables are denoted by p(k)i = [x
(k)
i y

(k)
i z

(k)
i ]T, where x,y, z are

Earth-centered, Earth-fixed (ECEF) coordinates of agent/satellite i, and the
superscript T denotes transpose. The clock bias of node m is denoted by δ(k)m
and can be converted into distance units through the relation b(k)m = c · δ(k)m ,
where c is the speed of light. Thus, the state of node m is defined as

x
(k)
m ,

[
p
(k)
m

T
b
(k)
m

]T

. (6.1)

In the considered hybrid scenario, two types of measurements are per-
formed by nodes:

(i) Pseudoranges: estimated distances from satellites

ρ
(k)
s→m = ‖p(k)s − p

(k)
m ‖+ b(k)m + v

(k)
s→m, (6.2)

(ii) Ranges: estimated distances between peers

r
(k)
n→m = ‖p(k)n − p

(k)
m ‖+ v(k)n→m, (6.3)

where the symbol ‖ · ‖ denotes Euclidean distance, m,n ∈ M, s ∈ S, v(k)s→m
and v(k)n→m are AWGN variables.

Notice that pseudorange measurements are affected by the additional
unknown b

(k)
m , that is one of the variables to be estimated.1 The follow-

ing set notation is introduced to group together different nodes’ variables:
x
(k)
M , {x

(k)
m |∀m ∈ M}; ρ(k)m , {ρ

(k)
s→m|∀s ∈ S

(k)
m }; �(k)M , {ρ

(k)
m |∀m ∈ M};

r
(k)
m , {r

(k)
n→m|∀n ∈M

(k)
m }; r(k)M , {r

(k)
m |∀m ∈M}.

The localization problem can be formulated as follows: every agent m
needs to determine its a posteriori distribution of x(k)

m , at each time slot k,
given all the available measurements:

p
(
x
(k)
m

∣∣∣�(1:k)M , r(1:k)M

)
, ∀m ∈M, (6.4)

1 Peer-to-peer range measurements can be performed by methods that avoid synchronization,
like round-trip-time [32] or received signal strength measurements [42].
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where the superscript (1 : k) denotes all variables from time step 1 to k, e.g.
r
(1:k)
M , {r

(1)
M , . . . , r(k)M }.

The following assumptions, which are reasonable approximations in many
practical scenarios, are made in this section:

A1: Mobility is modeled as a Markov process, mutually independent for
every node:2

p
(
x
(k)
M

∣∣∣x(k−1)
M , · · · ,x(0)

M

)
=
∏
m∈M

p
(
x
(k)
m

∣∣∣x(k−1)
m

)
. (6.5)

A2: Measurement likelihood depends only on the current state and can be
split into two factors, since range and pseudorange measurements are
independent:

p
(

�(k)M , r(k)M

∣∣∣x(0:k)
M

)
= p

(
�(k)M

∣∣∣x(k)
M

)
p
(
r
(k)
M

∣∣∣x(k)
M

)
. (6.6)

A3: Pseudorange measurement noise samples are independent with vari-
ance known by each node:

v
(k)
s→m ∼ N

(
0, σ2s→m

)
. (6.7)

A4: Range measurement noise samples are independent, with symmetric
link variance and known by both nodes:

v
(k)
m→n, v(k)n→m ∼ N

(
0, σ2m→n

)
. (6.8)

6.2 cramér-rao bound

The CRB of any unbiased estimator of [X , b] is obtained by inverting the cor-
responding Fisher information matrix (FIM). Let F be the FIM for the hybrid
scenario. First, the FIM is computed under a non-cooperative setting, and
then extend this result to the cooperative case.

6.2.1 Non-cooperative Case

Focus on a single agent, say m. The log-likelihood function of its measure-
ments with respect to anchors and satellites is

logp
(
{ra→m}a∈Am , {ρs→m}s∈Sm |xm,bm

)
=
∑
a∈Am

logp (ra→m |xm ) +
∑
s∈Sm

logp (ρs→m |xm,bm )

.
= Λm (xm,bm) .

2 It is assumed that each node has some internal information about its own mobility model,

expressed by a PDF p
(
x
(k)
m

∣∣∣x(k−1)
m

)
. However, this distribution may differ from the true

mobility statistics, which depend on the users in the network. See for example simulations
in Sec. 6.5.2.2.
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Under Gaussian measurement noise:

logp (ra→m |xm ) = C−
|ra→m − ‖xa −xm‖|2

2σ2a→m

and

logp (ρs→m |xm,bm ) = C ′ −
|ρs→m − ‖xs −xm‖− bm|

2

2σ2s→m
,

where C, C ′ are constant terms. The Fisher information matrix is given by

Fm = −E { Hm (Λm (xm,bm))} ,

where the expectation is with respect to the measurements, and Hm(·) is
the Hessian operator containing the second-order partial derivatives with
respect to each element of [xm,bm]. Fm is a (D+ 1)× (D+ 1) matrix:

Fm =

[
Fxm fxm,bm

fTxm,bm Fbm

]
� 0, (6.9)

where

Fxm =
∑
a∈Am

1

σ2a→m
qamq

T
am +

∑
s∈Sm

1

σ2s→m
qsmq

T
sm

Fbm =
∑
s∈Sm

1

σ2s→m

fxm,bm =
∑
s∈Sm

−
1

σ2s→m
qsm,

in which qim = xi−xm
‖xi−xm‖ is a unit-length column vector between xm and xi.

Considering allM agents, the global non-cooperative FIM is a block-diagonal
matrix:

Fnon−coop =


F1

F2
. . .

FM

 . (6.10)

6.2.2 Cooperative Case

The log-likelihood function is now

logp
({

{ra→m}a∈Am , {ρs→m}s∈Sm ,

{rn→m}n∈Mm

}
m∈M |X , b

)
=
∑
m∈M

Λm (xm,bm) +
∑
m∈M

∑
n∈Mm

logp (rn→m |xm,xn ) .︸ ︷︷ ︸.
=Λcoop(X)
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The Fisher information matrix is of the form

F = Fnon−coop +Fcoop (6.11)

and has dimension (D + 1)M× (D + 1)M. The first term Fnon−coop, repre-
senting the non-cooperative contribution, is again (6.10). The cooperative
part Fcoop can be expressed as

Fcoop = −E



H11 . . . HM1

...
. . .

...

HM1 . . . HMM

Λcoop (X)


where the cross-Hessian matricesHmn are defined as (assuming xi = [x1,i, . . . , xD,i]):

Hmn
.
=


∂2

∂x1,m∂x1,n
· · · ∂2

∂x1,m∂xD,n

∂2

∂x1,m∂bn
...

. . .
...

...
∂2

∂xD,m∂x1,n
· · · ∂2

∂xD,m∂xD,n

∂2

∂xD,m∂bn

∂2

∂bm∂x1,n
· · · ∂2

∂bm∂xD,n

∂2

∂bm∂bn


Notice that Λcoop (X) does not depend on the bias. Under the hypothesis of
Gaussian measurement noise in peer-to-peer communication,

logp (rn→m |xm,xn ) = C ′′ −
|rn→m − ‖xn −xm‖|2

2σ2n→m
,

leading to a block matrix of the form

Fcoop =



F ′1  K12  . . . K1M 

T 0 T 0 T 0

K21  F ′2 

T 0 T 0
...

. . .

KM1  F ′M 

T 0 T 0


� 0. (6.12)

where

F ′m =
∑
n∈Mm

1

σ2n→m
qnmq

T
nm

Kmn =

 − 1
σ2n→m

qnmq
T
nm, if n ∈Mm

0 otherwise.

and  is a D× 1 zero-vector.
The above results allow to compute F for a given network configuration

and, by inverting (6.11), to express the CRB.
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6.3 bayesian inference on factor graph

The goal of a Bayesian positioning approach is to determine the marginals
(6.4) recursively at each time slot k. Assume to be given a prior distribu-
tion p(x(0)

m ), ∀m ∈ M, which may be uniform if no a priori information is
available. Marginals are given by

p
(
x
(k)
m

∣∣∣�(1:k)M , r(1:k)M

)
=

∫
p
(
x
(k−1:k)
M

∣∣∣�(1:k)M , r(1:k)M

)
dx(k−1:k)

M\m
, (6.13)

where the subscript M\m denotes all variables in x
(k−1:k)
M except x(k)

m . By
A1-A4, the joint a posteriori distribution becomes

p
(
x
(k−1:k)
M

∣∣∣�(1:k)M , r(1:k)M

)
=p

(
�(k)M

∣∣∣x(k)
M

)
p
(
r
(k)
M

∣∣∣x(k)
M

)
×∏

m∈M
p
(
x
(k)
m

∣∣∣x(k−1)
m

)
p
(
x
(k−1)
m

∣∣∣�(1:k−1)M , r(1:k−1)M

)
. (6.14)

The first two factors represent the likelihood of range and pseudorange
measurements, respectively, while the subsequent factors account for tem-
poral evolution of each node’s state variable according to a given mobility
model. The last factor in (6.14) is the a posteriori distribution of agentm at the
previous time slot. Hence, the a posteriori distributions can be computed re-
cursively. Written in this form, the above probability function can be mapped
on a FG, which allows to compute efficiently the marginals (6.4) by applying
the SPA [62]. A FG is a probabilistic graphical model that represents statistical
dependencies among variables, and is used to perform Bayesian inference.
Due to GNSS bias, there are two options to construct the FG: (a) consider-
ing position and bias variables jointly, or (b) treating them separately. Both
options are next analyzed and discussed.

6.3.1 Joint Position-Bias Model

Given as input

p(x
(k−1)
m |�(1:k−1)M , r(1:k−1)M ) ∀m, (6.15)

i.e., the result of inference process at the previous time slot, the remaining
part of (6.14) can be decomposed as

M∏
m=1

fm (x(k)m , x(k−1)m

)∏
s∈Sm

gs,m

(
x
(k)
m

) ∏
n∈Mm
n<m

hn,m

(
x
(k)
m , x(k)n

), (6.16)

where

• fm(x
(k)
m , x(k−1)

m ) ≡ p(x(k)
m |x

(k−1)
m ) represents mobility.
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Figure 6.1: Example of GNSS-cooperative network and corresponding factor graph
(joint position-bias variable representation).

• gs,m(x
(k)
m ) ≡ p(ρs→m|x

(k)
m ) represents the pseudorange measurement

likelihood given the state of node m. Note that positions of the satel-
lites do not appear as variables, since they are known exactly by nodes.3

• hn,m(x
(k)
m , x(k)

n ) ≡ p(rn→m|x
(k)
m , x(k)

n ) represents the peer-to-peer range
measurement likelihood given the positions of nodes m and n.

The resulting FG is depicted in Fig. 6.2(a), where the vertices on top receive
messages p(x(k−1)

m |�(1:k−1)M , r(1:k−1)M ) as inputs from the previous time slot.
Factors corresponding to the same node in the physical network are grouped

into dashed boxes. Therefore, vertices of the FG, i.e., variables to be estimated,
have been associated to nodes in the network, i.e., devices that perform com-
putations and send messages to neighbors. Then, probabilistic messages de-
fined by the SPA algorithm (see next section) correspond to real packets ex-
changed among physical nodes: in this way the resulting algorithm is fully
distributed. Fig. 6.1 shows a network configuration example and its corre-
sponding FG.

3 Satellite positions are computed through the ephemeris (i.e., orbital information) that is part
of every message sent by GPS satellites.
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Figure 6.2: Factor graphs for hybrid cooperative positioning: (a) joint position-bias
model, (b) separate position-bias model. Dashed boxes represent physi-
cal nodes, i.e., messages inside a box are computed internally by a node.
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6.3.2 Separate Position-Bias Model

In the alternative model, separate temporal factors exist for position and bias;
range factors involve position variables only, while pseudorange factors are
connected to both position and bias variables. Given as input

p(x
(k−1)
m |�(1:k−1)M , r(1:k−1)M ) ∀m, (6.17)

the factorization of the remaining part of (6.14) is

M∏
m=1

[
fpm

(
p
(k)
m , p(k−1)m

)
fbm

(
b
(k)
m , b(k−1)m

)
×

∏
s∈Sm

gs,m

(
p
(k)
m , b(k)m

) ∏
n∈Mm
n<m

hn,m

(
p
(k)
m , p(k)n

)]
. (6.18)

This model is represented by the FG in Fig. 6.2(b). Information from the
previous time slot is passed by messages p(p(k−1)m |�(1:k−1)M , r(1:k−1)M ) and
p(b

(k−1)
m |p

(1:k−1)
M ) sent by vertices at level k− 1.

6.4 algorithm description

In this section the proposed H-SPAWN algorithm is presented. The section first
presents a high-level description of the algorithm is provided, then focuses
on message passing implementation over a wireless network. Then, message
computation is discussed, introducing a parametric implementation strategy
to efficiently update and exchange H-SPAWN messages.

6.4.1 Summary of the Algorithm

H-SPAWN is defined by applying SPA message update rules [62] over the fac-
tor graphs of Fig. 6.2a or 6.2b. Denoting by ξm a generic state variable (i.e.,
xm, pm, or bm), messages can be classified as: (i) temporal messages ηfm→ξm ,
representing the evolution of state variable m from time k − 1 to time k;
(ii) messages from satellite factors ηgs,m→ξm , associated to GNSS measurements
from satellites s ∈ S

(k)
m ; (iii) messages from peer-to-peer factors ηhn,m→ξm , rep-

resenting the information received by node m from neighbors; (iv) messages
to peer-to-peer factors ηξm→hmn , whereby node m communicates its position
message to neighbors n ∈ M

(k)
m ; (v) messages to satellite factors η

p
(k)
m →gs,m

and η
b
(k)
m →gs,m

, used only in the separate model to link bias and position
variables together.

Thanks to the identity between variables and physical nodes, H-SPAWN

admits a natural distributed implementation: messages of type (i), (ii), (iii),
and (v) are computed internally by each node, whereas messages of type
(iv) are sent in broadcast and received by all nodes that are close enough at
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Algorithm 6.1: H-SPAWN – joint position-bias version

input : Initial beliefs p̂
(
x
(0)
m

)
∀m

output : Updated beliefs p̂
(
x
(k)
m

)
∀m

1 for timestep k = 1 to K do
2 ∀m ∈M: compute temporal message η

fm→x
(k)
m

using (6.19)

3 ∀m ∈M: broadcast predicted distribution as initial peer-to-peer (P2P)
message: η

x
(k)
m →hn,m

= η
fm→x

(k)
m

4 ∀m ∈M: collect ranges rn→m ∀n ∈M
(k)
m and pseudoranges ρs→m

∀s ∈ S
(k)
m

5 for iteration i = 1 to I do
6 for nodes m ∈M in parallel do
7 Receive messages η

x
(k)
n →hn,m

from all neighbors n ∈M
(k)
m

8 Compute local factor-to-variable messages given the likelihood
of received measurements from peers and from satellites:
η
gs,m→x

(k)
m
∀s ∈ S

(k)
m ; η

hn,m→x
(k)
m

using (6.25) and (6.22)

9 Compute and broadcast outgoing P2P messages η
x
(k)
m →hn,m

∀n ∈M
(k)
m using (6.28)

10 Update beliefs p̂
(
x
(k)
m

)
using (6.30)

11 end
12 end
13 end

time k (neighbor sets Mm may vary at different time slots). Beliefs p̂(ξm)

(estimated marginal probabilities) are then computed as the product of all
incoming messages towards ξm.

The resulting algorithm and a possible message scheduling are summa-
rized by Alg. 6.1, referring to joint position-bias model. For the separate
model, all messages involving variables x(k)

m should be replaced by two sep-
arate messages for p(k)m and for b(k)m ; in addition, between lines 8 and 9,
messages η

p
(k)
m →gs,m

and η
b
(k)
m →gs,m

∀s ∈ S
(k)
m must be updated. Observe

that the algorithm works on two time scales: in the iteration scale, messages
are updated using the same measurement data; in the timestep scale, new
measurements are received.

6.4.2 Parametric BP: Joint Position-Bias Model

This section illustrates how the messages defined in the previous section
are computed in practice. For each type of message, the exact update rules
are expressed according to the SPA. Since these expressions are numerically
complex (due to integrals and multiplications in 3-D or 4-D spaces), a para-
metric BP strategy can be adopted to avoid direct computation of messages.
The parametric approach approximates all messages by known “distribution
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(a) N distribution. (b) V distribution. (c) C distribution.

Figure 6.3: Distribution families for the joint position-bias model. Horizontal sec-
tions.

families”. In this way, message passing in BP reduces to simply passing the
parameters that characterize such distributions. The advantage of parametric
BP over a sample-based message representation is enormous in terms of nu-
merical complexity: the number of samples needed to represent messages
would be prohibitive for any practical wireless network.

The FG in Fig. 6.2a is first considered, where position and bias variables
are considered jointly; then, the separate case is analyzed in Sec. 6.4.3.

6.4.2.1 Temporal messages

The SPA update rule for temporal messages over the FG of Fig. 6.2a is

η
fm→x(k)

m

(
x
(k)
m

)
∝
∫
fm

(
x
(k)
m ,x(k−1)

m

)
× (6.19)

p
(
x
(k−1)
m |�(1:k−1)M , r(1:k−1)M

)
dx(k−1)
m .

The above expression has the following meaning: each node propagates the
beliefs of xm = [pT

m,bm]T from time k− 1 to time k, according to some inter-
nal mobility model (which updates the position pm) and clock drift model
(which updates the bias bm) jointly represented by factor fm. Temporal mes-
sages can be interpreted as a prediction step in the localization process.

Adopting a parametric approach, temporal messages are approximated as
(D+ 1)-variate Gaussian PDFs, with mean µ

x
(k)
m

derived from µ
x
(k−1)
m

using
mobility and clock drift models, and covariance Σ

x
(k)
m
� Σ

x
(k−1)
m

(e.g., lin-
early increasing with the time elapsed between tk−1 and tk) which accounts
for prediction uncertainty:

η
fm→x(k)

m

(
x
(k)
m

)
≈ pN

(
x
(k)
m ;µ

x
(k)
m

,Σ
x
(k)
m

)
, (6.20)

with

pN(x;µx, Σx) , 1
Z exp

[
−12 (x−µx)

TΣ−1
x (x−µx)

]
, (6.21)
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where Z is a normalization factor that may be chosen arbitrarily (messages
and beliefs in BP do not necessarily need to be normalized). The shape of the
N distribution is a hyper-ellipsoid. A section of such distribution is depicted
in Fig. 6.3a.

6.4.2.2 Messages from satellite factors

Due to the single connection of satellite factors, satellite messages simply
propagate the function received from factor gs,m:

η
gs,m→x(k)

m
= gs,m

(
x
(k)
m

)
, (6.22)

i.e., the likelihood of measurement ρ(k)s→m with respect to the position of satel-
lite s and node m. Messages of this type can be represented in a parametric
form as

η
gs,m→x(k)

m

(
x
(k)
m

)
= pV

(
x
(k)
m ; ρ(k)s→m,p(k)s ,σ2s→m

)
, (6.23)

where ρ(k)s→m is the value of the pseudorange (6.2) measured at the current
time slot k, σ2s→m is the variance associated to this measurement (6.7), p(k)s
is the satellite position, and

pV(x; ρ,µs,σ2ρ) ,
1
Z exp

[
− 1
2σ2ρ

(‖p−µs‖+ b− ρ)2
]

(6.24)

is a hyper-conic distribution family parametrized by radius ρ (pseudorange
value), center µs (satellite position) and variance σ2ρ (measurement variance).
Note that in this case parametric BP does not introduce any approximation.

The V distribution is in fact a Gaussian distribution having as support the
surface of a sphere that shrinks or expands with the bias. Such support can
be visualized as a spherical cone with spheres as intersections with hyper-
planes perpendicular to the b-axis, and cones as intersections with p planes
(hence the name of hyper-conic distribution). Fig. 6.3b shows a section of a
V distribution.

6.4.2.3 Messages from peer-to-peer factors

The analytical expression of messages from P2P factors is

η
hn,m→x(k)

m

(
x
(k)
m

)
∝
∫
hn,m

(
x
(k)
m ,x(k)

n

)
×

η
x
(k)
n →hn,m

(
x
(k)
n

)
dx(k)
n . (6.25)

In (6.25), the term hn,m(x
(k)
m ,x(k)

n ) represents the likelihood of the range
measurement ρ(k)n→m received by node m from its neighbor n, given the po-
sition x(k)

n ; the message η
x
(k)
n →hn,m

(x
(k)
n ) provides a PDF of x(k)

n , based on
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the available information at node n (i.e., measurements from visible satel-
lites and all neighbors except m). Thus, the message update rule can be
interpreted as a filtering operation of the range likelihood function with the
estimated PDF of the position of node n.

