
21 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

EDACs and test integration strategies for NAND flash memories / DI CARLO, Stefano; Fabiano, Michele; Piazza, R.;
Prinetto, Paolo Ernesto. - ELETTRONICO. - (2010), pp. 218-221. (Intervento presentato al convegno IEEE East-West
Design & Test Symposium (EWDTS) tenutosi a St. Petersburg, RU nel 17-20 Sept. 2010)
[10.1109/EWDTS.2010.5742060].

Original

EDACs and test integration strategies for NAND flash memories

Publisher:

Published
DOI:10.1109/EWDTS.2010.5742060

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2379483 since:

IEEE Computer Society

EDACs and Test Integration Strategies
for NAND Flash memories

Stefano DI CARLO, Michele FABIANO, Roberto PIAZZA, Paolo PRINETTO
-

Politecnico di Torino
Dipartimento di Automatica ed Informatica (DAUIN)

{Stefano.Dicarlo, Michele.Fabiano, Paolo.Prinetto}@polito.it, {R.Piazza.86}@gmail.com

Abstract—Mission-critical applications usually presents several
critical issues: the required level of dependability of the whole
mission always implies to address different and contrasting
dimensions and to evaluate the tradeoffs among them. A mass-
memory device is always needed in all mission-critical applica-
tions: NAND flash-memories could be used for this goal. Error
Detection And Correction (EDAC) techniques are needed to
improve dependability of flash-memory devices. However also
testing strategies need to be explored in order to provide highly
dependable systems. Integrating these two main aspects results in
providing a fault-tolerant mass-memory device, but no systematic
approach has so far been proposed to consider them as a whole.
As a consequence a novel strategy integrating a particular code-
based design environment with newly selected testing strategies
is presented in this paper.

I. INTRODUCTION

Mission-critical applications usually presents several criti-
cal issues: the required level of dependability of the whole
mission always implies to address different and contrasting
dimensions and to evaluate the tradeoffs among them. A
mass-memory device is always needed in all mission-critical
applications. NAND flash-memories could be used for this
goal: in fact on the one hand they are nonvolatile, shock-
resistant and powereconomic but on the other hand they have
several critical drawbacks [12], [13], [14], [21]. Two main
strategies have been adopted in order to improve dependability
of flash-memory devices: on the one hand Error Detection And
Correction (EDAC) techniques and on the other hand testing
strategies and algorithms. However these two aspects have
always been addressed separately: no systematic approach
has so far been proposed to consider them as a whole.
A novel strategy integrating a particular code-based design
environment with newly selected testing strategies is presented
in this paper.

The rest of the paper is organized as follows: Section
II briefly addresses the reliability issues of NAND flash
memories, Section III discusses the possible testing strategies,
Section IV introduces the adopted correcting codes, Section
V explains the architecture of our system integrating EDACs
and testing while Section VI concludes our work.

II. FLASH MEMORY RELIABILITY ISSUES

Flash memories present several reliability issues especially
because of their way of functioning [12]. Firstly the continuous

scaling down of technology is making more critical the single
cell reliability, while the reduction of the distance among the
cells can lead to Cell to cell Interferences [14], [21]. Secondly
the high electric fields needed for the program/erase operations
and the thinner and thinner oxides imply charge losses and
fluctuations problems (i.e., Cycling Induced Degradation).
Finally operations on flash memories are intrinsically analog,
forcing to have a high-dependable analog circuitry [3].

The most important reliability issues of NAND Flash mem-
ories can be split into Permanent Faults and Transient Faults.

A. Permanent Faults

Permanent Faults refer to permanent physical defects or
conditions. They can be divided into three subclasses:

• Flash Disturbances: disturbances are faulty behaviors
resulting from the floating gate (FG) technology [12],
thus they do belong to flash memories, but not to the
other memories [8], [19], [20], [23];

• Circuit Level Faults: defects can be present in the physical
structure of the cell and are modeled as resistors and
capacitors, while effects are analogically analyzed [11];

• Cell to cell Interferences: scaling down the physical
distance between adjacent cells makes transistors closer,
influencing each other and easily leading to change the
state of the cell [14], [21];

[9] is a detailed exploration of Permanent Faults of NAND
flash memories.