In order to express P2P messages in a parametric form, let us first consider
x
(k)
n = x̂

(k)
n fixed, as though η

x
(k)
n →hn,m

(x
(k)
n ) were a Dirac delta function in

x̂
(k)
n . Then, the resulting message would amount to hn,m(x

(k)
m , x̂(k)

n ). This
message can be visualized as a Gaussian distribution with variance σ2n→m
around the surface of a hyper-cylinder in the {p,b} plane, uniformly extended
over the entire range of b (because P2P messages do not carry bias infor-
mation), with axis p = p̂

(k)
n and radius ρ(k)n→m. Now, filtering hn,m with

η
x
(k)
n →hn,m

is a summation of an infinite number of such cylinders with dif-
ferent axes. The resulting distribution is still cylindrical, because Gaussian
distributions are additive and the bias information in the incoming message
is irrelevant for the P2P message; the variance of the resulting distribution is
the sum of measurement variance and the covariance of p(k)n . Thus,

η
hn,m→x(k)

m

(
x
(k)
m

)
=

pC

(
x
(k)
m ; r(k)n→m,µ

p
(k)
n→m

,Σ
p
(k)
n→m

+ σ2n→mI
)

, (6.26)

where µ
p
(k)
n→m

,Σ
p
(k)
n→m

are mean and variance of the message η
x
(k)
n →hn,m

(x
(k)
n ),

I is the identity matrix, and

pC (x; ρ, µpn , Σpn+ρ) ,

1
Z exp

[
−12

(
p ′ − ρ p ′

||p ′||

)T
Σ−1
pn+ρ

(
p ′ − ρ p ′

||p ′||

)]
, (6.27)

where p ′ , p−µpn . A section of the hyper-cylindrical distribution family C

is shown in Fig. 6.3c.

6.4.2.4 Messages to peer-to-peer factors

According to the SPA, messages from variable nodes to P2P factors are given
by

η
x
(k)
m →hn,m

(
x
(k)
m

)
∝ η

fm→x(k)
m

(
x
(k)
m

)
× (6.28)∏

s∈S(k)
m

η
gs,m→x(k)

m

(
x
(k)
m

) ∏
l∈M(k)

m \n

η
hl,m→x

(k)
m

(
x
(k)
m

)
,

Due to heterogeneous shape and varying number of incoming messages,
it is impossible to give a general expression of the resulting distribution. In
addition, even if computed analytically, such distribution would be a very
complex and irregular function, making it difficult to express messages at the
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subsequent iteration. For these reasons, the result of message multiplication
is approximated as a multivariate Gaussian distribution

η
x
(k)
m →hn,m

(
x
(k)
m

)
≈ pN

(
x
(k)
m ;µ

x
(k)
m→n

,Σ
x
(k)
m→n

)
. (6.29)

The problem then reverts to finding the parameters of the output distribu-
tion that best approximate the product of the incoming parametric messages.
To this purpose, a parameter estimation algorithm is proposed (see Alg. 6.2)
inspired from importance sampling [117]. At each iteration, samples zi are
drawn according to the current estimated output distribution, and weighted
proportional to the ratio between the product of the probabilities of each
of the incoming messages (computed according to their respective analyti-
cal distributions evaluated at the given samples) and the probability of the
sample according to the output distribution. The distribution parameters are
then refined through weighted sample mean and covariance estimators, and
used to draw a new set of samples in the next iteration. No restrictions on
the covariance matrix are imposed, so that it can take any ellipsoidal shape.

Algorithm 6.2: Parametric Message Multiplication

input : Initial estimate of µ̂x, Σ̂x; distributions of all incoming messages
(factors)

output : Updated µ̂x, Σ̂x after product

1 repeat
2 Draw N samples zi from N

(
µ̂x, Σ̂x

)
3 Compute the probability of each sample q (zi) in the distribution it was

drawn from, using (6.21)
4 Evaluate the PDFs at samples pj (zi) for each factor, using (6.21), (6.24),

or (6.27)

5 Assign a weight to each sample as: wi =
∏
j pj(zi)

q(zi)
, then normalize them

such that
∑N
i=1wi = 1

6 Estimate new mean and covariance using weighted samples:

µ̂x =
∑N
i=1wizi, Σ̂x =

∑N
i=1wi(zi−µ̂x)(zi−µ̂x)

T

1−
∑N
i=1w

2
i

7 until convergence

6.4.2.5 Beliefs

Finally, beliefs p̂(x(k)
m ), i.e. approximations of the marginals of interest p(x(k)

m |�(1:k)M , r(1:k)M )

(6.13), are given by

p̂(x
(k)
m ) ∝ η

fm→x(k)
m
(x

(k)
m )

∏
s∈S(k)

m

η
gs,m→x(k)

m
(x

(k)
m )×

∏
n∈M(k)

m

η
hn,m→x(k)

m
(x

(k)
m ). (6.30)
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(a) N distribution. (b) D distribution. (c) E distribution.

Figure 6.4: Distribution families for the separate position bias model. Horizontal
sections.

The above expression is a message multiplication similar to the one used
for messages to P2P factors. Hence, the same parametric message multiplica-
tion algorithm (Alg. 6.2) can be used to compute beliefs:

p̂
(
x
(k)
m

)
≈ pN

(
x
(k)
m ;µ

x
(k)
m

,Σ
x
(k)
m

)
. (6.31)

6.4.3 Parametric BP: Separate Position-Bias Model

The message update rules for the FG of Fig. 6.2b are now described.

6.4.3.1 Temporal messages

Similar to the joint case, temporal messages are approximated by Gaussian
distribution, but separately for bias and position variables:

η
fpm→p

(k)
m

(
p
(k)
m

)
≈ pN

(
p
(k)
m ;µ

p
(k)
m

,Σ
p
(k)
m

)
, (6.32)

η
fbm→b

(k)
m

(
b
(k)
m

)
≈ pN

(
b
(k)
m ;µ

b
(k)
m

,σ2
b
(k)
m

)
, (6.33)

where µ
p
(k)
m

and µ
b
(k)
m

are computed, respectively, from mobility and clock

drift models, and Σ
p
(k)
m

and σ2
b
(k)
m

are updated such that Σ
p
(k)
m
� Σ

p
(k−1)
m

,

σ2
b
(k)
m

> σ2
b
(k−1)
m

to take into account prediction uncertainty.

6.4.3.2 Messages from satellite factors

Messages from factors gs,m can now be divided into two types: messages to
position variables, that take as input an estimated bias value, and messages
to bias variables, which, conversely, take as input a position value. Based on
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similar considerations as in Sec. 6.4.2.3, satellite-to-position messages can be
computed as

η
gs,m→p(k)m

(
p
(k)
m

)
=

pD

(
p
(k)
m ; ρ(k)s→m − µ

b
(k)
m

,p(k)s ,σ2s→m + σ2
b
(k)
m

)
, (6.34)

where

pD
(
p; ρ,µs,σ2ρ

)
, 1
Z exp

[
− 1
2σ2ρ

(‖p−µx‖− ρ)2
]

(6.35)

denotes a Gaussian distribution with spherical support (cf. [68]), character-
ized by radius ρ (pseudorange measurement), center µs (satellite position),
and variance σ2ρ. An example of D distribution is depicted in Fig. 6.4b.

Satellite-to-bias messages are represented by a univariate Gaussian PDF:

η
gs,m→b(k)

m

(
b
(k)
m

)
=

pN

(
b
(k)
m ; ρ(k)s→m −

∥∥∥p(k)s −µ
p
(k)
m

∥∥∥ ,σ2s→m + tr(Σ
p
(k)
m
)
)

, (6.36)

where tr(·) denotes the trace operator.

6.4.3.3 Messages from peer-to-peer factors

Like it the joint case, P2P messages carry only position information. The
cylindrical distribution therefore reduces to an ellipsoidal distribution in the
p space, i.e., a section of the C distribution perpendicular to the b axis:

η
hn,m→p(k)m

(
p
(k)
m

)
=

pE

(
p
(k)
m ; r(k)n→m,µ

p
(k)
n→m

,Σ
p
(k)
n→m

+ σ2n→mI
)

, (6.37)

where

pE(p; ρ,µpn ,Σpn+ρ) ,

1
Z exp

[
−12

(
p ′ − ρ p ′

||p ′||

)T
Σ−1
pn+ρ

(
p ′ − ρ p ′

||p ′||

)]
. (6.38)

with p ′ = p−µpn . The E distribution is depicted in Fig. 6.4c. Observe that,
for ρ = 0, it becomes a Gaussian distribution N(µpn ,Σpn+ρ).

6.4.3.4 Messages to peer-to-peer factors

These messages, having a product form as

η
p
(k)
m →hm,n

(
p
(k)
m

)
∝ η

fpm→p
(k)
m

(
p
(k)
m

)
× (6.39)∏

s∈S(k)
m

η
gs,m→p(k)m

(
p
(k)
m

) ∏
l∈M(k)

m \n

η
hl,m→p

(k)
m

(
p
(k)
m

)
,

are approximated by D-variate Gaussian distributions N, whose parame-
ters are computed via the parametric message multiplication algorithm (Alg.
6.2).
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6.4.3.5 Messages to satellite factors

These messages are unique to the separate representation. They include bias-
to-satellite messages,

η
b
(k)
m →gs,m

(
b
(k)
m

)
∝η

fbm→b
(k)
m

(
b
(k)
m

)∏
v∈S(k)m \s

η
gv,m→b(k)

m

(
b
(k)
m

)
, (6.40)

which can be computed as univariate Gaussian distributions with

σ2
b
(k)
m →gs,m

=

 1
σ2
fbm

→b(k)m

+
∑

y∈S(k)m \s

1
σ2
gy,m→b

(k)
m


−1

, (6.41)

µ
b
(k)
m →gs,m

= σ2
b
(k)
m →gs,m

µfbm→b(k)mσ2f
bm→b

(k)
m

+
∑

y∈S(k)m \s

µ
gy,m→b

(k)
m

σ2
gy,m→b

(k)
m

 , (6.42)

and position-to-satellite messages η
p
(k)
m →gs,m

, which can be approximated as
Gaussian distributions using Alg. 6.2, similar to (6.39).

6.4.3.6 Beliefs

Position beliefs p̂(p(k)m ) are then computed like (6.39), including all incoming
P2P messages n ∈Mm. Bias beliefs p̂(b(k)m ) are computed like (6.40), i.e., uni-
variate Gaussian distributions with mean and variance given by (6.41,6.42),
including all satellites s ∈ Sm in the summation.

6.4.4 Complexity

Table 6.1: Complexity of H-SPAWN for a single agent.

Computation No. of FLOP

Compute time message 2(D+ 1)2 + 2(D+ 1)3

The following operations are repeated P+ 1 times and iterated I times

Draw multiplication samples N(D+ 1)2

Evaluate message distributions N(S+ P+ 2)(D+ 1)3

Compute message multiplication N(S+ P+ 4)

Estimate mean 2N(D+ 1)

Estimate covariance N(D+ 1)2

Complexity of the H-SPAWN algorithm is dominated by message multipli-
cation needed in messages to P2P factors and messages from position vari-
ables to satellite factors. Considering a certain node agent with one temporal
message, P peer-to-peer messages and S satellite-to-peer messages, using N
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Figure 6.5: Example network topology.

samples zi and requiring I iterations in the product estimate, the complex-
ity scales as O(IPN(S + P + 1)(D + 1)3).In contrast, all other messages are
computed analytically in O((S+ P+ 1)(D+ 1)). Table 6.1 lists the number of
floating point operations per second (FLOP) needed in one execution of Alg.
6.2.

6.5 simulation results

6.5.1 Cramér-Rao Bound

The analytical results derived in the Sec. 6.2 are now illustrated by a practical
example. Consider the network depicted in Fig. 6.5, with six agents arranged
in a star topology. Each agent can communicate with two neighbors, except
agent 6, located in the center, that can communicate with all other agents.
Agent 1 has visibility of all satellites; agent 2 can see four (the minimum
number needed to estimate position and bias unambiguously); agents 3, 4, 5,
and 6, on the contrary, are only connected to three, two, one, and no satellites,
respectively. This configuration is representative of a network located in an
indoor environment, where only agents close to windows or outer walls can
receive satellite measurements.

Position of agent 6 (45.06° lat., 7.66° long., 311.96 m height) is taken as
the origin of the reference system; the relative positions of the other agents,
expressed in easting-northing-up (ENU) coordinates, are:

Agent no. 1 2 3 4 5 6

E [m] -50 0 50 30 -30 0

N [m] 10 30 40 -20 -40 0

U [m] 0.27 0.92 -1.13 0.43 0.15 0
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Figure 6.6: Comparison of position- and bias-CRB in realistic 3D scenario: non-
cooperative (GNSS only) vs. hybrid (GNSS + peer-to-peer communication)
setting.

Satellites’ positions are drawn according to real GPS orbits. Their values,
again expressed in ENU coordinates with respect to agent 6, are:

Sat. no. 1 2 3 4 5 6 7

E [·106m] -16.17 -9.18 -1.71 -13.97 14.28 22.95 -12.90

N [·106m] -4.02 -18.36 -10.50 10.83 6.46 4.86 21.68

U [·106m] 14.02 10.78 18.15 13.31 15.01 5.83 2.44

The variance of pseudorange and range measurements is set, respectively,
to σs→m = 5 m ∀m ∈M, s ∈ Sm and σn→m = 0.20 m ∀m ∈M,n ∈Mm. For
simplicity no anchors are considered in this example.

Under this setting, the CRB is computed to compare the achievable posi-
tioning accuracy in the non-cooperative and in the hybrid scenario. Let J
be the CRB matrix obtained by inversion of Fnon−coop (6.10) or F (6.11), after
removing rows and columns corresponding to non-estimable variables4, and
denote by Jm the (D+1)× (D+1) = 4×4 block of J corresponding to agent
m. Then, the positioning accuracy for each agent m can be decomposed into:
a horizontal component, i.e, the trace of the E-N block of Jm,

σCRB−hor(m)
.
=
√
Jm[1, 1] + Jm[2, 2],

a vertical component

σCRB−vert(m)
.
=
√
Jm[3, 3],

4 Non-estimable variables are: positions and biases, for agents whose total number of connec-
tions is less than D+ 1; biases, for agents connected to no satellites. These variables generate
matrix singularities, hence CRB→∞.
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and a bias component

σCRB−bias(m)
.
=
√
Jm[4, 4].

The unit of all components is meters.
These performance metrics, plotted in Fig. 6.6, illustrate the benefits aris-

ing from cooperation. With the exception of agent 1, which has full visibility
of all the available GPS satellites, the other agents obtain a significant perfor-
mance improvement in the hybrid case. For agent 2, which sees four satel-
lites, the CRB reduces by one half. Agents 3, 4, and 5 in the non-cooperative
case have less measurements than unknowns, hence their CRB → ∞; when
peer-to-peer communication is introduced, the CRB takes relatively low val-
ues. Cooperation thus proves to be essential in GPS-challenged environments.
Agent 6, finally, is able to estimate its position thanks to peer-to-peer informa-
tion, but cannot estimate its bias in any case: at least one satellite connection
is necessary, since range measurements do not carry any information about
clock bias.

6.5.2 H-SPAWN Performance

In this section the performance of the H-SPAWN algorithm, introduced in
Sec. 6.4, is analyzed in two scenarios: a small static network, as a proof of
concept, and a large mobile network, as a realistic case. The performance
of H-SPAWN is compared in both scenarios with two classical approaches: a
hybrid-cooperative weighted least squares (HC-WLS) algorithm, inspired on
the iterative descent method proposed in [158] and extended to hybrid GNSS-
terrestrial ranging like in [44]; and the hybrid-cooperative extended Kalman
filter (HC-EKF) algorithm presented in [15].

6.5.2.1 Small-scale Static Scenario

The first scenario, shown in Fig. 6.7a, is defined as follows:

• Satellite positions (Tab. 6.3) according to real GPS satellite orbits, seen
from the equator.

• 6 nodes deployed on the Earth surface over an area of 100× 100 m, as
in Table 6.2.

• Uniform initial distributions in a circle of radius 1 km. (a warm-start
condition, i.e., nodes have prior knowledge of the region where they
are located when turned on).

• Static nodes. As a consequence, the following model is used when up-
dating temporal messages: x(k)

m = x
(k−1)
m ; Σ

x
(k)
m

= Σ
x
(k−1)
m

+ σ2I , with
σ2 = 4.
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• Pseudorange and P2P range measurements are corrupted by AWGN

with standard deviation σs→m = 5 m and σn→m = 0.2 m respectively,
typical values for GNSS in open sky conditions and UWB-based ranging
in line-of-sight (LoS).

• New measurements are generated at each time slot, and algorithms
run 5 iterations per slot.

The performance of H-SPAWN, HC-EKF, and HC-WLS in the above scenario
is evaluated in terms of root mean squared error (RMSE), computed from
the error vectors ε(k)m , µ

p
(k)
m

− p
(k)
m for all agents m ∈ M over 100 Monte

Carlo simulations. The global localization RMSE is reported for each node in
Fig. 6.7b, comparing the three considered algorithms after five time slots.
H-SPAWN in its joint position-bias version outperforms all the other algo-
rithms, while HC-WLS provides the worst accuracy overall. In order to eval-
uate the benefit of cooperation, the performance achieved by nodes is an-
alyzed in relation to their connectivity conditions. Nodes 1 and 2 (which
have enough satellites in view) achieve the least errors. More interesting are
the cases of peers 3-5, which have 3, 2 and 1 satellite in view respectively
and are therefore unable to localize themselves using GNSS only. For these
nodes, localization is made possible thanks to cooperation, although with
larger errors compared to nodes with complete satellite visibility. Finally,
node 6, even without visible satellites, achieves good performance, thanks
to collaboration with the other nodes in the network. RMSE values are close
to the Cramér-Rao lower bound, derived for the same scenario in [101], thus
confirming the effectiveness of the proposed algorithm implementation.

A more detailed comparison is shown in Figs. 6.7c-6.7d, where the CDFs of
the global errors over all nodes in the network are plotted at the first and the
fifth time slot. A coordinate transformation from ECEF to ENU is performed in
order to analyze errors in horizontal and vertical components, as it is usual
in GNSS performance tests. It can be noticed how H-SPAWN-joint, after a sin-
gle time slot, achieves superior accuracy than H-SPAWN-separate after 5 slots,
thus providing faster convergence. With more time slots, estimates are en-
hanced thanks to the availability of new measurements, and H-SPAWN-joint
still obtains superior performance compared to other algorithms with the
same number of measurements. Differences are more evident in the horizon-
tal component than in the vertical one, where the HC-EKF has a performance
close to that of H-SPAWN-joint.

The convergence of the considered algorithms is shown in Figure 6.7e,
which illustrates the evolution of the global RMSE iteration by iteration over
5 time slots. H-SPAWN-joint rapidly achieves a good performance in a few
iterations, and slightly improves it with more measurements.
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Table 6.2: Peer Positions in ENU for the small-scale simulation scenario.

Peer 1 2 3 4 5 6

E[m] -50 0 50 30 -30 0

N[m] 10 30 40 -20 -40 0

U[m] -9 6 1 -7 2 0

Table 6.3: Satellite positions in ECEF coordinates.

Sat. 1 2 3 4 5 6 7

x[m] 19263524 26124976 24768710 8048029 8543818 2082386 -7307117

y[m] -13725770 -5749420 1601307 -13014437 15561017 23437415 -14002994

z[m] 11583188 -846377 9925575 21563572 19676844 12048145 21528812

Sat. 3 

Sat. 2 

Sat. 4 
Sat. 5 

Sat. 6 

Sat. 7 
Sat. 1 

(a) Simulation scenario.
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Figure 6.7: Small-scale simulation scenario and resulting RMSE by agent (top), global
error CDF and RMSE evolution averaged over all agents (botom). Results
after 1 and 5 time slots, 100 Monte Carlo runs.
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6.5.2.2 Large-scale Mobile Scenario

In order to assess the performance of the proposed algorithm in a realis-
tic, challenging scenario, a network of 100 mobile agents placed inside a
building is now considered. Only nodes that are close to the walls have par-
tial visibility of the GNSS constellation; in addition, it is assumed that nodes
are able to communicate with peers if their distance is lower than a certain
threshold, obtaining in this way a mesh network, with several hops between
internal nodes (without any satellite visibility) and the outer ones (with par-
tial visibility). The scenario is depicted in Fig. 6.8a and is defined as follows:

• Real GPS satellite orbits from 45° latitude.

• 100 nodes deployed on the Earth surface inside a building of 100× 100
m, with warm start in a circle of radius 10 km.

• Random-waypoint mobility model [11]: each node moves towards a ran-
dom point (selected with uniform probability) at constant velocity, uni-
formly chosen between 1 and 2m/s, remains in such point for a ran-
dom time (uniform between 0 and 1s), and then moves to a new point.
To make simulation more realistic, it is assumed that the mobility
model is unknown to nodes. Therefore, temporal messages follow the
usual model with x(k)

m = x
(k−1)
m , Σ

x
(k)
m

= Σ
x
(k−1)
m

+ σ2I , with σ2 = 4.

• Pseudorange are corrupted by AWGN with standard deviations varying
from 10 to 20m depending on the satellite elevation angle seen from
the peer (cf. [63]), modeling in this way multipath fading and jitter due
to low carrier-to-noise ratio (C/N0).

• P2P communication between nodes, say m and n, is possible only if
dm,n , ‖pm − pn‖ < 20m. Range measurements are corrupted by
AWGN with σm→n = 0.2m if dm,n 6 10m, or σm→n = 0.4m if 10 <
dm,n 6 20m.

• New measurements are generated at each time slot. Algorithms are
stopped after 3 iterations per slot. In order to better appreciate the
effect of mobility, every Monte Carlo run consists now of 20slots with
duration of 1s.

Fig. 6.8b shows the horizontal error c.d.f.s achieved by the considered algo-
rithms in the above scenario, at the first and last time slot. Fig. 6.8c shows
the evolution of the RMSE as a function of time slots. H-SPAWN in the joint ver-
sion confirms its superiority compared to HC-WLS and HC-EKF. Remarkably,
all algorithms exhibit a significant improvement of the estimated position
accuracy with time, in spite of mobility (and consequent dynamic topology).
Observe that H-SPAWN and HC-EKF achieve similar performance asymptoti-
cally in time (i.e., given a sufficient number of available measurements), but
H-SPAWN provides faster convergence.
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(c) Convergence of horizontal
RMSE.

(d) Number of visible satel-
lites by node.

(e) Horizontal RMSE (m) by node
using HC-EKF.

(f) Horizontal RMSE (m) by node
using H-SPAWN joint.

Figure 6.8: Large-scale mobile simulation scenario; numbers in brackets = number
of visible satellites. Performance in terms of horizontal error CDF (top-
center) and RMSE evolution (top-right) averaged over all agents, after
1 and 20 time slots. Bottom: node-by-node satellite visibility (left) and
RMSE evolution using HC-EKF (center) or H-SPAWN (right).

Now, the performance achieved by individual nodes is analyzed. Fig. 6.8d
shows the number of visible satellites for the nodes in the network. Satel-
lite visibility slightly changes with time due to mobility, but in general it
is denied for most nodes. Fig. 6.8e and Fig. 6.8f, then, illustrate the evolu-
tion of RMSE with time for each node. A strong correlation can be observed
between these results and Fig. 6.8d: RMSE convergence is faster for nodes
with good satellite visibility, whereas inner nodes need more time slots be-
cause they may be several hops away from GPS-enabled peers. However, for
all nodes H-SPAWN provides shorter convergence times than HC-EKF. There-
fore H-SPAWN proves more effective in exploiting peer-to-peer information
exchange than competing algorithms.
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M U LT I - S E N S O R S I G N A L D E T E C T I O N I N
H E T E R O G E N E O U S E N V I R O N M E N T S

7.1 mathematical formulation

7.1.1 System Model

Consider a cognitive network composed of K “secondary” users, coexisting
with a “primary” network. The channel occupation for a certain secondary
node k at time t is denoted by H

(t)
k ∈ {0, 1}. As explained in Sec. 1.1, a

potentially heterogeneous detection setting is assumed, where the channel
may be occupied by primary users in a certain location and free in another
location. This situation may depend on the presence of physical barriers (e.g.,
walls), or on a predefined communication range above which interference is
considered non-harmful (see Fig. 7.4).

The time is modeled as slotted. At each time slot, secondary users perform
spectrum sensing by measuring the average energy, 1N‖y

(t)
k ‖2, where y(t)k ,[

y
(t)
k (1), . . . ,y(t)k (N)

]
is a vector of N complex base-band received signal

samples. Depending on H
(t)
k , the generic sample can be written as

y
(t)
k (n) =

{
vk(n) if H

(t)
k = 0,

xk(n) + vk(n) if H
(t)
k = 1,

(7.1)

where vk(n) ∼ N(0,σ2v) is complex white Gaussian noise, and xk(n) repre-
sents the signal received from a primary user if active. Signals are modeled
as zero-mean random variables with E|xk(n)|

2 , σ2k, which includes the
channel gain (assumed constant during the sensing period). The SNR at node
k is defined as

ρk ,
σ2k
σ2v

. (7.2)

7.1.2 Single Node Detection

Since hypotheses H
(t)
k may be different for different nodes and at different

time slots, the most general approach is obtained assuming all sensors as
independent and performing signal detection separately at each single node
and time slot. In this perspective, the test statistic available at node k is the
vector y(t)k . Assuming the signal samples as complex Gaussian distributed
(which is a reasonable approximation also for PSK or QAM modulated signals,
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taking into account pulse shape filter and non-coherent reception), the single-
sensor likelihood ratio test (LRT) is given by

L
(t)
k ,

p(y
(t)
k |H

(t)
k = 1)

p(y
(t)
k |H

(t)
k = 0)

(7.3)

=
(σ2v)

N−1

1+ ρk
exp

(
‖y(t)k ‖2
σ2v

ρk
1+ ρk

)
Ĥ

(t)
k =1

≷
Ĥ

(t)
k =0

τ. (7.4)

The above LRT can be seen from two points of view: as a Bayesian test, if
the prior distributions of H(t)

k and of y(t)k are uniform (non-informative); or
as a Neyman-Pearson (NP) test, in which case the threshold τ is chosen as
a function of the desired false alarm rate α. From (7.4) it follows that the
energy 1

N‖y
(t)
k ‖2 is a sufficient statistic for the LRT, i.e., energy detection

is optimal in case of single-sensor detection. Thus, applying logarithms on
both sides of Lk, the test can be rewritten as

1

N
‖y(t)k ‖2

Ĥ
(t)
k =1

≷
Ĥ

(t)
k =0

σ2v
N

(
1+

1

ρk

)[
log(1+ ρk) + log τ− (N− 1) logσ2v

]
︸ ︷︷ ︸

,η

. (7.5)

If the NP approach is adopted, the new threshold η needs not be computed
from τ, but it is chosen such that Pr

(
1
N‖y

(t)
k ‖2 > η

∣∣∣H(t)
k = 0

)
= α, which

yields

η(α) = σ2v

[
1+N−1/2Q−1(α)

]
, (7.6)

as follows from well-known results on energy detection (cf. [67, 80]).
Then, define for each node an individual observation factor

F
(t)
k ,

1

N
‖y(t)k ‖2 − η(α)

Ĥ
(t)
k =1

≷
Ĥ

(t)
k =0

0. (7.7)

Note that the above statistics have the form of log-likelihood ratio (LLR) tests.
Also, thanks to the adoption of a NP approach, factors Fk only require knowl-
edge of the noise variance (which can be estimated as the average energy of
no-signal slots, offline or online) but not of the SNR of the signal to be de-
tected. On the contrary, Bayesian likelihood ratios (e.g., [66, 109]) require
prior knowledge of the SNR under hypothesis H = 1 and lack a general an-
alytic method to set the decision threshold as a function of the false-alarm
rate.

7.1.3 Statistical Dependencies

Single-user detection is optimal only when all sensors are uncorrelated. In re-
alistic scenarios, it is likely that some correlation exists between the channel
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occupancy of neighboring nodes, although such correlation is a priori un-
known and may be time-varying (e.g., due to mobile primary users, changes
in the radio environment, etc.). This condition can be taken into account
through a pairwise Markov random field (MRF) model. As such, a joint prior
distribution of variables H

(t)
k is introduced in the form of a product of pair-

wise exponential terms:

p(H
(t)
1 , . . . ,H(t)

K ) =
1

Z

∏
j∈NK
k<j

exp
(
λ∆

(t)
kj · {H

(t)
k = H

(t)
j }
)

, (7.8)

where Nk is the set of nodes within the communication range of k (“neigh-
bors”), Z is a normalization constant such that the probability sums to 1,
λ < 1 is a small positive constant, {x} = 1 if x is true or 0 otherwise, and
∆
(t)
kj is learned from a number T of previous time slots as follows:

∆
(t)
kj ,

t−1∑
q=t−T

{Ĥ
(q)
k = Ĥ

(q)
j }− {Ĥ

(q)
k 6= Ĥ

(q)
j }. (7.9)

In practice, ∆(t)
kj can be updated recursively by

∆
(t)
kj = ∆

(t−1)
kj + {Ĥ

(t−1)
k = Ĥ

(t−1)
j }− {Ĥ

(t−1)
k 6= Ĥ

(t−1)
j }. (7.10)

The rationale for the proposed model is the following: the exponential terms
in (7.8) assign higher probability to the event of nodes k and j having the
same state H

(t)
k = H

(t)
j , if the decisions of nodes k and j have been equal

in the majority of previous observations. The strength of interconnection
between H

(t)
k and H

(t)
j is adjusted by the product λ∆kj. Since −T < ∆kj < T ,

the constant λ should be chosen such that exp(λT)� 1, i.e., a large number
of equal decisions between nodes k and j results in a high probability of
H

(t)
k and H

(t)
j being equal. On the other hand, if |∆kj| is small (no significant

correlation between previous decisions of nodes k and j), then exp(λ∆kj) ≈ 1,
i.e., the MRF distribution becomes non-informative.

7.1.4 Resulting Model

By combining the prior MRF joint distribution with individual observation
likelihoods, the joint a posteriori distribution of variables H

(t)
1 , . . . ,H(t)

K can
be expressed as

p(H
(t)
1 , . . . ,H(t)

K |y
(t)
1 , . . . ,y(t)K ) ∝

K∏
k=1

p(y
(t)
k |H

(t)
k )
∏
j∈Nk
k<j

exp
(
λ∆

(t)
kj · {H

(t)
k = H

(t)
j }
)

.

(7.11)
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Note that, if p(H(t)
k ) is uniform, then p(y(t)k |H

(t)
k ) and p(H(t)

k |y
(t)
k ) are equiv-

alent up to a proportionality constant. Then, the signal detection problem for
every node k can be formulated as a LRT of the marginal a posteriori proba-
bilities,

L
post
k ,

p(H
(t)
k = 1|y

(t)
1 , . . . ,y(t)K )

p(H
(t)
k = 0|y

(t)
1 , . . . ,y(t)K )

, (7.12)

with

p(H
(t)
k |y

(t)
1 , . . . ,y(t)K ) =

∑
∼{H

(t)
k }

p(H
(t)
1 , . . . ,H(t)

K |y
(t)
1 , . . . ,y(t)K ) (7.13)

where the notation
∑

∼{H
(t)
k }

denotes multiple summation over all variables

{H
(t)
1 , . . . ,H(t)

K } except H(t)
k .

The next section introduces a decentralized algorithm which, through an
iterative exchange of local messages between network nodes, approximates
the marginal LRTs of interest (7.12) while at the same time setting constraints
on the local false-alarm probabilities for each node, in a NP-like fashion.

7.2 message passing algorithm

In order to estimate the marginal LRTs, the sum-product algorithm over factor
graphs [62] is applied to the model defined by Eq. (7.11). In the considered
model, each factor is connected to at most two variables, therefore message
update rules can be expressed directly from one variable to another. Note
that a decentralized implementation of the BP algorithm is enabled by the
one-to-one correspondence between variables H(t)

k and nodes in the network.
As such, a generic message from node k to node j at iteration l is given by

µ
(t,l)
k→j(H

(t)
j ) ∝

∑
H

(t)
k ∈{0,1}

p(y(t)k |H
(t)
k ) exp(λ∆(t)

kj · {H
(t)
k = H

(t)
j })

∏
n∈Nk\{j}

µ
(t,l−1)
n→k (H

(t)
k )

 .

(7.14)

Messages at iteration l = 0 are initialized as uniform distributions. Beliefs,
i.e., estimates of the marginal probabilities (7.13), are computed at each iter-
ation l as

b
(t,l)
k (H

(t)
k ) ∝

∏
n∈Nk

µ
(t,l)
n→k(H

(t)
k ). (7.15)

The proportionality sign in (7.14) and (7.15) indicates that beliefs and mes-
sages are expressed up to a constant, which can be found by normalizing
b(·) and µ(·) so as to sum to 1.
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Message update rules are now expressed in terms of LLRs. Define LLR

beliefs

Λ
(t,l)
k , log

b
(t,l)
k (H

(t)
k = 1)

b
(t,l)
k (H

(t)
k = 0)

(7.16)

and messages

M
(t,l)
k→j , log

µ
(t,l)
k→j(H

(t)
j = 1)

µ
(t,l)
k→j(H

(t)
j = 0)

. (7.17)

After algebraic manipulations, Message and belief update rules can be rewrit-
ten in LLR form as

M
(t,l)
k→j = S

λ∆(t)
kj , logL(t)k +

∑
n∈Nk\{j}

M
(t,l−1)
n→k

 , (7.18)

Λ
(t,l)
k = logL(t)k +

∑
n∈Nk

M
(t,l)
n→k, (7.19)

where

S(a,b) , log
1+ ea+b

ea + eb
, (7.20)

and L(t)k is given by (7.3). As explained in Sec. 7.1.2, expressing L(t)k in ex-
plicit form requires knowledge of the distribution of y(t)k under the hypothe-
sis of signal present, which ultimately amounts to the knowledge of the SNR

ρk. Furthermore, even assuming a prior knowledge, or guess, of the signal
strength, the problem of setting the decision threshold τ remains unsolved:
if one assigns equal weights to type-I and type-II errors (false alarms and
missed detections), then the threshold should be set to 1 (i.e., 0 in the LLR

domain), but this approach is not useful to ensure a false-alarm rate lower
than a specified value.

On the other hand, it has been3 shown in Sec. 7.1.2 that the LRT on L(t)k
is equivalent to a LLR test of the energy 1

N‖y
(t)
k ‖2 against a modified thresh-

old η(α) that can be expressed directly as a function of the false-alarm rate.
Therefore, set

logL(t)k := F
(t)
k =

1

N
‖y(t)k ‖2 − η(α) (7.21)

in (7.18) and (7.19), with F(t)k defined in (7.7). In this way a combined NP-
Bayesian methodology has been applied to the multi-sensor detection prob-
lem: individual observations are processed by a NP approach, which is in-
sensitive to SNR knowledge and offers control over the false-alarm rate, and
are reinforced by peer-to-peer collaboration, implemented by means of a
Bayesian joint prior distribution estimated from previous time slots.
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Figure 7.1: Example of a factor graph for a simple network of 3 nodes, represent-
ing messages and individual likelihood functions at a certain time slot
t and iteration l. The statistical graph matches with the network topol-
ogy, therefore messages can be exchanged by nodes in a decentralized
fashion.

After a sufficient number of iterations (L), each node makes a decision on
H

(t)
k simply based on the sign of its LLR belief:

Λ
(t,L)
k

Ĥ
(t)
k =1

≷
Ĥ

(t)
k =0

0. (7.22)

Observe that the threshold on beliefs is set to zero as a result of (7.7). This
implies that for each node the achieved false-alarm probability is always
equal to α (in case of no correlation with neighbors) or lower. More details
about this property are given in Sec. 7.3.

The graphical model is illustrated in Fig. 7.1 for a simple network of K = 3

nodes. Since all factors are pairwise, factors are simply represented as edges
in the graph, and variables as vertices. This representation allows an intu-
itive mapping between graphical model and physical network. The figure
shows the intrinsic information of each node, Fk, which can interpreted as a
factor connected to a single variable, and messages Mk→j exchanged in the
network at a certain iteration and time slot.

The resulting algorithm, called NP-BP, is summarized in Alg. 7.1. From the
point of view of implementation it is worth noting that messages defined in
LLR form are scalar numbers, which can be represented using few bits in the
packets that are exchanged in the network. Finally, the number of iterations
needed to reach convergence of the algorithm depends, in general, on the
size and on the structure of the “clusters” of the network, i.e., the groups of
nodes under the same hypothesis. It is observed empirically that very few
iterations (e.g., 3) are enough to reach convergence (at least of final decisions,
i.e., binary beliefs) even in large-scale networks.
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7.3 performance analysis

In this section the performance of the proposed NP-BP method is investigated.
First of all observe that, for sufficiently large T , the quantity ∆(t)

kj defined in

(7.9) is directly related to the correlation r(t)kj between variables Hk and Hj
1:

r
(t)
kj > 0 ⇔ ∆

(t)
kj →∞ (7.23)

r
(t)
kj = 0 ⇔ ∆

(t)
kj → 0 (7.24)

r
(t)
kj < 0 ⇔ ∆

(t)
kj → −∞. (7.25)

The first case includes in particular ρ(t)kj = 1, which means Hk = Hj (two
nodes under the same hypothesis). The second case represents nodes that
observe uncorrelated data, for example activity from different primary users.
The third case occurs if two nodes remain under opposite hypotheses for
long time.

Then, it is useful to analyze the asymptotic behavior of the function S(a,b)
defined by (7.20). Note that: (i) S(a,b) is symmetric with respects to its argu-
ments, a and b; (ii) when one of the arguments is significantly larger than
the other one, the function tends to min{a,b}. The function S(a,b) is plotted
in Fig. 7.2 for different values of the parameters. In the message update rule
(7.18), the first argument is λ∆(t)

kj , i.e., a quantity that grows with the number
of available previous observations when these reveal correlation with neigh-
boring nodes; the second argument is the sum of the neighbor’s individual
likelihood ratio and incoming messages.

Based on these preliminary considerations, two extreme operating condi-
tions of the NP-BP can be identified.

1. No available past observations or no correlation between nodes k and j: λ∆(t)
kj �

F
(t)
k . In this case, from (7.18),

M
(t,l)
k→j ≈ λ∆

(t)
kj . (7.26)

Then, assuming that a node k is uncorrelated from its neighbors n ∈
Nk, it follows from (7.19) that

Λ
(t,L)
k ≈ F(t)k + λ

∑
n∈Nk

∆
(t)
nk. (7.27)

Since λ is a small constant (typically� 1) and, in absence of correlation
between nodes, ∆(t)

nk ≈ 0 (7.24), Eq. (7.27) reduces to Λ(t,l)
k ≈ F(t)k . Note

that this approximation is motivated not only for long observation pe-
riods (large T ), but also for small T , because by definition λ∆(t)

nk takes

1 The correlation coefficient is defined as r(t)kj , E[(Hk−µk)(Hj−µj)]
σkσj

=
E[HkHj]−0.25

0.25 . The

index t is dropped as Hk and Hj are considered here as random variables, of which H
(t)
k

and H
(t)
j are realizations at time t.
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Figure 7.2: Plot of S(a,b) for different values of a.

significant values only after a certain number of time slots. In addition,
if there are enough neighbors having no correlation with k, the sign of
∆
(t)
nk is positive or negative with equal probability, hence the sum tends

to zero.

As a result, in absence of correlation, the proposed spectrum sensing
procedure reduces to single-user energy detection: each node separately
tests F(t)k ≷ 0, which is equal to 1

N‖y
(t)
k ‖2 ≷ η(α). This property guar-

antees that the average false-alarm rate achieved by each node is, in the
worst case (no cooperation among nodes), equal to α, thus satisfying
the Neyman-Pearson requirement of an upper bound to the false-alarm
rate.

In case of a sudden change in the radio environment that makes two
previously correlated nodes (k, j) become uncorrelated, the system au-
tomatically learns the new situation within a few time slots thanks to
the update of ∆(t)

kj (7.9). The learning rate is determined by the coef-
ficient λ: lower λ results in a slower adaptation and more conserva-
tive use of neighbors’ data; higher λ makes the system more reactive
to changes, but may result in overconfident estimation of correlations
with neighbors. The optimization of λ is a subject beyond the scope of
this paper. Empirically, the value of λ = 0.1 was chosen and used in
simulations (see Sec. 7.4).

2. Significant correlation between nodes k and j: λ∆(t)
kj � F

(t)
k . In this case,

(7.18) becomes

M
(t,l)
k→j ≈ F

(t)
k +

∑
n∈Nk\{j}

M
(t,l−1)
n→k . (7.28)
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Applied iteratively, the above expression leads to formation of clusters
of nodes correlated with each other: after a number of iterations L
sufficient to span the entire cluster, the test statistic of each node in
the cluster converges to the sum of individual LLR functions of all such
nodes. More formally, let C be a set of nodes under the same hypothesis
H

(t)
k = 0 or H

(t)
k = 1 ∀k ∈ C and ∀t in a certain observation period of

T slots; then, for any k ∈ C,

Λ
(t,L)
k ≈

∑
k∈C

F
(t)
k = |C|

(
1

|C|N

∑
k∈C
‖y(t)k ‖2 − η(α)

)
, (7.29)

where |C| is the cardinality of C, i.e., the number of nodes in the cluster.
Hence, the test for any k ∈ C can be rewritten as

1

|C|N

∑
k∈C
‖y(t)k ‖2

Ĥ
(t)
k =1

≷
Ĥ

(t)
k =0

η(α) (7.30)

and is equivalent to cooperative energy detection by all nodes in the
cluster. The advantage of the proposed method is that cooperation is
achieved in a fully decentralized way, without a fusion center like in
traditional cooperative spectrum sensing approaches. In addition, this
method does not require prior knowledge of the nodes participating in
cooperative detection, because clustering is determined automatically
based on the evolution of coefficients ∆(t)

kj . These properties ensure ro-
bustness and scalability of the sensing algorithm.

7.3.1 False-alarm Probability and Selection of the Threshold

7.3.1.1 Single-user threshold

The threshold η(α) given by (7.6) is tailored for the single-user case. Clearly,
if a node has no collaborating neighbors, the resulting false-alarm proba-
bility is Pfa = α. However, cooperation among multiple nodes provides an
improvement of the false-alarm probability at a given threshold: if all nodes
in C are under the same condition (H = 0), the resulting false-alarm proba-
bility is

Pfa(C) = Q

[√
|C|N

(
η

σ2v
− 1

)]
, (7.31)

as in an energy detector with |C|N samples. Therefore, setting η as (7.6) gives
in the cooperative case a lower false-alarm rate than the nominal value α.