B. Transient Faults

Transient Faults refer to those physical phenomena or condi-
tions that are not permanent, thus occurring randomly: they are
usually due to charge trapping, charge fluctuations phenomena
and are strictly related to the cycling induced degradation.
These faults can be divided into four subclasses:

• Cycling Induced Degradation: since tunneling effect is
exploited for program/erase operation, the needed high
electric fields degrade the quality of the oxide; this results
in a limited number of cycles per cell, after which
reliability is not guaranteed anymore; the most important
causes of the oxide degradation are the charge trapping
and detrapping phenomena: charges in the oxide are
accumulating cycle after cycle and eventually result in

978-1-4244-9556-6/10/$26.00 ©2010 IEEE

a shift of the Vth levels (i.e., trapping), while charges
detrapping out the oxide depends logarithmically on time
and on temperature (i.e., detrapping) [3], [13];

• Anomalous Stress Induced Leakage Current (SILC): since
oxide has defects and is stressed by high electric fields,
electrons can tunnel from the inverted substrate to the FG
in the case of positive gate stress; this effect is also known
as Trap-Assisted Tunneling (TAT), is particularly rare and
is generated from the cooperation of close defects in the
oxide and can lead to a shift of the Vth [13];

• Random Telegraph Noise (RTN): readout operation can
suffer from drain current fluctuations; the on-state current
is said to be affected by RTN [13];

• Few-electrons issue: this issue usually refers to random-
ness of tunneling effect and to the related impossibility
of engineering the data-retention time [13];

[13] is a detailed exploration of all the reliability issues of
flash memories related to Transient Faults.

III. TESTING AND HARD ERRORS ESTIMATION

Testing strategies need to be explored in order to provide
highly dependable systems. In fact flash-memories are prone
to several kind of faults due to the floating gate technology
[12] and a plenty of strategies have been proposed to tackle
them [8], [17], [18], [19], [22].

[9] provides a complete exploration of the fault models
of NAND flash memories and of the related testing strate-
gies: in addition it presents a specific test algorithm for
NAND flash memories, which is an extension of the Bridging
Fault&Disturbances (BF&D) algorithm presented in [15].

In this section we want to provide a simple and effective
method to estimate the maximum number of Hard errors
for each page referring to the proposed test method of [9].
Our Extended BF&D algorithm programs the memory block
twice: firstly with a chessboard pattern and secondly with the
opposite chessboard pattern. After the whole block has been
programmed, errors are detected reading k-times the pages,
from top to bottom and vice versa by twos: therefore testing
requires each data page to be read a total of k times.

Assuming k = 2 and naming NTopBottomi
and NBottomUpi

the bit errors counts, where i is the i−th test section, Equation
1 is the empirical formula for the hard errors count estimation.

NBF&D−Ext = max(NTopBottom1 , NBottomUp1)+
+max(NTopBottom2 , NBottomUp2)

(1)

NBF&D−Ext is the estimated number of Hard errors for a
specific page: this estimation is simply computed choosing the
maximum between NTopBottomi

and NBottomUpi
. The overall

estimation of hard errors is achieved summing the contributes
of the k = 2 sections. Equation 1 let us associate each data
page to a worst case number of hard errors.

IV. ERROR DETECTION AND CORRECTION

Error Detection And Correction (EDAC) is respectively the
ability to detect the presence of errors and to correct them:

EDAC techniques are needed to improve dependability of
flash-memories. Designers should evaluate the most proper
choice for their design, addressing many critical issues [5].

Each type of error correction code (ECC) is able to correct
a well-defined number of errors, which is referred as the error
correction capability of the particular code: particular tests are
need in order to understand the correction capability needed
by the specific NAND flash device.

A. Endurance Test

The occurrence of random errors in NAND flash memories
is related to the transient faults described in Subsection II-B
which are in turn strictly related to the cycling induced
degradation issue. One method to characterize the reliability
level of the technology with respect to the cycling induced
degradation issue is known as Endurance Test [3].