7.3.1.2 Cooperative threshold

In case of cooperation, a new threshold

ηC(α) = σ
2
v

[
1+ (|C|N)−1/2Q−1(α)

]
(7.32)
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can be then computed from inversion of (7.31), resulting exactly in Pfa(C) = α

for all k ∈ C. The new “cooperative” threshold can be set once clusters are
established with sufficient stability, and the number of nodes in the cluster
(|C|) must be constantly verified based on coefficients ∆(t)

kj . Note that such
a threshold selection may fail to guarantee the required false-alarm rate in
case of changes in the radio environment for the nodes in C. However, thanks
to the automatic update of coefficient ∆(t)

kj , normal conditions are restored
within a few time slots.

7.3.2 Detection Performance

The resulting detection probability for a cluster C can be computed again by
using results from energy detection theory (cf. [67, 80]). From (7.30), the test
statistic can be written as

TC ,
1

|C|N

∑
k∈C
‖y(t)k ‖2 =

1

|C|

∑
k∈C

Tk, (7.33)

and Tk ∼ N
(
1+ ρC, 1

|C|2N

∑
k∈C(1+ ρk)

2
)

, with ρC , 1
|C|

∑
k∈C ρk, by linear-

ity of the normal distribution. Hence, the detection probability is

Pd(C) = Pr[TC > η] = Q

|C|
√
N

η/σ2v − 1− ρC√∑
k∈C(1+ ρk)

2

 . (7.34)

If all nodes in C are under the same SNR ρ, the above formula reduces to

Pd(C) = Q

[√
|C|N

(
η/σ2v
1+ ρ

− 1

)]
, (7.35)

which is the same performance of a single energy detector with |C|N samples,
similarly as in (7.31).

Note that, if a node has no cooperating neighbors, the same result (7.35)
holds with |C| = 1 thus reducing to traditional single-user energy detection.

7.3.3 Complexity

The computational complexity of NP-BP is very low, since in the adopted LLR

representation all messages are scalar quantities, and their computation only
involves sums and products. From a networking point of view, the main
issue is message exchange, because (i) messages occupy some bandwidth
(although limited), and (ii) packet transmission may fail and require retrans-
mission(s). The latter problem is particularly relevant if nodes communicate
over the same wireless channel that they are sensing, and that is possibly oc-
cupied by a primary user. In order to minimize both bandwidth usage and
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Figure 7.3: Small-scale network (K = 6 nodes). 3 nodes are under H = 1, 3 under
H = 0. Each node can communicate with its neighbors; connections are
indicated by dotted lines.

transmission errors, it is convenient to reduce the number of iterations of NP-
BP. As an example, simulation results shown in the next section demonstrate
that 3 iterations per time slot already provide excellent performance in all
considered scenarios.

7.4 simulation results

The performance of the proposed algorithm is evaluated under two different
simulation scenarios: the small network of Fig. 7.3 and the large, random
network of Fig. 7.4.

The first case consists on K = 6 nodes; 3 of them experience the presence of
a primary signal, while the other 3 nodes observe only noise. Each node can
communicate with a limited number of neighbors, indicated by dotted lines
in the figure. The second case is a large-scale network modeled as a “random
geometric graph” [115], where nodes (K = 50) are deployed randomly in a
square of size 100× 100 units, and can communicate with each other if their
distance is less than r = 20 units. It is assumed that nodes in the left part of
the plane are under hypothesis H = 0, while nodes on the right are in the
presence of a signal.

Results for the small-scale scenario are reported in Figures 7.5, 7.6, and
7.7. The plots illustrate the false-alarm probability, computed for one of the
nodes under H = 0, namely node 5, and the detection probability, computed
for one of the nodes under H = 1, namely node 2, at three different time
slots: t = 1, t = 5, and t = 10. For all slots, BP is stopped at the third
iteration. Observe that at t = 1, the NP-BP algorithm reduces to single-user
detection, because no observations are available, hence all variables ∆(t)

kj are
equal to 0.

In Fig. 7.5, the SNR is constant (−5 dB) for all nodes under hypothesis
H = 1. The graph shows that NP-BP significantly improves the performance
of single-user energy detection (i.e., results at t = 1), both in terms of false-
alarm and of detection probabilities. The gap increases with time, as the
system gradually learns the correlation parameters. At t = 10, the detection
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Figure 7.4: Large-scale network: K = 50 nodes randomly deployed in an area of
100 × 100 units; communication range r = 20 units. Nodes in the left
sector (x 6 50) are under H = 0, nodes in the right sector (x > 50) are
under H = 1.

probability reaches exactly the performance of cooperative energy detection
(CED), thus validating (7.35).

Note that in this example the threshold is like in the single-user case (7.6),
therefore the achieved false-alarm probability is lower than the nominal rate
α. In Fig. 7.6 the same setting is considered, but the threshold is now reset
using (7.32), with |C| = 1 + |N2| = 3. In this case, the system achieves the
nominal false-alarm rate α asymptotically2 in t, while the detection proba-
bility is significantly improved and still consistent with the CED bound (now
computed using the cooperative threshold).

Fig. 7.7 shows the results obtained again in the small-scale network, but
with different SNRs for the three nodes under H = 1. In this case the perfor-
mance of the NP-BP method converges to the CED curve (7.34) in the right-
most part of the plot, and it slightly outperforms CED for α→ 0. The reason
is that an additional advantage comes from the (negative) correlation with
the nodes of the other cluster. Although this advantage is negligible in most
cases, it becomes relevant when α is low and when the nodes in the cluster
have different SNRs. To give insight into this fact, Fig. 7.8 compares the detec-
tion probability achieved (a) in the same scenario of the previous figure (two
clusters, three nodes under H = 1 and three under H = 0), and (b) in the

2 In practice, for t ≈ 10. Also note that expressions (7.6) and (7.32) are derived by applying the
central limit theorem, and turn out to be slightly biased upwards for α→ 0.
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Figure 7.5: Simulation results for the small network of Fig. 7.3. SNR={−5,−5,−5} dB.
3 iterations. The reported Pd refers to node 2, Pfa to node 5.
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Figure 7.6: Simulation results for the small network of Fig. 7.3. SNR={−5,−5,−5} dB.
3 iterations. The reported Pd refers to node 2, Pfa to node 5. The threshold
η(α) is set assuming |C| = 1+ |N2| = 3 in (7.6).
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Figure 7.7: Simulation results for the small network of Fig. 7.3. SNR={−4,−5,−7} dB.
3 iterations.

first cluster alone. It can be observed that in the second case the CED curve is
actually an upper bound, whereas in the presence of other nodes the bound
can be attained and even passed. In all cases, however, the theoretical expres-
sion (7.34) provides useful information about the expected performance of
the NP-BP method.

Next,the large-scale network of Fig. 7.4 is considered. For the nodes un-
der H = 1, the SNR is set randomly from a uniform distribution between
−8 and −1 dB. The simulation results obtained in this scenario, shown in
Fig. 7.9, confirm that NP-BP provides a substantial improvement over the per-
formance of single-user detection. In this specific configuration, most of the
improvement is obtained within the first 5 time slots. The threshold is set
according to the single-user formula (7.6), hence the false-alarm probability
is reduced as well.
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Algorithm 7.1: Decentralized NP-BP algorithm
Input : Number of iterations L; false alarm rate α; max. number of

time slots used for learning Tmax; constant λ.
Output : Decisions {Ĥ

(1)
k , . . . , Ĥ(S)

k } ∀k ∈ {1, . . . ,K}.

1 for time slot t = 1 to S do
2 Set T = min{t, Tmax};
3 for nodes k ∈ {1, . . . ,K} do
4 for neighbors j ∈ Nk do
5 if k < j then
6 Update ∆(t)

kj using (7.9);
7 else
8 ∆

(t)
kj = ∆

(t)
jk ;

9 end
10 end
11 end
12 for nodes k ∈ {1, . . . ,K} in parallel do
13 Collect N received signal samples, y(t)k ;

14 Compute F(t)k from (7.7);

15 Initialize and broadcast M(t,0)
k→j = 0 ∀j ∈ Nk;

16 for iteration l = 1 to L do
17 Receive incoming messages from neighbors: M(t,l−1)

n→k
∀n ∈ Nk;

18 for nodes j ∈ Nk do
19 Compute outgoing message M(t,l)

k→j from (7.18) and
send it to node j;

20 end
21 end

22 Compute belief Λ(t,L)
k from (7.19);

23 Make decision Ĥ
(t)
k using (7.22);

24 end
25 end
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Figure 7.8: Detection performance comparison: single cluster vs. two clusters. (a)
Configuration of Fig. 7.3, K = 6. (b) Only left cluster (H = 1), K = 3.
SNR={−4,−5,−7} dB.
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Figure 7.9: Simulation results for the large-scale network of Fig. 7.4. The SNRs of
nodes under H = 1 are chosen from a uniform distribution in [−8,−1]
dB. 3 iterations. The reported Pd and Pfa are averaged among all nodes
under H = 1 and H = 0, respectively.





8
M U LT I - S E N S O R S I G N A L D E T E C T I O N W I T H M A L I C I O U S
S E N S O R N O D E S

8.1 introduction and related work

Cooperative spectrum sensing schemes have been extensively studied in the
CR literature, e.g., [80, 168, 39]. Compared to single-user sensing, collabora-
tion among different CR users provides robustness against fading environ-
ments and improved performance in terms of false alarm and missed detec-
tion. However, cooperative spectrum sensing is vulnerable to misbehaving
nodes, which might report wrong sensing data, either because of malfunc-
tioning radio, or intentionally as malicious users.

The problem of trustworthiness in cooperative spectrum sensing has been
addressed in some recent works. For example, the method proposed in [165]
assigns a “reputation value” to SUs. The reputation of each SU is updated
at every time slot, based on the level of agreement of the considered SU

and the majority of SUs. This method relies on the existence of a number of
trusted SUs. If the reputation of a certain user is below a threshold, its sensing
report is ignored. In [147] three types of attacks are considered: PHY layer
attacks, MAC layer attacks, and combined PHY-MAC attacks. These attacks are
addressed by an approach based on abnormality detection. In [172], another
method based on no-regret learning is proposed. Game-theoretic strategies
are investigated in [144]. In [146, 145, 148], a Bayesian inference method is
proposed to detect malicious users, and an “onion-peeling” procedure is
used to discard sensing reports from nodes considered as unreliable.

In this chapter a unified Bayesian framework is proposed to perform spec-
trum sensing and detection of misbehaving nodes in a combined fashion. A
statistical attack model is adopted, whereby nodes behave maliciously with
a certain probability. This type of attack is difficult to detect using tradi-
tional learning algorithms that assume a constant underlying pattern. Two
possible attacks are considered: (a) type-1 attackers report that the channel is
busy when it is free, thus preventing SU transmission and making the chan-
nel available for other, unauthorized, users, and (b) type-0 attackers report
that the channel is free when it is busy, so as to increase the throughput of
the secondary network by purposely violating the constraints of interference
to the primary network. The proposed model has some similarities with the
one developed in [146, 145, 148] (“CatchIt” algorithm), which defines attacks
called “false-alarm” (similar to type-1) and “false-alarm & missed-detection”
(a combination of type-1 and type-0). One difference is that in the CatchIt
model attackers alter measured energy values (soft decision), whereas in the

117
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present model they falsify reports (hard decision). A hard-decision model is
motivated by two main reasons: (i) it can be applied to a broader class of de-
tection techniques, not necessarily energy detection: for instance, eigenvalue-
based detection [166], cyclostationary feature detection [30], etc.; (ii) it is suit-
able for distributed systems with limited bandwidth where the information
is quantized to a single bit.

8.2 problem formulation

The secondary network is composed of K users (SU) sensing the same chan-
nel at each time slot t. The presence of the PU is denoted by the binary
variable h(t), where h(t) = 0 means that PU is absent (free channel) at
time t, and h(t) = 1 means PU present (busy channel) at time t. Similar
to [161, 163, 164], a hard decision reporting scheme is considered, where in-
dividual decisions from K independent nodes are gathered by a special node
acting as the fusion center (FC). Let u(t)k be a binary variable representing the
true spectrum sensing decision of user k at time t, computed from observed
statistics (e.g., the average energy of the received signal). The reported de-
cision is then denoted by y(t)k . If the user is behaving maliciously, y(t)k may
differ from u

(t)
k .

In general, the probability p(u(t)k |h(t)) can be expressed as

p(0|0) = 1− Pfa, p(1|0) = Pfa,

p(0|1) = 1− Pd, p(1|1) = Pd, (8.1)

where Pfa and Pd are, respectively, the probabilities of false alarm and de-
tection, which depend on the specific detection technique adopted by SUs.
For example, in the case of energy detection, Pfa and Pd are functions of the
number of samples collected during time slot t, the noise power, the signal-
to-noise ratio (SNR) of the primary signal, and the decision threshold.

Whether or not the reported decision y(t)k differs from u
(t)
k depends on

user k’s hidden variable rk, that accounts for the attack type/probability of
user k. In order to express the opposite behaviors of users of type-1 and
type-0, variables rk can be conveniently defined as follows1:

rk =


= 0 user k is honest,

∈ (0, 1] user k is a type-1 attacker w.p. rk,

∈ [−1, 0) user k is a type-0 attacker w.p. |rk|.

(8.2)

1 Clearly, the mapping of user type/attack probability onto the variable rk is purely conven-
tional. Alternative representations are equivalent as long as they carry the same probabilistic
meaning.
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The reported decision can be expressed from u
(t)
k and rk as

y
(t)
k =


u
(t)
k w.p. 1− rk, 1 w.p. rk if rk > 0 and u(t)k = 0,

u
(t)
k w.p. 1− |rk|, 0 w.p. |rk| if rk < 0 and u(t)k = 1,

u
(t)
k otherwise.

(8.3)

According to this set-up, type-1 attackers (rk > 0) tend to report that the
channel is occupied when it is not, thus preventing SUs from using the chan-
nel; conversely, type-0 attackers (rk < 0) report that the channel is free when
it is not, thus favoring the secondary network.

The following observations and remarks give more insight into the pro-
posed attack model.

1. From the point of view of a malicious node k, rk is a known probability
value; from the point of view of the fusion center, rk is an unknown
random variable in the range [−1, 1].

2. It is assumed that values rk remain constant over T consecutive time
slots, i.e., the attack strategy of malicious nodes does not change too
quickly. Note that probabilistic attacks need a sufficient number of re-
alizations to produce predictable effects on average, therefore very fre-
quent changes of attack probabilities (e.g., every time slot) would not
be meaningful even from the attackers’ perspective.

3. The extreme cases rk = 1 and rk = −1 represent users being always
malicious, i.e., sending constant reports (y(t)k = 1 ∀t or y(t)k = 0 ∀t,
respectively). Such “trivial” attacks, although effective in the very short
term, can be easily identified after a few time slots. For this reason, the
main focus is on statistical attacks with 0 < |rk| < 1.

4. This work does not investigate the problem from the point of view of
malicious users, i.e., the strategy that may lead an attacker to choose
a certain probability value |rk|. It is only observed that, in order to
balance the probability of being detected with the effectiveness of the
attack, malicious nodes should intuitively choose attack probabilities
in the range 0 < |rk| < 1. This is the rationale for the adopted model.

Sometimes, there may be a subset of L < K trusted nodes (rk = 0), known
by the fusion center. The first L indices (r1, . . . , rL) are assigned to these
nodes for notational convenience2. The vector notation r , [rL+1, . . . , rK] ∈
[−1, 1]K−L is introduced to denote the unknown attack probability values.

The goal of spectrum sensing is to infer the correct value of h(t) at every
time slot t, in spite of possibly wrong reports sent by malicious nodes. Spec-
trum occupancy states of consecutive time slots, i.e., h(t) and h(t+1), are

2 Note that it is not assumed that the fusion center knows all the trusted nodes a priori: some
nodes might be honest, but unknown at the fusion center. In a similar scenario, these nodes
would be considered suspicious at the beginning (unknown rk), but eventually the estimates
of rk would converge to zero.
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assumed as independent3, Considering T consecutive time slots, let y(t) ,

[y
(t)
1 , . . . ,y(t)K ]† (where † means transpose) be the reports received in the time

slot t from all K users, and by Y , [y(1), . . . ,y(T)] the sequence of reports
received over T consecutive slots. Similarly, define U as a matrix containing
the K× T true sensing decisions, and by h = [h(1), · · · ,h(T)] the vector of T
unknown channel states to be estimated.

Given the above defined model, the following questions are of interest:

• What is the achievable spectrum sensing performance by a network
with sensor nodes undergoing statistical attacks?

• Is there an efficient way to counteract such attacks, when the number
of attackers, their identity, their attack type and probabilities, are un-
known at the FC? In other words, can the FC “learn” the variables rk
while processing the spectrum sensing reports sent by SUs?

• Once nodes with intermediate values of rk (i.e., 0 < |rk| < 1) are found,
should they be completely excluded from the decision process or can
their information be still exploited in some way?

The next sections will provide answers to these questions. First, the achiev-
able performance under the proposed attack model is derived using dif-
ferent fusion rules. Then, it is shown that the values of rk can actually be
learned through an efficient message-passing algorithm, and, with a suffi-
cient number of independent observations (time slots), the spectrum sensing
performance gets very close to the performance achieved in the case of full
knowledge of variables rk. Finally, the answer to the third question is that
all nodes with 0 6 |rk| 6 1 should be considered in the decision process in
order to extract all the available information. In this sense, a joint estimation
of variables rk and h(t) turns out to be optimal.

8.3 impact of statistical attacks on spectrum sensing perfor-
mance

This section analyzes how statistical attacks affect SU detection performance
(i.e., the probability of error when estimating h(t)) under the considered
model. Results are first derived for the error probability of a single node,
then cooperative detection is analyzed.

3 Other possible models for the evolution of h(t) are based on Markov chains, where
p(h(t+1)|h(t)) takes into account the statistics of primary user traffic. In this work, a sim-
pler uncorrelated model is adopted because (i) it is more general and (ii) the primary traffic
statistics are usually unknown at the secondary users.



8.3 Impact of Statistical Attacks on Spectrum Sensing Performance 121

8.3.1 Single Node Detection Performance

Consider a generic node k and time slot t. To simplify notation, indices k
and t can be dropped. The following quantities and functions are defined:

• p0 , p(h = 0) and p1 , p(h = 1) represent the prior distribution of h.
Usually, p0 = p1 = 1/2 (no prior information available).

• P̃fa(r) and P̃d(r) are the effective false-alarm and detection probabilities
of a malicious SU with attack probability r. Note that such probabilities
are equal to Pfa and Pd if reports are unaltered.

• φ(u,h) , p(u|h) is the conditional probability of the true spectrum
sensing outcome given the channel state. It is expressed directly from
(8.1) and is reported in Table 8.1. Note that, for trusted nodes, p(y|h) =
φ(y,h), where y is the report provided by the sensing node.

φ(u,h) u = 0 u = 1

h = 0 1− Pfa Pfa

h = 1 1− Pd Pd

Table 8.1: Values of φ(u,h).

• χ(u, r,y) , p(y|r,u) is the conditional probability of the report y given
sensing outcome and attack probability. It can be derived from (8.3)
and is charted in Table 8.2.

χ(u, r,y) y = 0 y = 1

u = 0
r > 0 1− r r

r 6 0 1 0

u = 1
r > 0 0 1

r < 0 |r| 1− |r|

Table 8.2: Values of χ(u, r,y).

• ψ(h, r,y) , p(y|h, r) =
∑1
u=0 χ(u, r,y)φ(u,h) is the observation likeli-

hood function and can be expressed from the quantities defined above.

Based on the above definitions, the false-alarm and detection probabilities
P̃fa(r) and P̃d(r) for a single node can be readily computed as follows:

P̃fa(r) = ψ(0, r, 1) and P̃d(r) = ψ(1, r, 1). (8.4)

The probabilities are summarized in Table 8.3. These values show that mali-
cious users of type-1 increase the false-alarm rate, while improving the de-
tection probability. On the contrary users of type-0 increase the probability
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r > 0 r < 0

P̃fa(r) Pfa + r(1− Pfa) Pfa(1− |r|)

P̃d(r) Pd + r(1− Pd) Pd(1− |r|)

Table 8.3: False alarm and detection probabilities for nodes with r 6= 0.

of missed detection while reducing false alarms. However, the overall effect
of malicious SUs is detrimental, as it is evident when analyzing the behavior
of P̃fa(r) and P̃d(r) in the limit Pd → 1, Pfa → 0, i.e., in absence of sensing
errors4. From Table 8.3 it follows that

r > 0 : P̃fa(r)→ r, P̃d(r)→ 1 (8.5)

r < 0 : P̃fa(r)→ 0, P̃d(r)→ 1− |r|. (8.6)

Therefore, for malicious users, either the probability of false alarm or the
probability of missed detection is always lower bounded by |r| > 0, even in
absence of sensing errors.

Defining the probability of error Pe , Pr(y 6= h), it follows that (assuming
uniform prior distribution of h)

Pe = p0P̃fa(r) + p1(1− P̃d(r)) =
1− (1− |r|)(Pd − Pfa)

2
, (8.7)

irrespective of the sign of r. Observe that the error probability, in the limit of
no sensing errors (Pfa → 0, Pd → 1), is lower-bounded by |r|/2.

8.3.2 Cooperative Detection Performance

Now, the impact of statistical attacks on cooperative spectrum sensing (K
collaborating users) is investigated. Here, cooperative sensing is formulated
as a classic “simple hypothesis testing” problem, i.e., as a test of likelihood
of the binary variable h(t), with r assumed as either perfectly known or
unknown. In fact, there is no way of estimating r in a single time slot. Un-
der this perspective, the reports received during a single time slot (y(t)) are
sufficient statistics for spectrum sensing, since h(t) is assumed to be inde-
pendent from previous and future time slots. Possible knowledge about PU

traffic statistics can be incorporated into the prior distribution p(h), with
values of p0,p1 6= 1/2.

Three possible scenarios can be distinguished depending on the amount
of information available at the fusion center. For each scenario a maximum
a posteriori (MAP)/ML statistical test is derived. The difference between MAP

and ML is whether the prior distribution is assumed known for the variable
to be estimated, in this case h. MAP/ML tests represent, in each scenario,

4 Note that such condition is ideal in the sense that no physical detector can achieve at the
same time Pd = 1 and Pfa = 0. For this reason it is referred to as a “limit”.
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lower bounds for the achievable performance of any Bayesian/non-Bayesian
detector.

1. Ideal case. If all systems parameters (Pfa, Pd, r) are known at the FC, the
MAP criterion is

ĥMAP(y) = arg max
h∈{0,1}

p(y|h, r)p(h|r)
p(y|r)

= arg max
h∈{0,1}

p(h)

K∏
k=1

p(yk|h, rk)
p(yk|rk)

. (8.8)

Note that index t has been dropped since a single time slot is consid-
ered here. The denominator in (8.8) does not depend on h so it can be
ignored. Therefore, a test can be defined in the form of a likelihood
ratio:

SMAP−i(y) ,
p1
p0

K∏
k=1

ψ(1, rk,yk)
ψ(0, rk,yk)

=
p1
p0

∏
k:yk=0

1− P̃d(rk)

1− P̃fa(rk)

∏
k:yk=1

P̃d(rk)

P̃fa(rk)

ĥ=1
≷
ĥ=0

1, (8.9)

where the symbol “:” means “such that”. The values of P̃d(rk) and
P̃fa(rk) are different for each node k and, for trusted nodes, they are
simply Pd and Pfa. The maximum-likelihood criterion SML,i is equal to
SMAP−i without the prior term p1/p0.

2. Unknown malicious nodes. If the FC knows the values of Pfa and Pd of
the nodes, but ignores the presence of malicious nodes, all reports are
taken into account as if rk = 0 ∀k. The MAP criterion takes the following
form:

SMAP−u(y) ,
p1
p0

K∏
k=1

φ(yk, 1)
φ(yk, 0)

=
p1
p0

(
1− Pd

1− Pfa

)K0 ( Pd

Pfa

)K1 ĥ=1
≷
ĥ=0

1,

(8.10)

where K0 and K1 are, respectively, the number of zeros and ones in y.
Again, the corresponding ML criterion SML−u is obtained by replacing
p1/p0 by 1 in the MAP expression.

Alternatively, if the FC knows that there are malicious nodes with un-
known attack probability, it can completely ignore the unreliable nodes
and formulate the test using the trusted nodes only (if L > 0). In this
case, the test (defined SMAP−r) is similar to SMAP−u except that instead
of K, only the first L elements of y are considered.
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3. No available information. If the FC has no knowledge of system parame-
ters Pfa and Pd, the only possible test is a majority voting rule:

ĥmaj(y) , 1 if K1 > K0, 0 otherwise. (8.11)

The majority test can be interpreted as an ML-u test (8.10) assuming
Pfa = 1 − Pd < 0.5. In other words, in absence of other information,
the FC must weigh equally the possible types of errors (false alarm and
missed detection); the assumption of error probabilities lower than 0.5
is reasonable for any properly designed detector. Also observe that if
Pfa and Pd are unknown, the prior p1/p0 can not be taken into account
in the decision; therefore, in this case MAP and ML are equivalent.

Then, let Pfa(K) , Pr(ĥ = 1|h = 0) and Pd(K) , Pr(ĥ = 1|h = 1) be the
resulting probabilities of false alarm and of detection achieved by the above
defined cooperative detection methods using K reports. These probabilities
can be expressed, in general, as follows:

Pfa(K) =
∑

{y:S(y)>1}

 ∏
k:yk=0

(1− P̃fa(rk))
∏

k:yk=1

P̃fa(rk)

 (8.12)

Pd(K) =
∑

{y:S(y)>1}

 ∏
k:yk=0

(1− P̃d(rk))
∏

k:yk=1

P̃d(rk)

 . (8.13)

These formulas are difficult to compute in general because the condition
S(y) > 1 must be tested for each of the 2K possible combinations of the
vector y. Nevertheless, tractable expressions can be derived in the case of K
nodes with equal values of rk.

Proposition 3. Given K nodes performing cooperative spectrum sensing, with equal
Pfa, Pd, and attack probability r, the probabilities of false alarm and detection are
given by

Pfa(K) =

K∑
l=dK∗e

(
K

l

)
P̃fa(r)

l(1− P̃fa(r))
(K−l) (8.14)

Pd(K) =

K∑
l=dK∗e

(
K

l

)
P̃d(r)

l(1− P̃d(r))
(K−l). (8.15)

where the threshold K∗ depends on the adopted fusion rule, namely:

K∗MAP−i =
ln p0p1 +K ln 1−P̃fa(r)

1−P̃d(r)

ln
(

P̃d(r)

P̃fa(r)
· 1−P̃fa(r)

1−P̃d(r)

) (8.16)

K∗MAP−u =
ln p0p1 +K ln 1−Pfa

1−Pd

ln
(

Pd
Pfa
· 1−Pfa
1−Pd

) (8.17)

K∗maj =
K

2
. (8.18)
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K∗ML,i and K∗ML,u are equal to K∗MAP−i and K∗MAP−u with ln p0p1 = 0.

Proof. From the expressions of P̃fa and P̃d in Table 8.3, it can be verified that
for any |r| 6 1, if Pd > Pfa, then P̃d(r) > P̃fa(r). This property implies that
in SMAP−i(y), as well as in SMAP−u(y), the only factors larger than one are
those of the form P̃d/P̃fa, i.e., those corresponding to the K1 “ones” of vector
y. Therefore, the event S(y) > 1 is triggered when K1 is larger than a certain
value K∗. For SMAP−i, assuming constant r for all nodes, the critical value of
K1 is the solution of the equation(

1− P̃d(r)

1− P̃fa(r)

)K−K1 (
P̃d(r)

P̃fa(r)

)K1
>
p0
p1

,

which after some algebraic manipulations yields K1 > K∗ as in (8.16). For
all l > K∗, there are

(
K
l

)
configurations of vector y that satisfy the same

condition. Since elements yk are mutually independent conditioned on r and
on h = 0, the probability of having l ones in y is P̃fa(r)

l, and the probability
of the remaining K− l zeros is (1− P̃fa(r))

(K−l). This argument proves (8.14)
for the case MAP-i.

For the other cases, the probability of every configuration of y remains
the same (it depends on the attack model), but the threshold for S(y) > 1

changes. Thus, (8.17) is solution of the equation SMAP−u > 1, and (8.18)
follows immediately from (8.11).

Similarly one can prove (8.15) where the only difference is that P̃fa is re-
placed by P̃d.

Remarks:

1. For Pfa = 1− Pd and p0 = p1, it can be verified that K∗MAP−u = K∗maj,
which confirms the interpretation of the majority rule as a special case
of the MAP/ML criterion with unknown prior distribution and sensing
error probabilities.

2. Consider now the limiting case Pd = 1. In (8.10), it is easy to verify that
φ(yk,1)
φ(yk,0) = 0 when yk = 0. Hence, the MAP-u test becomes a “1-out-of-K”

decision rule, i.e., ĥMAP−u = 0 if ∃k : yk = 0, while ĥMAP−u = 1 only
if all elements of vector y are equal to 1. Similarly, in (8.9) it can be
observed that ψ(1,rk,yk)

ψ(0,rk,yk)
= 0 for yk = 0 and for any rk > 0, therefore

ĥMAP−i = 0 if ∃k : yk = 0, rk > 0.

The conclusion is that, if rk > 0 ∀k, the MAP-u test converges to MAP-
i as Pd → 1: in other words, assuming all type-1 attackers and ideal
detection probability, the optimal test does not require knowledge of the
attack probabilities.
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Figure 8.1: Global false alarm and missed detection probabilities (Pfa(K) and
Pmd(K)) of collaborative spectrum sensing with K = 7 nodes with equal
r, Pfa = 0.1, Pd = 0.99. Uniform prior distribution: p0 = p1 = 0.5.
Theoretical (th.) vs. simulated (sim.) curves.

8.3.3 Numerical Results

The probabilities of false alarm, Pfa(K), and missed detection, Pmd(K) , 1−

Pd(K), are plotted as a function of the attack probability r in Fig. 8.1. All
nodes (K = 7) are assumed to have the same attack probability r and the
same parameters Pfa = 0.1 and Pd = 0.99. The figure includes the three
considered fusion rules: known parameters (MAP-i), unknown r (MAP-u), and
majority voting. For each case the theoretical expressions of Proposition 1 are
compared to simulation results.

As a general behavior, it can be noted that type-1 attacks tend to increase
the global false-alarm probability, while type-0 attacks increase the missed
detection probability. For all fusion rules, the worst performance is under
attacks with large r (r → 1 or r → −1). However, when performing estima-
tion of r over multiple time slots (see next section), such attacks can be easily
identified, because a malicious node with |r| = 1 would report 1 or 0 all the
time.

Comparing MAP-u and majority rule, it turns out that knowledge of Pfa

and Pd does not necessarily help. If Pfa > 1 − Pd (like in this case), the
majority rule outperforms MAP-u in terms of Pmd(K), while it is inferior in
terms of Pfa(K). On the contrary, if Pfa < 1−Pd, MAP-u provides better Pfa(K)

but higher Pmd(K). As previously noted, the two tests are equivalent for
Pfa = 1 − Pd. In fact, for the values of Pfa, Pd chosen in this example, the
statistical power of MAP-u and majority rule is equivalent; MAP-u is simply a
majority rule with a modified threshold. These observations confirm that, in
case of malicious nodes, estimating the attack probabilities r is essential for
an accurate spectrum sensing.
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The curve of MAP-i shows the achievable detection performance as a func-
tion of r, assuming perfect knowledge of r. It can be observed that the ef-
fect of attack probabilities is not monotonic, and exhibits “jumps”. Interest-
ingly, while the formulas of missed-detection/false-alarm probabilities of
all considered detection strategies share the same structure (Eqs. 8.14, 8.15),
only the MAP-i curves exhibit a non-monotonic behavior. The reason lies in
the expression of K∗, which only for MAP-i varies with r (8.16). Then, dis-
continuities in the MAP-i performance curves correspond to values of r at
which dK∗MAP−i(r)e changes. For example, referring to Fig. 8.1, a change of r
from −0.65 to −0.75 triggers a new threshold dK∗MAP−i(r)e, resulting in lower
missed-detection probability and higher false-alarm probability.

The following sections introduce a new method to jointly perform spec-
trum sensing and estimating the attack probabilities, so as to achieve nearly
ideal detection performance.

8.4 proposed algorithm

8.4.1 Joint Spectrum Sensing and Estimation of Attack Probabilities

It is now investigated how to improve the performance of spectrum sensing
by exploiting a window of T consecutive time slots. If attack types/proba-
bilities rk remain constant over a certain number of slots, which is a rea-
sonable assumption as discussed in Sec. 8.3, the values of r = [rL+1, . . . , rK]
can be estimated from the observed data Y = [y(1), . . . ,y(T)] jointly with
the state variables h = [h(1), · · · ,h(T)]. Adopting a Bayesian estimation ap-
proach, MAP or MMSE estimates of all variables of interest can be obtained
from the marginal a posteriori probabilities, defined as

p(h(t)|Y ) =

∫
d{r}

∑
{h\h(t)}

∑
{U}

p(h, r,U |Y ), (8.19)

p(rk|Y ) =

∫
d{r \ rk}

∑
{h}

∑
{U}

p(h, r,U |Y ), (8.20)

where

p(h, r,U |Y ) ∝

p(h)p(r)

T∏
t=1

[
L∏
k=1

φ(y
(t)
k ,h(t))

K∏
k=L+1

χ(u
(t)
k , rk,y(t)k )φ(u

(t)
k ,h(t))

]
(8.21)

is the joint a posteriori probability given the observation matrix Y , and p(h)
and p(r) are the prior distributions of h and r, which are mutually indepen-
dent. The following notation has been introduced here:

• Probability functions with vector arguments represent joint probability
of all elements in the said vector: e.g., p(h) = p(h(1), . . . ,h(T)).
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• Sum/integration over a vector/matrix (in brackets) denotes sum/inte-
gration with respect to all elements of such vector/matrix over their re-
spective supports: e.g.,

∫
d{r} =

∫1
−1 drL+1 · · ·

∫1
−1 drK;

∑
{U} =

∑
u

(1)
L+1=0,1

· · ·∑
u

(T)
K =0,1

• Symbol \ denotes set difference (treating vectors as sets): e.g., r \ rk =

all elements of r except rk.

As discussed in Sec. 8.3, it is assumed p(h) =
∏T
t=1 p(h

(t)) and p(h(t) =

0) = p(h(t) = 1) = 1/2 ∀t. Similarly, it is assumed that the fusion cen-
ter does not have any prior information about attack probabilities of un-
reliable users, hence variables rk are modeled as mutually independent,
p(r) =

∏K
k=L+1 p(rk), with p(rk) uniformly distributed in [−1, 1] ∀k.

Figure 8.2: Factor graph of p(h, r,U |Y ) truncated at t = 2. Each time slot t adds a
branch to the graph, as indicated by the dots.

Direct computation of (8.21) may become extremely complex even for not-
so-large numbers of users K and time slots T . In order to compute (or ap-
proximate) the marginal probabilities in a numerically efficient way, the BP

algorithm (in the SPA version) [62] can be applied. A FG is constructed as in
Fig. 8.2. At every iteration l, messages are updated according to the follow-
ing rules.
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• Messages from variables to factors (µ)

µ
(l)

h(t)→φ(t)
k

(h) ∝ p(h(t))
∏
j6=k

η
(l−1)

φ
(t)
j →h(t)

(h) (8.22)

µ
(l)

u
(t)
k →χ

(t)
k

(u) = η
(l)

φ
(t)
k →u

(t)
k

(u) (8.23)

µ
(l)

u
(t)
k →φ

(t)
k

(u) = η
(l)

χ
(t)
k →u

(t)
k

(u) (8.24)

µ
(l)

rk→χ
(t)
k

(r) ∝ p(rk)
∏
s6=t

η
(l−1)

χ
(s)
k →rk

(r). (8.25)

• Messages from factors to variables (η)

η
(l)

φ
(t)
k →h(t)

(h) ∝
∑
u

φ(u,h)µ(l−1)
u

(t)
k →φ

(t)
k

(u) (8.26)

η
(l)

φ
(t)
k →u

(t)
k

(u) ∝
∑
h

φ(u,h)µ(l−1)
h(t)→φ(t)

k

(h) (8.27)

η
(l)

χ
(t)
k →u

(t)
k

(u) ∝
∫1
−1
χ(u, r,y(t)k )µ

(l−1)

rk→χ
(t)
k

(r)dr (8.28)

η
(l)

χ
(t)
k →rk

(r) ∝
∑
u

χ(u, r,y(t)k )µ
(l−1)

u
(t)
k →χ

(t)
k

(u). (8.29)

The marginal probabilities p(h(t)|Y ) (t = 1, . . . , T ) and p(rk|Y ) (k = L +

1, . . . ,K) are thus approximated by beliefs. For every variable node, a belief is
computed as the product of all messages entering the node, as follows:

b
(l)

h(t)(h) ∝ p(h(t))

K∏
k=1

η
(l)

φ
(t)
k →h(t)

(h) (8.30)

b
(l)
rk (r) ∝ p(rk)

T∏
t=1

η
(l)

χ
(t)
k →rk

(r). (8.31)

All messages and beliefs are defined up to a normalization factor (hence the
use of proportionality symbol, ∝), which has to be chosen such that each be-
lief sums/integrates to 1. Note that normalization is not necessary at every
step of the algorithm, but only when computing final beliefs. However, inter-
mediate rescaling may be needed sometimes to avoid numerical problems
(underflow).

As it is well-known, beliefs converge exactly to the true marginals probabil-
ities only if the graph contains at most one cycle. However, BP is successfully
used in many applications even in presence of cycles (“loopy BP”). In the
model considered here (Fig. 8.2), cycles are generated by variable nodes rk,
which are connected to multiple (T ) branches of the factor graph through
factor nodes χ(t)k . The reason is that variables rk remain the same over T con-
secutive time slots, thus linking (in terms of statistical dependency) variables
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at different time slots. Therefore, the number of loops in the graph increases
with the number of time slots (T ). On the other hand, however, increasing T
is beneficial in that it adds more information to be used for inference of the
hidden variables rk.

Simulations (Sec. 8.4.3) and analytical results (Sec. 8.5) show that in the
proposed application the performance of BP is not severely degraded by the
presence of loops and, overall, the detection accuracy tends to improve as T
grows.

8.4.2 Spectrum Sensing with Sequential Estimation of Attack Probabilities

Apart from the approximation introduced by BP, the proposed algorithm
is theoretically optimal in the sense that, from a Bayesian point of view,
the marginal a posteriori probabilities p(h(t)|Y ) and p(rk|Y ) contain the
maximum amount of information that can possibly be inferred from the data
Y . However, joint estimation of h and r from the same data set (consisting
of T time slots) involves a delay in the spectrum sensing decision, because
the decision on h, including h(1), is not available until all T report vectors
(y(1), . . . ,y(T)) are received.

To avoid this inconvenience, the proposed algorithm can be implemented
in a slightly modified way. This alternative version works as follows: BP is
run on a sliding window that consists of the current time slot plus T − 1

previous slots, thus continuously updating estimates of rk. These estimates
are indicated as r̂k (specifically, r̂MMSE

k or r̂MAP
k , being, respectively, mean

or maximum of brk(r)). Computation of beliefs for [h(T−1), . . . ,h(t−1)] is
now unnecessary; the decision on h(t) can then be simply made from the
following MAP test

SMAP−s(y
(t)) ,

p1
p0

K∏
k=1

ψ(1, r̂k,y(t)k )

ψ(0, r̂k,y(t)k )
=
p1
p0

∏
k:yk=0

1− P̃d(r̂k)

1− P̃fa(r̂k)

∏
k:yk=1

P̃d(r̂k)

P̃fa(r̂k)

ĥ(t)=1
≷

ĥ(t)=0

1. (8.32)

The above criterion can be interpreted as a generalized likelihood ratio test [154],
where unknown parameters rk are replaced by their estimates. This new
algorithm is named BP-sequential, as opposed to the BP-joint presented in
the previous section. Note that the test (8.32) produces the same result as
direct computation of the mode of belief bh(t)(h(t)) (8.30) because, in either
way, h(t) is inferred using the values of r estimated by BP over the last T
observations.

Joint and sequential BP are conceptually equivalent, but the latter is more
efficient from a practical point of view because it does not involve any delay
in the spectrum sensing process, while leveraging on the same amount of in-
formation (T time slots) to estimate r. In addition, the sequential algorithm is
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somewhat more flexible, because the estimation of r – based on BP, therefore
numerically complex – is decoupled from that of h(t), which is now made
through a simple test, (8.32). Therefore, in practical systems, estimation of r
can be performed only from time to time (e.g., every 100 or 1000 time slots),
to check for the presence of new malicious nodes or existing malicious nodes
with changed attack probability, while using the last available values of r̂k
in the normal spectrum sensing routine. Observe that, for both methods, T
must be chosen as a number of time slots over which r can be reasonably
assumed as constant. As it will be shown in the next section, 15-20 time
slots are enough to obtain a very accurate estimation of r (more precisely,
accurate enough to nearly reach ML/MAP spectrum sensing performance).

8.4.3 Numerical Results

Simulation results are now presented to investigate the performance of the
proposed algorithm. In particular, the goal is to verify (i) whether the BP

approximation is correct compared to the true marginal a posteriori proba-
bilities, (ii) what is the performance gap between the proposed algorithm
and ML/MAP detection with known attack probabilities, and (iii) how perfor-
mance is affected by various system parameters, i.e., number of time slots,
number of reliable users, and attack probability values. Then, in Sec. 8.5 a
more formal analysis of the BP algorithm is presented, focusing on conver-
gence and consistency issues.

8.4.3.1 Correctness of BP Solution

The behavior of the proposed algorithm is first analyzed in a small graph
(T = 3, K = 3, L = 1), where the exact marginal posterior distributions
(8.19,8.20) can be computed analytically and compared to the beliefs ob-
tained through BP. Results are shown in Fig. 8.3. It can be observed that
beliefs of converged BP algorithms match perfectly with the posterior distri-
butions, both for h(t) and rk. Posterior distributions represent the optimal
estimate in a Bayesian sense, so BP achieves its best possible performance.
In this case, posteriors are also perfectly consistent with the true values
of the unknown variables, resulting in a perfect estimation of r and h, in
spite of the small number of observations. Also note that the graph ana-
lyzed in this example contains three loops, therefore no theoretical results to
the best of our knowledge guarantee exact convergence of beliefs (this aspect
is discussed in more detail in Sec. 8.5). The empirical results observed here,
confirmed by numerous other simulations, indicate that BP, in this specific
application, is quite robust to the presence of loops.