The aim of the Endurance test is to characterize a specific
NAND flash memory device in terms of charge losses and
fluctuation phenomena versus cycling (i.e., write/erase cycles):
it estimates the needed error correction capability and its
changes with cycling. [7] exploits this approach: firstly the
target NAND flash memory is carefully studied and tested to
obtain as many information as possible on it. Then a typical
endurance test can provide the following settings:

• each page is cycled until the blocks become completely
unreliable (i.e., the data-sheet life time is reached);

• a subset of M blocks is tested to trade off the test time;
• at each cycle, data are read from blocks to detect errors;

The test is performed without ECC and at room temperature.
At the end all the information about the errors of each block in
function of cycling are collected and can be elaborated (e.g.,
results can be averaged, taken in the worst case, etc.).

[7] shows that the occurrence of errors is quite rare up to
a certain aging, while a rapid growth of the errors reveals
getting closer to the maximum number of cycles per block. In
conclusion endurance tests help to choose the error tolerance
(i.e., correction capability) needed to tackle the random errors
related to cycling induced degradation.

B. Exploring the Tradeoffs of ECCs

Each ECC is characterized by it own error correction ca-
pability: a code with higher correction capability than another
one is intuitively more “powerful”. However the provided cor-
rection capability is strictly linked to the complexity devised
to accomplish it: different codes provide different error correc-
tion capabilities with different complexity. As a consequence
designers have to choose the most suitable solution for their
specific design, evaluating all the tradeoffs and exploring all
the design dimensions [6].

Binary Bose-Chaudhuri-Hocquenghen (BCH) codes [1],
[10], [16] are a well known correcting code technique for
NAND flash-memories. [6] presents a brief overview of these
codes and proposes a novel design environment aimed at sup-
porting the design of BCH codes with a user-selectable error
correction capability for NAND flash-memories: moreover it
is under-integration with our FLARE design environment [4].

V. EDAC AND TESTING INTEGRATION

Section III showed that testing strategies are capable to
esteem the number of possible hard errors per page: the main
idea is to exploit these information as a feedback for the
EDAC environment presented in [6], which in turn would
automatically adapt its correcting power to the current state
of the overall system.

The integration of the EDAC and the BIST strategies
practically leads to the design of a fault-tolerant system with
an adaptive error correction capability for flash-memory based
mission-critical mass-memory devices.

A. Motivations

First of all the reliability characterization of flash-memories
discussed in Section II and the optimization of the overall
performances imply the need of a user-selectable tool in terms
of error correction capability. In addition its automatic and
parametric features help to tackle the high complexity of the
EDAC system and to explore the design space tradeoffs [6].

Subsection II-A showed that pages can be affected from
Permanent Faults: these faults could lead to Hard Errors [2]
if proper conditions occur. The testing strategies of Section III
can be adopted to esteem the number of hard errors per page:
this figure could be exploited to evaluate the most proper error
correction capability, making each page fault tolerant.

The integration of EDAC and testing strategies practically
leads to the design of a fault-tolerant system.

B. System Overview

Figure 1 shows an overview of the system integrating EDAC
and test. It is mainly composed by three functional blocks:

1) Test Unit: it let us know the the maximum number of
hard errors occurred in a specific page due to permanent faults.

2) EDAC System: this block is the one of [6]; the user-
selectable error correction system can code each written page
with a different error correction capability t, thus we can
assign different error correction capabilities to different pages
and also change these values dynamically.

Figure 1. System Overview of EDACs and Test Integration

Figure 2. A more detailed System Overview

3) Reliability Manager: this block manages the EDAC
System and the Test Unit block; it collects and elaborates
the results of the Test Unit and feedbacks the EDAC System,
setting the proper correction capability to pages; in addition it
is responsible of the activation/deactivation of the test unit.

In the sequel we analyze more in detail the principles of
working of these functional block.

C. Testing strategies

Several strategies are feasible for testing each block of the
memory: let assume to exploit the algorithm of [9]. The test
is data-destructive, so it can be executed only on blocks ready
for deletion: here we will focus on the triggers for testing.

First of all each block can be tested before its first usage:
it can be easily accomplished by testing each block at the
first system boot. Therefore each page of data will be featured
by a certain number of detected hard errors. Then we could
test blocks for “unexpected behaviors”: a possible strategy is
that, if more than k errors are detected, the block is scheduled
for testing as soon as possible. Another possible “unexpected
behavior” is a decoding failure. However, at the end of the
test session, the i− th page will present NTESTi

hard errors.

D. Static and Dynamic Error Correction Capability

The user-selectable EDAC System and the Test Unit are
both managed by the so called Reliability Manager through a
proper strategy: Figure 2 is a more detailed view of this block.

There are two main source of information for setting the
error correction capability t: Static and Dynamic information.

Static information are based on considerations on the re-
liability of the adopted technology: these information can be
obtained from Endurance Tests (ET, see Section IV) and are
equal for all the pages of the memory. These information
contribute to define the Static error correction capability
tstatic: Equation 2 shows this concept.

tstatic(W/Ecycles)TOT = tstatic(W/Ecycles)ET (2)

Dynamic information are specific for each page and come
both from test results and decoding results. In fact dynamic
information are represented with the two following variables:

• NTESTi
: it is the number of Hard Errors of the i − th

page detected during the most recent test session;

• NECCi
: it is the maximum number of errors de-

tected/corrected in the i− th page ever;
They define the Dynamic error correction capability tdynamici

and is the one applied to the i − th page. Equation 3 shows
the dependence with NTESTi , NECCi and tstatic.

tdynamici = f
[
tstatic (W/Ecycles)TOT , NTESTi , NECCi

]
(3)

f is the relation which practically defines the tdynamici to
apply on the i− th page: f will be referred as a policy.

E. Control Policy: an Example

A possible policy, combining together static and dy-
namic information, is reported in Equation 4: tstatic =
tstatic (W/Ecycles)TOT for sake of simplification.

tdynamici = (4){
min (tstatic +NTESTi

, tMAX) NECCi
≤ NTESTi

min (NECCi
+ tstatic, tMAX) NECCi

> NTESTi

NTESTi
and NECCi

have null initial value: in particular
NECCi = tMAX in case of decoding failure, in order to force
tdynamici = tMAX .

Firstly Equation 4 exploits the technological (i.e. static)
information as reference, secondly run-time (i.e. dynamic) data
coming from the EDAC system adapt them to the specific
need of each page: whenever more errors than the number of
hard errors are detected, the dynamic correction capability is
conveniently increased. NECCi is updated after each read (i.e.
decode) operation, but also other strategies can be adopted.

In other words the Reliability Manager works as follows:
1) it collects and elaborates the outputs of decoding them,

conveniently updating NECCi ;
2) if needed, it activates the proper testing strategies, up-

dating the NTESTi
;

3) it updates all the tdynamici according to the policy of
Equation 4, with the values of NECCi and NTESTi

found at points 1 and 2;
The applied tdynamici is always covering all the Hard errors
and also a margin of errors determined by tstatic: a complete
fault tolerant system is achieved, with respect both to transient
and permanent faults [9].

VI. CONCLUSIONS

Error Detection And Correction (EDAC) and testing strate-
gies are the main techniques to improve dependability of
flash-memory devices. This paper considered them as a whole
and presented an integrated design environment with powerful
binary BCH codes and efficient testing methodologies: this
lead us to a complete fault tolerant system, with respect both
to transient and permanent faults.

Moreover the flexibility given by the interchangeable poli-
cies and algorithms will let us exploit this powerful design
environment for a more detailed exploration of the depend-
ability of NAND flash memories.

REFERENCES

[1] J. Adamek. Foundations of Coding: Theory and Applications of Error-
Correcting Codes, with an Introduction to Cryptography and Informat.
John Wiley & Sons, Inc., New York, NY, USA, 1991.

[2] Robert Baumann. Soft errors in advanced computer systems. IEEE Des.
Test, 22(3):258–266, 2005.

[3] J. Brewer and M. Gill. Nonvolatile Memory Technologies with Emphasis
on Flash(A Comprehensive Guide to Understanding and Using Flash
Memory Devices. 2008.

[4] M. Caramia, S. Di Carlo, M. Fabiano, and P. Prinetto. Flare: A design
environment for flash-based space applications. Proceedings of High
Level Design Validation and Test Workshop, 2009. HLDVT 2009. IEEE
International, pages 14 –19, nov. 2009.