Fig. 8.4 then shows an example of the evolution of beliefs as a function
of iterations in a larger graph, with T = 10, K = 4, L = 1, which contains
a large number of loops. In this case computation of the exact posteriors is
prohibitive, therefore beliefs can be only compared against the true values
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Figure 8.3: Beliefs at final iteration vs. marginal posterior probabilities of (a) h(t)

and (b) rk for a small graph (T = 3, K = 3, L = 1). True values: h(1) = 1,
h(2) = 1, h(3) = 0, r2 = −0.4, r3 = 0.2. BP results in exact convergence of
beliefs in this case.
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Figure 8.4: Evolution of MMSE estimates of beliefs (a) b(l)
h(t) and (b) b(l)rk as a func-
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variables rk) or time index t (for variables h(t) – some curves are over-
lapping). True values are reported on the right side of each plot. Graph
size: T = 10, K = 4, L = 1.
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of rk and h(t). It can be observed that (i) convergence is obtained after a few
iterations (≈ 3), both for variables r and h, and (ii) the values of beliefs after
convergence are very close to the true ones, despite the loops in the graph.

Fig. 8.5 shows in more details the distribution of the beliefs of variables rk
at convergence, referred to the same example as in the previous figure. All
three beliefs turn out to be very close to their true values, both using MAP

and MMSE estimation. Note that in simulations the support of variables rk
has been discretized with step of 0.1 and the trapezoidal integration method
has been applied when computing (8.28).

8.4.3.2 Spectrum Sensing Performance

The performance of the proposed BP algorithm is now compared against the
fusion rules presented in Sec. 8.3.2: the ideal MAP criterion MAP-i (8.9), assum-
ing attack types/probabilities rk as known exactly; the MAP-u criterion (8.10),
with unknown rk but known Pfa, Pd; the MAP-r criterion, defined like MAP-u
but using the L reliable nodes only (if L > 0); and the majority voting rule
(8.11). In all cases, the prior distribution of h(t) is assumed uniform ∀t, i.e.,
p0 = p1 = 0.5. The BP algorithm is implemented both in the “joint” version
presented in Sec. 8.4.1 (BP-joint) and in the “sequential” version described in
Sec. 8.4.2 (BP-sequential). In addition, a third possibility is considered, where
nodes identified as malicious are completely discarded from the decision
process. This method is named BP-discarding. In this case the test statistic is

SMAP−d(y) ,
p1
p0

∏
k:rk6ε

φ(yk, 1)
φ(yk, 0)

, (8.33)

where ε is a sufficiently small value of attack probability, e.g., ε = 0.1. This
method is included in the comparison because almost all algorithms pro-
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Figure 8.6: Probability of error on h(t) vs. Pd for different considered methods.
K = 5, T = 20, Pfa = 0.1. (a) All users are malicious (L = 0);
r = [0.1, 0.3, 0.4, 0.6, 0.2]. (b) One user is trusted (L = 1); r =

[0.3, 0.4, 0.6, 0.2]. (c) Three users are trusted (L = 3); r = [0.6, 0.2].
(d) Three users are trusted (L = 3); r = [−0.6, −0.2].

posed in the related literature (see, e.g., Sec. 8.1) are based on a detection-
and-exclusion approach. For this reason, it is interesting to test whether the
proposed algorithm performs better by using all sources of information, or
only those that carry reliable information.

The results of this comparison are reported in Fig. 8.6, where the global
error probability

Pe(K) , Pr(ĥ 6= h) = p0Pfa(K) + p1Pmd(K) (8.34)

is plotted as a function of Pd, i.e., the detection capability of a single node,
while keeping Pfa = 0.1 fixed. Since Pd generally increases with the SNR
(e.g., using energy detection), the graph shown in Fig. 8.6 can be interpreted
as a curve of detection performance vs. SNR, which is a typical performance
figure in detection theory. The number of nodes is K = 5. Five values of
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Pd are considered: [0.6, 0.7, 0.8, 0.9, 0.99] (the value Pd = 1 is excluded
as not realistic in practice). Panel (a) refers to a scenario with all malicious
users (L = 0), panel (b) to a scenario with one trusted user (L = 1), panels
(c) and (d) to a case with L = 3 (the majority of nodes are trusted). In cases
(a), (b), and (c), all attackers are of type-1 (rk > 0 ∀k > L), while in case (d)
attackers are of type-0 (rk < 0 ∀k > L). Trusted nodes are sources of reliable
information, therefore the performance of all considered methods tends to
improve as L grows.

The curve of MAP-i is, as previously explained, the lower bound of achiev-
able detection performance. Remarkably, the BP methods – both “joint” and
“sequential” – attain practically the same performance as MAP-i when L = 3,
and slightly lower performance when L = 0 or L = 1. Observe that the factor
graph corresponding to this example contains a large number of loops, be-
cause T = 20. Therefore, loops do not seem to significantly affect the perfor-
mance of BP in the proposed application. This intuition is supported by more
rigorous arguments, presented in Sec. 8.5. It is worth noting, then, that BP-
joint and BP-sequential are equivalent in terms of performance, as explained
is Sec. 8.4.2.

The performance of the BP algorithms is primarily influenced by the num-
ber of time slots T , i.e., the amount of information available to estimate
the values of variables rk. As it is clear from these simulations, T = 20 is
sufficient to achieve nearly-optimal performance (again, taking MAP-i as a
benchmark). Given a certain value of T , the presence of reliable nodes can
positively affect the detection performance: if there are one or more trusted
nodes, the values of h(t) are estimated with increased accuracy, which in
turn improves the estimation of rk, and consequently the overall detection
performance. It has been observed in other simulations that if T is not suf-
ficiently large (e.g., T < 10), the performance of the BP algorithm tends to
degrade especially in the region Pd ≈ 1. This phenomenon can be explained
by the fact that, as Pd → 1, the data Y becomes less informative from the
point of view of estimation of rk.

Comparison between joint (or sequential) BP and BP-discarding reveals that
exclusion of nodes identified as unreliable is not a good strategy. This is obvi-
ously true in the case of L = 0, but also for L = 1 and L = 3. This result shows
that all available information must be taken into account, because even re-
ports coming from nodes with high misbehavior probability contain some
amount of useful information. The proposed BP algorithm, which jointly (or
sequentially) estimates h(t) and rk, makes it possible to extract such infor-
mation by properly processing the data. As a consequence, the BP algorithm
is robust even in the case of no honest users, whereas other solutions (e.g.,
[165]), presume the presence of a certain number of trusted users.

All the other fusion rules shown in Fig. 8.6 turn out to be suboptimal. In
particular, the majority rule for type-1 attackers (rk > 0: first three panels)
provides poor performance in the high-Pd region, while for type-0 attackers
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(rk < 0: last panel) it converges to MAP-i as Pd → 1, but is suboptimal when
Pd is low. The MAP-u curve exhibits a threshold behavior: in case of type-
1 attackers, it converges to MAP-i when Pd → 1 (as explained in Sec. 8.3.2,
remark 2), but it results in very high error probability when Pd decreases; on
the contrary, for type-0 attackers – panel (d) – it diverges from MAP-i in the
high-Pd region and provides better performance when Pd is low. In all cases,
MAP-u becomes equivalent to the majority rule when Pd = 1 − Pfa (= 0.9
in this example), as observed in Sec. 8.3.2 (remark 1). To summarize, the
majority rule and the MAP-u test are both suboptimal in some ranges of Pd

(depending on malicious nodes’ attack strategies), whereas the BP method
proves to be robust over the entire Pd range.

Finally, the curves of MAP-r, shown in panels (b), (c), and (d), represent
the detection performance achieved by using the trusted node(s) only. MAP-r
can be interpreted as an upper bound of the performance of the methods
proposed in [165] (“reputation-based cooperative spectrum sensing”, RCSS)
and in [146] (CatchIt). Both algorithms, through different strategies, achieve
identification of malicious nodes and exclusion of these nodes from the co-
operative spectrum sensing process. Namely, RCSS compares the decision of
each node against the majority of the other nodes’ decisions, while CatchIt
applies a more sophisticated Bayesian “onion-peeling” process. Two draw-
backs are common to RCSS and CatchIt: (i) they do not work properly if a
large number of nodes are malicious, and (ii) they involve decision thresh-
olds (to decide whether to exclude nodes) which are set somewhat arbitrarily.
Regardless of the above issues, the two algorithms would ideally retain the
first L nodes (honest users) and discard all the other ones. As such, their best
achievable performance is given by the MAP-r curve.

Thus, comparison between MAP-r and BP-joint/BP-sequential shows that the
proposed BP methods significantly outperform RCSS and CatchIt. The gap is
noticeable not only for L = 1, but also for L = 3, i.e., when trusted nodes
are the majority. This result demonstrates that it is always beneficial to in-
clude all nodes in the decision process, instead of discarding nodes iden-
tified as malicious. In summary, the BP approach achieves high detection
performance with any number of unreliable nodes, including the opposite
cases L = 0 and L > K/2.

In Fig. 8.7, the same performance comparison of Fig. 8.6 is repeated for a
larger-scale network, with unknown identification of reliable nodes. Specifi-
cally, the total number of nodes is K = 21. Two scenarios are considered: (a),
where 1 node is reliable, and (b), where 3 nodes are reliable. In both cases,
it is assumed that the fusion center does not know a priori the identity of
honest users, i.e., L = 0. Results confirm the conclusions drawn for the pre-
vious example (Fig. 8.6), showing that: (i) the performance of the proposed
sensing method remains close to the MAP-i bound when increasing the num-
ber of users, and (ii) prior knowledge of trusted users is not essential for the
algorithm to work properly.
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Figure 8.7: Probability of error on h(t) vs. Pd in a large-scale network (K = 21).
Reliable users – 1 in panel (a), 3 in panel (b) – are unknown at the fusion
center: L = 0. All malicious users are of type-1.
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8.4.3.3 Impact of System Parameters

The impact of L and T on the the performance of the proposed algorithm
is now investigated. The first panel of Fig. 8.8 shows the average error in
estimation of h(t):

eh ,
1

T

T∑
t=1

|ĥ(t) − h(t)|, (8.35)

where ĥ = arg maxh=0,1 bh(t)(h). The second panel shows the root mean
square error (RMSE) of the MMSE estimates of rk:

er ,

√√√√ 1

K− L

K∑
k=L+1

|r̂k − rk|2, (8.36)

where r̂k = Erbrk(r).
The first result is that L has a considerable impact on the performance of

both r and h, because each trusted node introduces a factor that propagates
an accurate belief of h(t) throughout the graph. Furthermore, the effect of
any additional trusted node is multiplicative in Pfa and Pd, therefore the
resulting false-alarm and detection probabilities scale exponentially with L.
The other parameter, T , affects almost linearly the error on rk. The impact of
T on h(t) is evident especially for L = 0, where it is important to estimate the
values rk with high accuracy because the entire available information comes
from malicious nodes and needs to be properly “filtered”. On the contrary,
for L = 1 the improvement as a function of T is more moderate, and for
L = 2 the estimates of h(t) are already so accurate using the two trusted
nodes, that the information coming from unreliable nodes has nearly no
effect, hence additional slots are not needed. Note that the evolution of the
estimation error as a function of T exhibits a generally decreasing trend, but
is not necessarily monotonic, because loops in the graph (whose number
increases with T ) may render certain configurations slightly more favorable
than others in spite of a lower amount of available information.

The following question is then addressed: what values of rk are harder
to estimate? Intuitively, it can be expected that low values of |rk| need more
time slots to be estimated than values of |rk| close to 1. To this purpose, a
scenario with K = 3 and r = [0.2 0.5 0.9] is considered, and the evolution
of the RMSE vs. T is analyzed for each rk, separately. Results are reported
in Fig. 8.9. Apart from fluctuations due to the same reason explained be-
fore, a general trend can be observed: high attack probability values, e.g.,
r3 = 0.9, can be estimated with higher accuracy (after a sufficient number
of time slots) than low probability values, e.g., r1 = 0.2. This result shows
that attacks with high probability are effective in the short run, but can be
effectively counteracted by applying the proposed BP algorithm, or possibly
other learning/estimation methods. On the contrary, low-probability attacks
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Figure 8.8: (a) Probability of error on h(t) and (b) RMSE of the MMSE estimate of rk
as a function of T and L. K = 4, L = 1, r = [0, 0.4, 0.6, 0.3].
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Figure 8.9: Probability of error on different rk (RMSE of the MMSE estimator) as a
function of T .

require more time to be detected with precision. Note that the sign of vari-
ables rk, i.e., whether attackers are of type-1 or type-0, does not matter for
estimation accuracy because the attack probability is given by the absolute
value |rk|. Simulations with negative values of rk give identical results as in
the positive case.

8.4.3.4 Robustness to Time-Varying Attack Strategies

Finally, in this section the performance of the proposed algorithm is inves-
tigated when an attacker’s strategy is not constant but evolves over time.
As an example, consider a scenario with K = 2 nodes, one of which being
trusted (L = 1, i.e., r(t)1 = 0 ∀t) and the other one being malicious with an
attack probability that gradually increases over time. Such behavior is mod-
eled by a stepwise function for r(t)2 , starting from an initial value r(1)2 = 0.1
and augmenting by 0.2 every 5 time slots, up to r(t)2 = 0.9 for t > 21. This
way, the malicious user attempts to deceive the fusion center by inducing
an underestimation of its attack probability. Observe that for an attack strat-
egy to be meaningful in a probabilistic sense, the attack probability needs to
remain constant at least for a certain number of time slots.

Then, the BP algorithm is applied under the above described conditions,
with a graph extension of T = 3 time slots. As discussed in Sec. 8.3, T is
a design parameter and, if there is a chance that attack probabilities vary
frequently over time, it must not be too large, otherwise the detector would
react slowly to changes in the values of rk. The results of this experiment are
illustrated in Fig. 8.10, where the true values of r(t)2 are compared against
the estimates obtained at each time slot using BP beliefs. The BP algorithm
proves to be robust to changes in the attack probability, and the estimates of
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Figure 8.10: Estimation of a time-varying attack probability r(t) (stepwise function).
A sliding window of length T = 3 time slots is used in the BP algorithm.
Estimates of r(t) are averaged over 1000 Monte Carlo simulations.

r converge to the true values after a short transient period whose duration
depends on T (the “memory” of the system). This example shows that the
value T = 3 offers a balanced trade-off between reactivity and estimation
accuracy.

8.5 theoretical analysis of the bp algorithm

This section aims at analyzing the dynamics of the proposed BP algorithm
from a theoretical point of view. First, it is shown that, under certain limiting
conditions, the BP algorithm is exact. Second, for general graphs, sufficient
conditions are given for BP to converge to a unique value. Finally, it is shown
that on average spectrum sensing through BP is consistent, with respect to
the true value of h(t).

8.5.1 Special Cases

Based on well-known properties of BP, beliefs converge exactly to the true
posteriors, i.e., b(l)

h(t) |l→∞ = p(h(t)|Y ) and b(l)rk |l→∞ = p(rk|Y ) ∀k, t in the
following cases:

• If T = 1, or if (T = 2)∧ (K− L 6 2). The reason is that BP is known to be
exact in trees and in graphs with a unique loop [152]. It is immediate to
verify that, when T = 1 (with any values of K,L) or when T = 2,K−L =

1, the factor graph is a tree, and when T = 2,K− L = 2 it has one loop
only (see Fig. 8.11).
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• For any values of K, T , if there is at least one trusted user (L > 1) and in the
limit of ideal sensing (Pfa → 0, Pd → 1). In this case, h(t) ≡ y(t)1 ≡ . . . ≡
y
(t)
L ∀t, hence variables h(t) are known exactly. At this point, the factor

graph for variables rk is an inference tree and therefore b(l)rk |l→∞ =

p(rk|Y ), ∀k. Note that, in practice, the condition of no sensing errors
is approached as L grows.

Figure 8.11: Factor graph for T = 2,K− L = 2.

8.5.2 Convergence Analysis

The asymptotic convergence (l → ∞) of the BP algorithm in the proposed
model is now analyzed for general graph.

Proposition 4. BP is guaranteed to converge to a unique fixed point if the following
conditions are simultaneously satisfied:

tanh
[
1

4
log (r∗)2

]
<

1

T − 1
, (8.37)

and

tanh
(
1

4
logp∗

)
<

1

K− L− 1
, (8.38)

where

r∗ , max
{
r+max

r+min
,
|r−max|

|r−min|
,

1

r+min|r
−
min|

}
(8.39)

with r±max, r±min being respectively the largest and the smallest positive/negative ele-
ments of r, and (assuming Pfa < 0.5 and Pd > 0.5)

p∗ ,
1− Pfa

1− Pd
· Pd

Pfa
. (8.40)

Proof. For a given factor graph, denote the factor nodes with capital letters
(e.g., I, J) and the variable nodes with lower-case letters (e.g., i, j). Let ψI be
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the probability function associated with factor I and xi be the value taken by
variable i. Denote the neighborhood set of a node x as Nx. Now consider a
subgraph defined by the path J→ j→ I→ i. Applying Theorem 3 in [82], it
follows that BP converges if, for all such paths,

max
J→j

∑
I∈Nj\J

∑
i∈NI\j

N(ψI, i, j) < 1 (8.41)

where N(ψI, i, j) is defined as

N(ψI, i, j) = sup
α6=α ′

sup
β 6=β ′

sup
γ,γ ′

tanh

(
1

4
log

ψIαβγψ
I
α ′β ′γ ′

ψIα ′βγψ
I
αβ ′γ ′

)
(8.42)

with ψIαβγ , ψI(xi = α, xj = β, xI\{i,j} = γ). Here, xI\{i,j} = γ is a short-
hand notation for xk = γ ∀k ∈ NI \ {i, j}.

Now, in the model of Fig. 8.2 the possible paths J → j are: χ(t)k → u
(t)
k ,

χ
(t)
k → rk, φ(t)

k → h(t), φ(t)
k → u

(t)
k .

• For χ(t)k → u
(t)
k , neighbors are Nj \ J = {φ

(t)
k } and NI \ j = {h(t)}, and

(8.41) reduces to

max
J→j

N(φ
(t)
k ,h(t),u(t)k ) < 1. (8.43)

Since tanh(x) < 1 ∀x, this condition will always be satisfied. The same
argument applies to φ(t)

k → u
(t)
k .

• For χ(t)k → rk, neighbors are I ∈ Nj \ J = {χt
′
k : t ′ 6= t} and i ∈ NI \ j =

{u
(t ′)
k }. From (8.42), the following function needs to be evaluated:

ψIαβγψ
I
α ′β ′γ ′

ψIα ′βγψ
I
αβ ′γ ′

=
χ(u, r,y)χ(u ′, r ′,y ′)
χ(u ′, r,y)χ(u, r ′,y ′)

, fχ (8.44)

for u 6= u ′, r 6= r ′, and any {y,y ′}. By analyzing all possible configura-
tions (the ones that occur w.p. 6= 0), it can be verified that sup fχ = r∗ as
in (8.39). Since there are T −1 different factors I of the form {χt

′
k : t ′ 6= t},

and one variable i connected to each of them, the conclusion is (8.37).

• For φ(t)
k → h(t), the neighbor set is given by I ∈ Nj \ J = {φ

(t)
l : l 6= k},

and i ∈ NI \ j = {u
(t)
l }. For factors with two variables, the function

inside the logarithm in (8.42) reduces to (cf. [82], Eq. 48)

fφ ,
φ(u,h)φ(u ′,h ′)
φ(u ′,h)φ(u,h ′)

(8.45)

for u 6= u ′,h 6= h ′. Note that, when u = h, fφ = 1−Pfa
1−Pd

· Pd
Pfa

, and when

u 6= h, fφ = 1−Pd
1−Pfa

· Pfa
Pd

. Assuming Pfa < 0.5 and Pd > 0.5, then 1−Pfa
1−Pd

·
Pd
Pfa
> 1−Pd
1−Pfa

· Pfa
Pd

always, and therefore

sup fφ = p∗. (8.46)

Since there are K− L− 1 such factors I, the result is (8.38).
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An intuitive interpretation of conditions (8.37) and (8.38) is the follow-
ing: convergence conditions become more and more restrictive as K and T
increase, i.e., as the number of loops increases. Also, from (8.37) it turns
out that convergence is guaranteed when all variables rk have nearly the
same value. For example, assume that all rk are positive and that rmax is 2%
larger than rmin: then, convergence is guaranteed for any T 6 101. In con-
trast, if variables rk are different in value and/or sign, e.g., r = [−0.1, 0.2],
the convergence condition (8.37) becomes T 6 2, i.e., it reduces to the triv-
ial case discussed in Sec. 8.5.1. The second condition (8.38) is satisfied for
larger values of K as Pd decreases while Pfa increases. In the extreme case of
Pd = Pfa = 0.5, (8.38) is satisfied for any K. For low error probabilities, e.g.,
Pfa = 0.1 and Pd = 0.99, convergence is guaranteed only when K 6 2, which
again reduces to the special case considered in Sec. 8.5.1.

Remark: the results of Proposition 2 are only sufficient conditions for con-
vergence. Simulations indicate that convergence actually occurs in a broader
class of graphs. In fact, cases of non-convergence (oscillating beliefs) were
never encountered in simulation. The problem of whether BP converges to
the correct value is addressed next.