[5] M. Caramia, S. Di Carlo, M. Fabiano, and P. Prinetto. Flash-memories
in space applications: Trends and challenges. Proceedings of East-West
Design & Test Symposium (EWDTS), pages 18–21, September 2009.

[6] M. Caramia, M. Fabiano, A. Miele, R. Piazza, and P. Prinetto. Au-
tomated synthesis of edacs for flash memories with user-selectable
correction capability. Proceedings of High Level Design Validation and
Test Workshop, 2010. HLDVT 2010. IEEE International, pages 113 –
120, 10-12 June 2010 2010.

[7] Yuan Chen. Flash memory reliability nepp 2008 task final report.
Technical report, Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, California, 2008.

[8] Sau-Kwo Chiu, Jen-Chieh Yeh, Chih-Tsun Huang, and Cheng-Wen Wu.
Diagonal test and diagnostic schemes for flash memories. In Proc.
International Test Conference, pages 37–46, 7–10 Oct. 2002.

[9] S. Di Carlo, M. Fabiano, R. Piazza, and P. Prinetto. Exploring modeling
and testing of nand flash memories. submitted to EWDTS 2010. IEEE
International, 2010. http://orion.polito.it/EWDTS10/ewdts10.pdf.

[10] S. Gregori, A. Cabrini, O. Khouri, and G. Torelli. On-chip error
correcting techniques for new-generation flash memories. Proceedings
of the IEEE, 91(4):602 – 616, april 2003.

[11] Yea-Ling Horng, Jing-Reng Huang, and Tsin-Yuan Chang. A realistic
fault model for flash memories. In Proc. Ninth Asian Test Symposium
(ATS 2000), pages 274–281, 4–6 Dec. 2000.

[12] Department IEEE Standards. Ieee 1005 standard definitions and charac-
terization of floating gate semiconductor arrays. Technical report, 1999.

[13] D. Ielmini. Reliability issues and modeling of flash and post-flash
memory (invited paper). Microelectronic Engineering, 86(7-9):1870 –
1875, 2009. INFOS 2009.

[14] Sung-Hoi Hur Jae-Duk Lee and Jung-Dal Choi. Effects of floating gate
interference on nand flash memory cell operation. IEEE Electron Device
Letters, 23 (5), 2002.

[15] A. Keshk. Flash memory testing for realistic fault modeling iceec2004.
pages 503–506, 5–7 Sept. 2004.

[16] R. Micheloni, A. Marelli, and R. Ravasio. Error Correction Codes for
Non-Volatile Memories. Springer Publishing Company, 2008.

[17] M. G. Mohammad and K. K. Saluja. Testing flash memories for tunnel
oxide defects. In Proc. 21st International Conference on VLSI Design
VLSID 2008, pages 157–162, 4–8 Jan. 2008.

[18] M. G. Mohammad and L. Terkawi. Fault collapsing for flash memory
disturb faults. In Proc. European Test Symposium, pages 142–147, 22–
25 May 2005.

[19] M. Gh. Mohammad, K. K. Saluja, and A. Yap. Testing flash memories.
In Proc. Thirteenth International Conference on VLSI Design, pages
406–411, 3–7 Jan. 2000.

[20] M.G. Mohammad and K.K. Saluja. Flash memory disturbances: mod-
eling and test. VLSI Test Symposium, 19th IEEE Proceedings on. VTS
2001, pages 218 –224, 2001.

[21] Mincheol Park, Keonsoo Kim, Jong-Ho Park, and Jeong-Hyuck Choi.
Direct field effect of neighboring cell transistor on cell-to-cell interfer-
ence of nand flash cell arrays. Electron Device Letters, IEEE, 30(2):174
–177, feb. 2009.

[22] J. C. Yeh, Kuo-Liang Cheng, Yung-Fa Chou, and Cheng-Wen Wu.
Flash memory testing and built-in self-diagnosis with march-like test
algorithms. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 26(6):1101–1113, June 2007.

[23] Jen-Chieh Yeh, Chi-Feng Wu, Kuo-Liang Cheng, Yung-Fa Chou, Chih-
Tsun Huang, and Cheng-Wen Wu. Flash memory built-in self-test using
march-like algorithms. In Proc. First IEEE International Workshop on
Electronic Design, Test and Applications, pages 137–141, 29–31 Jan.
2002.