8.5.3 Expectation of Beliefs

In this section the evolution of the expected values of beliefs is analyzed, so as
to give insight into the consistency of the BP algorithm. To this purpose, the
“correct” element of the belief (e.g., b(0) if h(t) = 0) is compared against the
“wrong” one (e.g., b(1) if h(t) = 0). More precisely, the following quantities
are of interest:

E
y
(t)
k |h(t) [b

(l)

h(t)(h
(t))] vs. E

y
(t)
k |h(t) [b

(l)

h(t)(h
(t))], (8.47)

where h , 1− h denotes the complement of binary variable h. In order to
achieve good performance, the first term should be consistently larger than
the second one. To show that such property holds, an intermediate result
needs to be proven first.

Lemma 2. If variables rk are a priori independently and uniformly dis-
tributed, then the conditional probabilities of y(t)k given h(t) are

Pr(yk = 1(t)|h(t) = 0) =
1+ 2Pfa

4
(8.48)

Pr(yk = 1(t)|h(t) = 1) =
1+ 2Pd

4
(8.49)



146 8 multi-sensor signal detection with malicious sensor nodes

Proof. For h(t) = 0,

Pr(yk = 1(t)|h(t) = 0) =

∫1
−1

p(r) ∑
u=0,1

p(u|0)p(y|r,u)

dr

=

∫1
−1

1

2
((1− Pfa)χ(0, r, 1) + Pfaχ(1, r, 1))dr

=
1

2

∫1
0

((1− Pfa)r+ Pfa)dr+
1

2

∫0
−1

Pfa(1− |r|)dr

=
1+ 2Pfa

4
,

which is (8.48). Similarly, (8.49) is found in the same way by letting h(t) =

1.

An important implication of Lemma 1 is that, given Pfa < 0.5 and Pd > 0.5,
then Pr(yk = 1(t)|h(t) = 0) < 0.5 while Pr(yk = 1(t)|h(t) = 1) > 0.5. Fur-
thermore, it is immediate to verify that E[y

(t)
k |h] = Pr[y(t)k = 1|h], therefore

the probabilities (8.48) and (8.49) can be interpreted as expected values. Un-
der this perspective, Lemma 1 means that, on average, reports are consistent
although corrupted by malicious nodes.

Using this result, beliefs are shown to be consistent as well. Furthermore,
beliefs provide an improvement in the confidence level of estimation of h(t)

compared to reports y(t)k .

Proposition 5. Assume variables rk, h(t) independent and with uniform
prior distribution, and Pd > 0.5, Pfa < 0.5. Then for any user k, time slot
t, and iteration number l, the expected values of beliefs of h(t) satisfy the
relation

E
y
(t)
k |h(t) [b

(l)

h(t)(h
(t))] > E

y
(t)
k |h(t) [b

(l)

h(t)(h
(t))]. (8.50)

Proof. First recall that each belief (say bh(t)) is a scaled product of all incom-
ing messages η

φ
(t)
k →h(t) . Such incoming messages are conditionally indepen-

dent given h(t). Therefore, to prove the proposition, it is sufficient to prove
that, for all k,

E
y
(t)
k |h(t)

[
η
(l)

φ
(t)
k →h(t)

(h(t))

]
> E

y
(t)
k |h(t)

[
η
(l)

φ
(t)
k →h(t)

(h(t))

]
. (8.51)

Now, using (8.26), messages η(l)
φ

(t)
k →h(t)

(h(t)) can be written as

η
(l)

φ
(t)
k →h(t)

(h(t)) ∝ φ(0,h(t))µ(l−1)
u

(t)
k →φ

(t)
k

(0) +φ(1,h(t))µ(l−1)
u

(t)
k →φ

(t)
k

(1) (8.52)
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where, by applying (8.24) and (8.28),

µ
(l−1)

u
(t)
k →φ

(t)
k

(0) ∝
∫1
−1
χ(0, r,y(t)k )µ

(l−2)

rk→χ
(t)
k

(r)dr (8.53)

µ
(l−1)

u
(t)
k →φ

(t)
k

(1) ∝
∫1
−1
χ(1, r,y(t)k )µ

(l−2)

rk→χ
(t)
k

(r)dr. (8.54)

Note that the term µ
(l−2)

rk→χ
(t)
k

(r) is common to both (8.53) and (8.54), therefore

after simple algebraic manipulations (8.52) can be rewritten as

η
(l)

φ
(t)
k →h(t)

(h(t)) ∝
∫1
−1
µ
(l−2)

rk→χ
(t)
k

(r)
[
φ(0,h(t))χ(0, r,y(t)k ) +φ(1,h(t))χ(1, r,y(t)k )

]
dr.

(8.55)

For notational convenience, define F(t,l)k (r) , µ(l−2)
rk→χ

(t)
k

(r). By applying recur-

sively (8.25), (8.29), (8.23), (8.27) and (8.22), F(t,l)k (r) can be expressed as

F
(t,l)
k (r) ∝

∏
s6=t

χ(0, r,y(s)k )

(1− Pfa)
∏
j6=k

η
(l−4)

φ
(s)
j →h(s)

(0) + (1− Pd)
∏
j6=k

η
(l−4)

φ
(s)
j →h(s)

(1)


+χ(1, r,y(s)k )

Pfa

∏
j6=k

η
(l−4)

φ
(s)
j →h(s)

(0) + Pd

∏
j6=k

η
(l−4)

φ
(s)
j →h(s)

(1)

 .

(8.56)

Note that is the above derivation constant terms are neglected in virtue of
the assumption of uniform i.i.d. p(rk), p(h(t)). Thus, from (8.55), the original
messages η(l)

φ
(t)
k →h(t)

(h(t)) can be written as

η
(l)

φ
(t)
k →h(t)

(0) ∝
∫1
−1
F
(t,l)
k (r)

[
(1− Pfa)χ(0, r,y

(t)
k ) + Pfaχ(1, r,y

(t)
k )
]

dr,

η
(l)

φ
(t)
k →h(t)

(1) ∝
∫1
−1
F
(t,l)
k (r)

[
(1− Pd)χ(0, r,y

(t)
k ) + Pdχ(1, r,y

(t)
k )
]

dr,

i.e., as a function of messages of the same type, η(l−4)
φ

(s)
j →h(s)

, sent four itera-

tions earlier from nodes φ(s)
j (j 6= k, s 6= t).

Then, let ∆ , η
(l)

φ
(t)
k →h(t)

(0) − η
(l)

φ
(t)
k →h(t)

(1). After some algebra ∆ can be

written as

∆ ∝
∫1
−1
F
(t,l)
k (r)(Pd − Pfa)

[
χ(0, r,y(t)k ) − χ(1, r,y(t)k )

]
dr. (8.57)

In order to prove (8.51), the sign of the expected value of ∆ must be studied
for h(t) = 0 and for h(t) = 1. By linearity of expected value and integral,

E
y
(t)
k |h

[∆] ∝
∫1
−1
F
(t,l)
k (r)(Pd − Pfa)Ey(t)

k |h

[
χ(0, r,y(t)k ) − χ(1, r,y(t)k )

]
dr.
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(8.58)

Let χ∆ , χ(0, r,y(t)k )−χ(1, r,y(t)k ). The sign of E
y
(t)
k |h

[∆] depends on the sign

of E
y
(t)
k |h

[χ∆], because (Pd − Pfa) is positive by assumption and F(t,l)k (r) > 0

∀r being a product of non-negative probability functions. Note that variables
y
(s)
k in F(t,l)k (r) are independent from y

(t)
k . So, it follows that

E
y
(t)
k |h

[χ(u, r,y(t)k )] = Pr(y(t)k = 0|h)χ(u, r, 0) + Pr(y(t)k = 1|h)χ(u, r, 1),

(8.59)

hence

E
y
(t)
k |h

[χ∆] =Pr(y(t)k = 0|h)[χ(0, r, 0) − χ(1, r, 0)]

+ Pr(y(t)k = 1|h)[χ(0, r, 1) − χ(1, r, 1)]. (8.60)

By definition of function χ Table 8.2 it readily found that, for both r > 0 and
r < 0,

χ(0, r, 0) − χ(1, r, 0) = 1− |r|, (8.61)

χ(0, r, 1) − χ(1, r, 1) = |r|− 1, (8.62)

therefore

E
y
(t)
k |h

[χ∆] = (1− |r|)
[
Pr(y(t)k = 0|h) − Pr(y(t)k = 1|h)

]
= (1− |r|)

[
1− 2Pr(y(t)k = 1|h)

]
(8.63)

Finally, exploiting the expressions of Pr(y(t)k = 1|h) provided by Lemma 1, it
follows that

E
y
(t)
k |h=0

[χ∆] = (1− |r|)

(
1

2
− Pfa

)
> 0 (8.64)

E
y
(t)
k |h=1

[χ∆] = (1− |r|)

(
1

2
− Pd

)
< 0. (8.65)

Thus, (8.51) is proved, which in turn implies (8.50).

Remark. The message representation used in the above proof (Eqs. 8.57 and
8.57) allows for an intuitive interpretation of the BP algorithm. The term in
squared brackets,[
(1− Pfa)χ(0, r,y

(t)
k ) + Pfaχ(1, r,y

(t)
k )
]

or
[
(1− Pd)χ(0, r,y

(t)
k ) + Pdχ(1, r,y

(t)
k )
]
,

representing the likelihood of the measurement y(t)k , is by itself sufficient to
guarantee consistency. In fact, as a result of Lemma 1, reports y(t)k are al-
ready consistent; Proposition 3 then proves that BP does not degrade such
property irrespective of the number of loops. What is introduced by BP is the
term F

(t,l)
k (r), that can be interpreted as an estimate of the distribution of r

obtained using to the information coming from other time slots s 6= t. With-
out BP, this distribution would be uniform. Thus, F(t,l)k (r) can be interpreted
as a “filter” of the observation likelihood function for different values of r.



9
R E W E I G H T E D B E L I E F P R O PA G AT I O N

9.1 introduction

In wireless communication, BP has found applications in many aspects of
receiver design, including equalization, demapping, multi-user detection,
multi-antenna detection, and decoding [156, 157, 28, 91]. Most notably in
the latter application, the use of BP message passing over a suitable graphical
model has led to practical decoding algorithms for powerful error-correcting
codes, such as LDPC codes and turbo codes [153]. Recently, there has been
an interest from the wireless communication community to extend BP to
distributed problems, involving cooperation among multiple spatially sep-
arated wireless devices. BP inherently lends itself well to distributed imple-
mentation, and is thus a powerful, yet practical algorithm to perform cooper-
ative estimation and detection. In fact, BP-based cooperative message passing
algorithms have been applied to a wide variety of problems, including coop-
erative positioning [158, 49, 123], artificial intelligence [37], computer vision
[127], cognitive radio [109, 65], link loss monitoring [74], network control
[22], cooperative beamforming [90], and sensor networks [94]. Despite of its
widespread use, BP is faced by a lack of convergence guarantees, as well as
over-confidence of beliefs [152]. These problems have been partly addressed
in [143], where a novel message passing algorithm was proposed, called tree-
reweighted BP (TRW-BP). This algorithm has stronger convergence guarantees
[118], and often gives better performance than BP. However, TRW-BP involves
the selection of, and optimization over, so-called edge appearance probabilities
(EAP). This makes TRW-BP difficult to implement in a network setting, as the
choice of valid edge appearance probabilities involves a problem that is hard
to solve in a distributed manner.

In this chapter, a novel algorithm is presented that combines the dis-
tributed nature of BP and the improved performance of TRW-BP in graphs
with cycles. The new algorithm is called uniformly reweighted BP (URW-BP),
as it collapses the edge appearance probabilities into a single scalar variable.
As special cases, URW-BP reverts to BP under suitable choice of the variable,
and corresponds to the optimal choice of edge appearance probabilities in
TRW-BP for certain types of graphs. Although URW-BP is a straightforward
modification of TRW-BP, it is a powerful inference algorithm in its own right,
and deserves deeper investigation. The main contributions presented in the
chapter are as follows:

• Introduction of URW-BP as a practical (and in some case equivalent)
alternative to TRW-BP for distributed inference problems

149
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• Interpretation of URW-BP as a multi-objective optimization problem,
trading off single-variable entropy and correlation among variables,
thus enabling URW-BP to mitigate overconfidence of beliefs in BP

• Extensive simulation results showing that URW-BP consistently outper-
forms BP, for centralized and distributed inference, for discrete and
continuous variables, and for pairwise as well as higher-order interac-
tions.

9.1.1 Message Passing Algorithms

Given a factor graph of p(x|y), a message passing algorithm can be run to
determine approximations of the marginals p(xn|y), called beliefs, denoted
by bn(xn). Various message passing algorithms have been proposed, ar-
guably the most popular of which is BP. Alternatives include naive mean
field [142], TRW-BP [143], and generalized BP [162]. When the factor graph
is cycle-free, BP and TRW-BP are equivalent and provide the exact marginals,
i.e., bn(xn) = p(xn|y), ∀n, xn. When the factor graph contains cycles, BP and
TRW-BP are not guaranteed to yield the true marginal posteriors, or even to
converge at all.

9.1.1.1 Belief Propagation

Assuming the variable Xn appears in the factor ψm,n, the BP message1 from
ψm,n to Xn is given by

µψm,n→Xn(xn) = (9.1)∑
xm

φm(xm)ψm,n(xm, xn)
∏

k∈Nm\{n}

µψm,k→Xm(xm),

where k ∈ Nm indicates that there exists a factor ψm,k. The beliefs are up-
dated according to

bn(xn) ∝ φn(xn)
∏
m∈Nn

µψm,n→Xn(xn). (9.2)

Equations (9.1)–(9.2) are iterated until the beliefs converge.

9.1.1.2 Tree-Reweighted Belief Propagation

In TRW-BP, the message from ψm,n to Xn is given by

µψm,n→Xn(xn) = (9.3)∑
xm

φm(xm)ψ
1/ρm,n
m,n (xm, xn)µ

ρm,n−1
ψm,n→Xm(xm)

∏
k∈Nm\{n}

µ
ρm,k
ψm,k→Xm(xm),

1 For notational convenience, beliefs and messages will be expressed in terms of messages from
factor vertices to variable vertices. Messages from variable vertices to factor vertices will not
be considered, except in Section 9.2.3.
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while the belief is given by

bn(xn) ∝ φn(xn)
∏
m∈Nn

µ
ρm,n
ψm,n→Xn(xn). (9.4)

As in BP, (9.3)–(9.4) are iterated until the beliefs converge. TRW-BP, the values
{ρm,n}(m,n)∈E are the so-called edge appearance probabilities2 (edge appear-
ance probabilitys (EAPs)) of the factor vertices {ψm,n}(m,n)∈E.

The performance of TRW-BP depends on the choice of EAPs. Optimization
over the EAPs (referred to here as optimized TRW-BP) is possible, but corre-
sponds to an outer iterative loop, involving a high-dimensional optimization
problem over {ρm,n}(m,n)∈E. Moreover, the set of valid EAPs is non-trivial:
given a graph G and the set T(G) of all possible spanning trees, a distri-
bution over the spanning trees needs to be introduced: 0 6 p(T) 6 1, for
T ∈ T(G). For a given distribution, the EAP of factor ψm,n is then given by

ρm,n =
∑

T∈T(G)

p(T)× I {vertexψm,n ∈ T } ,

where I {·} is the indicator function. Note that when G is a tree, every factor
vertex ψm,n appears in every spanning tree, so that ρm,n = 1, ∀(m,n) ∈ E.
When the graph G contains cycles, there must be at least one ρm,n < 1.

BP can now be interpreted as a modification of TRW-BP, where ρm,n = 1,
∀(m,n) ∈ E, irrespective of the structure of G. Note that this choice of EAPs

is not valid for a graph with cycles.

9.2 uniformly reweighted belief propagation

9.2.1 Description

In order to combine the simplicity and distributed nature of BP with the
improved performance of TRW-BP in graphs with cycles, a novel approxi-
mate inference algorithm, called uniformly reweighted belief propagation
(URW-BP), is proposed. In URW-BP, the EAPs in (9.3)–(9.4) are all equal (and
denoted by ρ), so their optimization is a scalar optimization problem. The
following sections will connect BP, TRW-BP, and URW-BP in a variational inter-
pretation, comment on the conditions under which URW-BP and optimized
TRW-BP coincide, and cast URW-BP as a solution to a multi-objection optimiza-
tion problem.

2 The terminology of edge appearance comes from the Markov random field representation of
p(x|y), where the factors ψm,n are represented by edges.
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9.2.2 Variational Interpretation

9.2.2.1 General Formulation

Given any distribution b(x), the Kullback-Leibler divergence (KLD) [23] be-
tween b(x) and p(x|y) is given by

KL (b||p) =
∑

x

b(x) log
b(x)
p(x|y)

> 0.

By inserting (5.8), and perform some straightforward manipulations, this
inequality can be expressed as

logp(y) > H(b)+ (9.5)
N∑
n=1

∑
xn

bn(xn) logφn(xn) +
∑

(m,n)∈E

∑
xm,xn

bm,n(xm, xn) logψm,n(xm, xn)︸ ︷︷ ︸
,χ(b)

,

where H(b) denotes the entropy of the distribution b(x), i.e.,

H(b) = −
∑

x

b(x) logb(x). (9.6)

Note that (9.5) is valid with equality if and only if b(x) = p(x|y), ∀x. Hence,

logp(y) = max
b∈M(G)

{H(b) + χ(b)} , (9.7)

where M(G) is the so-called marginal polytope corresponding to the factor
graph G, which is the set of marginal distributions {bn(xn)}

N
n=1 and

{bm,n(xm, xn)}(m,n)∈E that can be related to a global distribution b(x) that
factorizes according to the same factor graph G. The formulation (9.7) im-
plies that if one can solve the optimization problem, then the solution is
b(x) = p(x|y), with corresponding maximum equal to logp(y). The opti-
mization problem turns out to be convex, but intractable: unless G is a tree,
computing H(b) is NP-complete and the number of constraints to describe
M(G) is exponential in the size of G. BP, TRW-BP, and URW-BP can be inter-
preted as approximate methods to solve (9.7).

9.2.2.2 Belief Propagation

In BP, the set M(G) is outer-bounded by the convex set L(G), which is the set
of marginal beliefs {bn(xn)}

N
n=1 and {bm,n(xm, xn)}(m,n)∈E, that are mutu-

ally consistent, but need not be consistent with any global belief b(x). It can
be shown that L(G) is a convex set, and that when G is a tree, M(G) = L(G)

[142]. Secondly, the entropy in (9.7) is replaced by the so-called Bethe entropy

HBethe(b) =

N∑
n=1

H(bn) −
∑

(m,n)∈E

I(bm,n), (9.8)
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where I(bm,n) is the mutual information between xm and xn:

I(bm,n) =
∑
xm,xn

bm,n(xm, xn) log
bm,n(xm, xn)
bm(xm)bn(xn)

.

It is shown in [162] that BP (9.1)–(9.2) is an iterative method to find of a
stationary point of the Lagrangian.

9.2.2.3 Tree-Reweighted Belief Propagation

In TRW-BP, the set M(G) is also outer-bounded by the convex set L(G). For a
fixed set of valid EAPs, the entropy H(b) is replaced by a convex upper bound

H(b|ρ) =

N∑
n=1

H(bn) −
∑

(m,n)∈E

ρm,nI(bm,n),

where ρ , [ρm,n](m,n)∈E. Note again that BP corresponds to setting ρ = 1
in TRW-BP. For a fixed ρ, the stationary points of the Lagrangian lead to
(9.3)–(9.4), following a similar line of reasoning as in [162].

9.2.2.4 Uniformly Reweighted Belief Propagation

In URW-BP, similar to BP and TRW-BP, the set M(G) is outer-bounded by the
set L(G). For a fixed value of ρ ∈ R, the entropy H(b) is approximated by

H(b|ρ) =

N∑
n=1

H(bn) −
∑

(m,n)∈E

ρI(bm,n). (9.9)

Again, BP is found by setting ρ = 1. Stationary points of the Lagrangian lead
to the TRW-BP equations given in (9.3)–(9.4), with ρm,n = ρ, ∀(m,n) ∈ E.

9.2.3 Extension of TRW-BP and URW-BP Beyond Pairwise Interactions

In the original formulation of TRW-BP, only pairwise interactions were con-
sidered, with a corresponding Markov random field where variables are ver-
tices and edges are pairwise potentials. It was suggested in [143] that the
extension to higher-order interactions requires a graphical model that is a
hypergraph. Based on factor graphs, TRW-BP equations have been derived
for arbitrary interactions [160]. In particular, given a joint a posteriori distri-
bution of the form

p(x|y) ∝
N∏
n=1

φn(xn)

L∏
l=1

ψl(xCl), (9.10)
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where xCl ⊆ x, the message from factor vertex ψl to variable vertex Xn is
given by

µψl→Xn(xn) =
∑
∼xn

ψ
1/ρl
l (xCl)×∏

m∈Cl\{n}

φm(xm)µρl−1ψl→Xm(xm)
∏

k∈Nm\{l}

µ
ρk
ψk→Xm(xm),

where
∑

∼xn
denotes summation over all variables except xn. The beliefs are

given by

bn(xn) ∝ φn(xn)
∏
l∈Nn

µ
ρl
ψl→Xn(xn). (9.11)

Here, the variables ρl refer to the appearance probabilities of the factor ver-
tices ψl in the collection of trees. A slight abuse of notation has been made,
as here l ∈ Nn means that there exists a factor ψl that has as variable Xn.
For URW-BP, all ρl are simply set as ρl = ρ.

For the sake of completeness, message passing rules are also provided
when messages from variable vertices to factor vertices are computed. In
that case, the message from variable vertex Xn to factor vertex ψl, n ∈ Cl is
given by

mXn→ψl(xn) = φn(xn)m
ρl−1
ψl→Xn(xn)

∏
k∈Nn\{l}

mρkψk→Xn(xn), (9.12)

while the message from factor vertex ψl to variable vertex Xn, n ∈ Cl is now

mψl→Xn(xn) =
∑
∼xn

ψ
1/ρl
l (xCl)

∏
m∈Cl\{n}

mXm→ψl(xm). (9.13)

Finally, the belief of variable xn is given by (9.11), where µ(·)(·) should be
replaced by m(·)(·). These message passing rules can be seen as extension of
the sum-product algorithm from [62].

9.2.4 Discussion of URW-BP

9.2.4.1 URW-BP as a Multi-Objective Optimization Solution

The URW-BP objective function can be written for general interactions as

χ(b) +

N∑
n=1

H(bn) − ρ

L∑
l=1

I(bCl),

which can be interpreted as a multi-objective problem with trade-off param-
eter ρ > 0. The function χ(b) is linear in b(x), while

∑N
n=1H(bn) is con-

cave in b(x). Suppose to have two candidate solutions: b(x) and b̃(x), for
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which χ(b) = χ(b̃). When ρ = 1, the solution with the maximal Bethe en-
tropy will be chosen. Maximizing Bethe entropy corresponds to maximizing
the entropies of bn(xn) and at the same time minimizing the dependence
among variables. When ρ = 0, the solution with the maximal entropy of the
individual beliefs will be chosen, irrespective of the dependence (mutual in-
formation) among the variables. Hence, by decreasing ρ, beliefs are forced to be
less concentrated (i.e., less over-confident).

9.2.4.2 URW-BP as Optimized TRW-BP

There exist sufficient, though not necessary conditions, under which URW-BP

and optimized TRW-BP coincide. In the following, set cardinality is denoted
by | · |.

Definition 1 (Symmetric factorization). Given a factor graph G, corresponding
to a factorization

p(x|y) ∝
N∏
n=1

φn(xn|θn)

L∏
l=1

ψl(xCl |θCl) (9.14)

with L non-trivial3 factors, where θn and θCl represents parameters that fully de-
termine the corresponding functions. A factorization is called symmetric when (i)
|Cl| = |Ck|, ∀k, l ∈ {1, . . . ,L} and |Nn| = |Nm|, ∀m,n ∈ {1, . . . ,N}; (ii) θn = θm,
∀m,n ∈ {1, . . . ,N} and θCl = θCk , ∀k, l ∈ {1, . . . ,L}.

Proposition 1. The optimal EAPs in TRW-BP for factorizations which are either
symmetric, or for which the corresponding factor graph is a tree, are uniform, i.e.,
ρ = ρ, for some ρ ∈ [0, 1].

The proof follows immediately from symmetry considerations. As a spe-
cial case, [143, page 2327] points out that for symmetric factorizations with
only pairwise interactions, the optimal EAP in TRW-BP should be uniform,
and is given by ρ = (N− 1)/L, where L = |E|. Introducing nD as the num-
ber of pairwise interactions in which each variable is involved,4 a simple
counting argument yields nD ≈ 2L/N, so that

ρ ≈ min
(
1,
2

nD

(
1−

1

N

))
(9.15)

≈ min (1, 2/nD) . (9.16)

Note that for trees, L = N− 1, so that nD ≈ 2, with corresponding ρ = 1.
While symmetric factorizations are not very interesting from a practical

perspective, it can be expected that URW-BP should perform close to opti-
mized TRW-BP as long as the factorization exhibits sufficient symmetry or

3 In the sense that |Cl| > 2.
4 Note that nD is also the node degree in the corresponding Markov random field, and that
nD + 1 is the variable vertex degree in the corresponding factor graph.
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Figure 9.1: Value of ρ as a function of the average node degree according to (9.16).

when the factor graph is sufficiently tree-like. The conditions for sufficient
symmetry are not explored here, and are a topic for future research. How-
ever, as shown in the following section, the class of factorizations for which
URW-BP outperforms BP turns out to be quite large.

In the context of distributed inference, where there are N devices, with a
total of L bi-directional communication links among devices, nD corresponds
to the average connectivity, and can be estimated by running a simple con-
sensus algorithm over a network [46]. The relationship (9.16) is shown in
Fig. 9.1. It is clear that for high network connectivity, URW-BP is expected to
outperform BP.

9.3 case studies

In this section, URW-BP will be applied to three practical applications, involv-
ing discrete and continuous variables, centralized and distributed process-
ing, and pairwise as well as higher-order interactions. The first application
involves a cognitive radio network, where devices determine whether or not
the spectrum is being utilized. The second application involves determining
positions of wireless devices through cooperation. The goal of every device
is to determine its own position based on distance estimates with respect to
neighbors and reference nodes. The final application involves decoding of
LDPC codes. In all three cases URW-BP is shown to outperform BP.
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9.3.1 Case Study 1: Signal Detection for Cognitive Radio

9.3.1.1 Problem Formulation

In cognitive radio networks, secondary users (SU) are granted access to the
spectrum of primary users (PU), when said spectrum is not used by the PU.
This allows spatial reuse of scarce spectrum. Prior to using the channel, the
SU must sense the spectrum and decide whether or not any PUs are present.
As PUs correspond to signal sources with a precise physical location, it is
reasonable to assume that two SU that are close to each other are likely to
observe the same PU signal state, whereas observations of SU that are far
apart are most likely independent. Based on [66], these properties can be
captured through (i) binary variables (xn ∈ {0, 1}, where xn = 1 means that
the channel is occupied near the location of the n-th SU), (ii) observations
yn (reflecting the signals collected by the n-th SU) with corresponding likeli-
hoods φn(xn) = p(yn|xn), and (iii) spatial correlations5 between xn and xm,
ψm,n(xn, xm) = exp(λm,nI{xn = xm}), where λm,n > 0 generally decreases
with the distance between the two SUs. The set of neighbors Nn in this case
is defined implicitly as the set of SU that are within communication range
with the n-th SU [109]. The joint a posteriori distribution p(x|y) is of the form
(5.8):

p(x|y) ∝
N∏
n=1

p(yn|xn)
∏

(m,n)∈E

exp(λn,mI{xn = xm}),

where the product over couples (m,n) is only over m < n, for which m ∈
Nn. The goal of the n-th SU is to determine bn(xn) ≈ p(xn|y), where y =

[y1, . . . , yN].
The likelihood functions φn(xn) = p(yn|xn) account for the detection

performance of each node n. Assume that each node uses as test statistic for
detection a vector of S i.i.d. signal received samples, and that noise and PU

signal are both complex Gaussian random variables with variance σ2v and
σ2s respectively. Then, it can be readily shown that for xn = 0 (i.e., when no
PU is accessing the channel around the n-th SU), yn ∼ CN(0,σ2vIS), while for
xn = 1 (i.e., when a PU is active), yn ∼ CN(0, (σ2v + σ2s)IS), where IS is the
S× S identity matrix.

Note that distributed signal detection can be seen as a special case of the
more general problem of distributed parameter estimation, or multiple hy-
pothesis testing, studied in the context of wireless sensor networks (see, for
example, [27, 25, 140]). The proposed method can be extended accordingly
to these applications.

5 In general, higher-order interactions (e.g., between xn, xm, and xp) are possible as well,
though, similar to [66], these interactions are neglected for simplicity.
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9.3.1.2 Implementation Aspects

As every SU in the network corresponds to a variable xn, URW-BP can be
implemented distributedly by mapping the factor graph to the communica-
tion graph. Thus, the message µψm,n→Xm(xm) from (9.3) in the factor graph
is transmitted from the n-th SU to the m-th SU. For binary variables, it is
convenient to represent messages with log-likelihood ratios (LLRs). Introduc-
ing γn = log(φn(0)/φn(1)), and accounting for the fact that ψ1/ρm,n(0, 1) =

ψ
1/ρ
m,n(1, 0) = 1 and ψ1/ρm,n(0, 0) = ψ

1/ρ
m,n(1, 1) = exp(λm,n/ρ), µψm,n→Xm(xm)

can be expressed as a scalar quantity:

Mn→m , log
µψm,n→Xm(0)

µψm,n→Xm(1)

= U

λm,n

ρ
,γn + (ρ− 1)Mm→n + ρ

∑
k∈Nn\{m}

Mk→n

 , (9.17)

where U(a,b) = log(1 + ea+b)/(ea + eb), which is a function that can be
computed efficiently for any a,b ∈ R. Similarly, the beliefs in LLR represen-
tation are given by

Bn , log
bn(0)

bn(1)

= log
φn(0)

∏
m∈Nn µ

ρ
ψm,n→Xn(0)

φn(1)
∏
m∈Nn µ

ρ
ψm,n→Xn(1)

= γn + ρ
∑
m∈Nn

Mm→n. (9.18)

9.3.1.3 Performance Results

A metric to evaluate the performance of URW-BP is KLD between belief and
true posterior, defined as

KLDn , KL (bn(xn)||p(xn|y)) , (9.19)

computed for each node in the network and averaged over all nodes. First a
small network of 4 nodes is considered, with correlation factors λn,m mod-
eled as uniformly distributed random variables between 0.2 and 4. Nodes
are deployed randomly in a circular area of unit diameter. Then, define R
as the communication range of nodes in the network: if R = 1, all nodes
can communicate with each other, therefore many loops are present in the
graph; on the contrary, low values of R result in fewer loops. The first graph
in Fig. 9.2 shows the average KLD of beliefs computed through standard BP

and URW-BP as a function of ρ for different values of R. It can be observed
that URW-BP outperforms standard BP (corresponding to ρ = 1), especially
for large values of R. Also, the best value of ρ (denoted as ρ∗) tends to de-
crease as R → 1 as an effect of the increasing number of loops in the graph.
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Figure 9.2: Average KLD vs. ρ (top) and vs. normalized communication range (bot-
tom) for a simple network of 4 nodes, λm,n ∼ U(0.2, 4). The value ρ = 1

corresponds to standard BP.

In the the second panel of Fig. 9.2, average and maximum KLD are plotted
as function of the communication range, for URW-BP and standard BP.

Fig. 9.3 combines the results of simulations performed on networks of dif-
ferent size (N from 4 through 15) and shows the best value of ρ (according
to average KLD) as a function of the average degree nD. Results confirm the
dependency of ρ∗ on the average degree of the graph, as discussed in Sec.
9.2.4. In particular, the approximate expression (9.16) proves to be increas-
ingly accurate as nD � 1.
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Figure 9.3: Best EAP (ρ∗) based on average KLD vs. average degree nD.

9.3.2 Case Study 2: Cooperative Positioning

9.3.2.1 Problem Formulation

The second considered application of URW-BP is cooperative positioning in
wireless networks. In this case, the goal of each node (referred to as tar-
gets) is to estimate its own position based on a set distance measurements
with nearby targets and and few fixed reference nodes (referred to as an-
chors), assuming a fully distributed architecture. These distance estimates
can be obtained using well-known measurement techniques (e.g., time of
arrival, received signal strength). Contrary to the previous case, continuous
variables occur in this problem. Also contrary to the previous case where
over-confidence of the beliefs is not detrimental as long as the estimates are
correct, here the situation is quite different: for safety-critical applications,
e.g., tracking of robots or unmanned aerial vehicles (UAVs), it is important
not only to have good position estimates, but also to know the uncertainty.
When a belief is overconfident, a target may take improper actions (e.g., crash
into another UAV).

The considered scenario consists of N targets and minimum 3 anchors
scattered randomly in a planar region, and denote the two-dimensional lo-
cation of the n-th node (target or anchor) by xn. Target n obtains a noisy
measurement ymn of its distance from node m, given by

ymn = ‖xm − xn‖+ vmn, (9.20)

where vmn represents the noise drawn from some distribution pv (e.g., Gaus-
sian or the empirical distribution found from real measurements). As in the
previous case study, it is assumed that nodes can only communicate with
nearby devices within a predefined radius R > 0. Thus, ymn is available to
target n only when ‖xm − xn‖ < R. Hence, m ∈ Nn when ‖xm − xn‖ < R.
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Letting φn(xn) = pn(xn) be the a priori distribution of the position of the
n-th target, ψm,n(xm, xn) = p(ymn|xn, xm) the likelihood function, and col-
lecting the target positions in a vector x, and the distance estimates in a
vector y, the a posteriori distribution p(x|y) is of the form (5.8):

p(x|y) ∝
N∏
n=1

pn(xn)
∏

(m,n)∈E

p(ymn|xn, xm),

where the product over couples (m,n) is only over nodes m within commu-
nication range of target n, i.e., m ∈ Nn. The goal of target n is to determine
its belief bn(xn) ≈ p(xn|y). From the belief, the target can easily find a point
estimate (e.g., the mean of bn(xn)) and associated uncertainty (e.g., the co-
variance matrix, or any percentile).

9.3.2.2 Implementation Aspects

Since the variables are now continuous, all sums in message update equa-
tions in Section 9.2 have to be replaced with integrals. As the localization
problem is nonlinear and potentially non-Gaussian, exact message represen-
tation and updating is not tractable. Therefore, a non-parametric version of
URW-BP (URW-NBP) is adopted, where the beliefs and message update equa-
tions are performed using particle-based approximations (see [49, 123, 158]
for more details on NBP).

9.3.2.3 Performance Results

A network with 4 anchors and N = 25 targets is considered, in a square 20

m by 20 m deployment area. For simplicity, it is assumed that the noise vmn
has a zero-mean Gaussian distributionwith standard deviation 30 cm. Ten
iterations of message passing are performed, representing the messages with
500 particles. Performance is measured in terms of the average `1 positioning
error and the average trace of the covariance of the belief. The `1 error for
target n is given by ‖xn − x̂n‖, where x̂n is the mean of bn(xn). The results
are averaged over 100 Monte Carlo runs.

Fig. 9.4 shows the performance of URW-BP as a function of ρ ∈ [0.1, 1.5]
for R = 6.6 m and R = 16 m after the tenth iteration. It turns out that
for low connectivity, the `1 error is relatively insensitive to ρ for any ρ >
0.4. However, the beliefs become more concentrated as ρ increases. Hence,
reducing ρ results in a more robust algorithm. When the connectivity is
increased (R = 16), the best value of ρ ≈ 0.3, while ρ = 1 induces around
20% additional error. Again, more concentrated beliefs are observed with
increasing ρ. Overall, the differences between BP and URW-BP are small.
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Figure 9.4: Positioning performance as a function of ρ for different communication
radii. The first row shows the average `1 error, and the second row the
trace of the covariance matrix (denoted by Σ) of the belief.

9.3.3 Case Study 3: LDPC Decoding

9.3.3.1 Problem Formulation

Consider an LDPC code with an L×N sparse parity check matrix H. Let x
denote the transmitted codeword and y the observation over a memoryless
channel, with known p(yn|xn). The a posteriori distribution of interest is
now

p(x|y) ∝ p(y|x)p(x)

=

N∏
n=1

p(yn|xn)I{Hx = 0}

=

N∏
n=1

p(yn|xn)

L∏
l=1

I

 ∑
m∈Cl

xm = 0

 ,

where the summation is in the binary field, and Cl is the index set corre-
sponding to the non-zero elements of the l-th row in H. Clearly, the above
distribution can be associated with (9.10) through φn(xn) ↔ p(yn|xn) and
ψl(xCl)↔ I

{∑
m∈Cl xm = 0

}
.
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Figure 9.5: Performance of URW-BP as a function of the scalar parameter ρ for an
LDPC code, at a fixed SNR (Eb/N0 = 3dB). BP corresponds to ρ = 1.

9.3.3.2 Implementation Aspects

Due to the nature of ψl(xCl), ψ
1/ρ
l (xCl) = ψl(xCl), irrespective of ρ. Hence,

the messages from check nodes to variable nodes are unchanged with re-
spect to standard BP. Messages can be represented efficiently in the log-
domain, similar to the cognitive radio problem. It turns out that the message
from variable node Xn to check node ψl, expressed as a LLR, is given by (see
also (9.12))

MXn→ψl =Mch,n + ρ
∑

k∈N(Xn)

Mψk→Xn −Mψl→Xn ,

where λch,n = logp(yn|xn = 1)/p(yn|xn = 0). For additional details see
[160].

9.3.3.3 Performance Results

Fig. 9.5 shows the bit error rate (BER) performance of a rate 1/2 LDPC code
with N = 256 and L = 128 at a fixed SNR as a function of ρ, over an AWGN

channel. It is observed that ρ = 1 does not yield the best performance and
that the global minimum in the BER is achieved by ρ ≈ 0.85. Fig. 9.6 compares
the performance of BP and URW-BP (with ρ = 0.85) in terms of BER vs. SNR for
the same LDPC code. The result is that URW-BP outperforms BP at high SNR.
The difference in BER between TRW-BP and URW-BP is not large, but still sig-
nificant considering that a real LDPC code has been used, designed such that
loops are long and have limited impact on BP decoding. The performance
gap can be much greater in case of non-optimized graph configurations, i.e.,
with many short loops.
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Part IV

C O N C L U S I O N





S U M M A RY A N D C O N C L U S I O N S

Various examples of application of statistical techniques to wireless commu-
nications have been presented in this thesis. The focus has been on distributed
inference problems in wireless networks, where multiple nodes (sensors) have
to estimate the value of one or more hidden variables. Different specific
problems – signal detection, cooperative localization, identification of misbe-
having users – have been formulated under a common framework.

RMT techniques have been applied in the case of homogeneous inference
problems, where all sensors observe the same hidden variable. In this case,
the received signal covariance matrix (constructed from datasets received
at multiple sensors) is a key test statistic to estimate the hidden variable of
interest. RMT provides mathematical tools to analyze the statistical properties
of such matrix and, in particular, of its eigenvalues.

Such a methodology has been useful to characterize the performance (namely,
false-alarm and detection probability) of several eigenvalue-based detectors.
Results based on RMT, and in particular on asymptotical eigenvalue distri-
butions, have been proven to be more accurate than previously proposed
approaches, based on point-wise (almost sure) convergence of eigenvalues.
Expressions of false-alarm probability have been then used to determine
the decision threshold as a function of the target false-alarm rate. The main
application of these results is multi-sensor spectrum sensing in cognitive ra-
dio networks, where reliable detection of weak signals is needed to enable
interference-free coexistence between primary and secondary users in the
same frequency bands.

As a case-study, results on signal detection have been applied to low-
power networks (e.g., WSNs) coexisting with other transmitters in unlicensed
bands. Both theoretical and experimental results have been presented, show-
ing that a substantial performance increase (in terms of throughput and
packet loss rate) can be achieved by adopting approaches based on the CR

principle. Also, specific expressions of signal detection performance have
been derived for the considered scenario, taking into account discontinuous
channel occupation by PU transmitters.

Probabilistic graphical models (FGs and MRFs) have been adopted, on the
other hand, to address heterogeneous inference problems, where a different
hidden variable exists for each node in the network. In this case, the statisti-
cal problem structure can be mapped to a graph, and hidden variables can
be estimated by iterative algorithms such as BP (SPA).

If nodes in the network are collaborative and statistical interactions among
variables are pairwise, then it is possible to implement the SPA or other

167
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message passing algorithms in a decentralized fashion, such that messages
defined over the edges of a FG or MRF are exchanged by network nodes
as physical packets over the wireless channel. Such techniques, referred to
as network message passing algorithms, provide increased efficiency, scalabil-
ity, and robustness compared to centralized schemes. Two examples of net-
work message passing algorithms have been considered in this thesis: hybrid
(GNSS+terrestrial) cooperative localization and distributed signal detection in het-
erogeneous environments. In both cases, BP-based solutions have been shown
to provide substantial performance improvements over traditional methods.

Examples of inference problems solved by BP, but in a centralized setting,
have been considered as well. An example is cooperative signal detection
in the presence of malicious sensor nodes. This problem can be formulated
as an inference problem involving at the same time a homogeneous hidden
variable (signal presence, assumed as common to all nodes) and multiple
heterogeneous variables, modeling the behavior of possibly malicious users.
The problem is then mapped to a FG, where all hidden variables are jointly
estimated by the fusion center via iterative BP over the FG. As a result, it has
been shown that the sensing error probability, after a sufficient number of
time slots, is close to that of an ideal MAP estimator with exact knowledge of
the attack model.

Finally, motivated by the use of BP in several distributed inference prob-
lems, a variation of the BP algorithm has been introduced, where messages
exchanged among nodes are weighted by an exponent depending on the
average graph degree. The new algorithm, named URW-BP, exhibits supe-
rior performance compared to standard BP when the graph contains cycles.
URW-BP has been applied to signal detection, localization, and LDPC decod-
ing. A significant performance improvement compared to traditional BP has
been observed especially in the case of signal detection. In addition, URW-BP

can be implemented as a network message passing algorithm (decentralized
implementation), similar to BP.
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