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Discovery and Verification of Neighbor Positions
in Mobile Ad Hoc Networks

Marco Fiore,Member, IEEE,Claudio Casetti,Member, IEEE,Carla-Fabiana Chiasserini,Senior Member, IEEE,
Panagiotis Papadimitratos,Member, IEEE

Abstract—A growing number of ad hoc networking protocols
and location-aware services require that mobile nodes learn the
position of their neighbors. However, such a process can be easily
abused or disrupted by adversarial nodes. In absence of a-priori
trusted nodes, the discovery and verification of neighbor positions
presents challenges that have been scarcely investigated in the
literature. In this paper, we address this open issue by proposing
a fully-distributed cooperative solution that is robust against
independent and colluding adversaries, and can be impairedonly
by an overwhelming presence of adversaries. Results show that
our protocol can thwart more than 99% of the attacks under the
best possible conditions for the adversaries, with minimalfalse
positive rates.

Index Terms—Neighbor position verification, mobile ad hoc
networks, vehicular networks.

I. I NTRODUCTION

Location awareness has become an asset in mobile systems,
where a wide range of protocols and applications require
knowledge of the position of the participating nodes. Geo-
graphic routing in spontaneous networks, data gathering in
sensor networks, movement coordination among autonomous
robotic nodes, location-specific services for handheld devices,
and danger warning or traffic monitoring in vehicular networks
are all examples of services that build on the availability of
neighbor position information.

The correctness of node locations is therefore an all-
important issue in mobile networks, and it becomes partic-
ularly challenging in the presence of adversaries aiming at
harming the system. In these cases, we need solutions that let
nodes (1) correctly establish their location in spite of attacks
feeding false location information, and (2) verify the positions
of their neighbors, so as to detect adversarial nodes announcing
false locations.

In this paper, we focus on the latter aspect, hereinafter
referred to asneighbor position verification(NPV for short).
Specifically, we deal with a mobile ad hoc network, where a
pervasive infrastructure is not present, and the location data
must be obtained through node-to-node communication. Such
a scenario is of particular interest since it leaves the door
open for adversarial nodes to misuse or disrupt the location-
based services. For example, by advertising forged positions,
adversaries could bias geographic routing or data gathering
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processes, attracting network traffic and then eavesdropping
or discarding it. Similarly, counterfeit positions could grant
adversaries unauthorized access to location-dependent ser-
vices, let vehicles forfeit road tolls, disrupt vehicular traffic
or endanger passengers and drivers.

In this context, the challenge is to perform, in absence of
trusted nodes, a fully-distributed, lightweight NPV procedure
that enables each node to acquire the locations advertised by its
neighbors, and assess their truthfulness. We therefore propose
an NPV protocol that has the following features:

• It is designed for spontaneous ad hoc environments, and,
as such, it does not rely on the presence of a trusted
infrastructure or of a-priori trustworthy nodes;

• It leverages cooperation but allows a node to perform all
verification procedures autonomously. This approach has
no need for lengthy interactions, e.g., to reach a consensus
among multiple nodes, making our scheme suitable for
both low- and high-mobility environments;

• It is reactive, meaning that it can be executed by any
node, at any point in time, without prior knowledge of
the neighborhood;

• It is robust against independent and colluding adversaries;
• It is lightweight, as it generates low overhead traffic.

Additionally, our NPV scheme is compatible with state-of-the-
art security architectures, including the ones that have been
proposed for vehicular networks [1], [2], which represent a
likely deployment environment for NPV.

The rest of the paper is organized as follows. In Sec. II
we review previous works, highlighting the novelty of our
solution. In Sec. III we describe the system model, while
the communication protocol, the objectives of the verification
procedure and our main results are outlined in Sec. IV. The
details of the NPV protocol and of verification tests are then
presented in Sec. V, and the resilience of our solution to
different attacks is analyzed in Sec. VI. Finally, we provide a
performance evaluation of the protocol in a vehicular scenario
in Sec. VII, and draw conclusions in Sec. VIII.

II. RELATED WORK

Although the literature carries a multitude of ad hoc security
protocols addressing a number of problems related to NPV,
there are no lightweight, robust solutions to NPV that can
operate autonomously in an open, ephemeral environment,
without relying on trusted nodes. Below, we list relevant works
and highlight the novelty of our contribution. For clarity of
presentation, we first review solutions to some NPV-related
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problems, such as secure positioning and secure discovery,
and then we discuss solutions specifically addressing NPV.

Securely determining own location.In mobile environ-
ments, self-localization is mainly achieved through Global
Navigation Satellite Systems, e.g., GPS, whose security can
be provided by cryptographic and non-cryptographic defense
mechanisms [3]. Alternatively, terrestrial special-purpose in-
frastructure could be used [4], [5], along with techniques
to deal with non-honest beacons [6]. We remark that this
problem is orthogonal to the problem of NPV. In the rest of
this paper, we will assume that devices employ one of the
techniques above to securely determine their own position and
time reference.

Secure neighbor discovery (SND)deals with the identi-
fication of nodes with which a communication link can be
established or that are within a given distance [7]. SND is
only a step towards the solution we are after: simply put, an
adversarial node could be securely discovered as neighbor and
be indeed a neighbor (within some SND range), but it could
still cheat about its position within the same range. In other
words, SND is a subset of the NPV problem, since it lets a
node assess whether another node is an actual neighbor but
it does not verify the location it claims to be at. SND is
most often employed to counter wormhole attacks [8]–[10];
practical solutions to the SND problem have been proposed
in [11], while properties of SND protocols with proven secure
solutions can be found in [12], [13].

Neighbor position verification was studied in the con-
text of ad-hoc and sensor networks; however, existing NPV
schemes often rely on fixed [14], [15] or mobile [16] trust-
worthy nodes, which are assumed to be always available for
the verification of the positions announced by third parties. In
ad hoc environments, however, the pervasive presence of either
infrastructure or neighbor nodes that can be aprioristically
trusted is quite unrealistic. Thus, we devise a protocol that
is autonomous and does not require trustworthy neighbors.

In [17], an NPV protocol is proposed that first lets nodes cal-
culate distances to all neighbors, and then commends that all
triplets of nodes encircling a pair of other nodes act as verifiers
of the pair’s positions. This scheme does not rely on trustwor-
thy nodes, but it is designed for static sensor networks, and
requires lengthy multi-round computations involving several
nodes that seek consensus on a common neighbor verification.
Furthermore, the resilience of the protocol in [17] to colluding
attackers has not been demonstrated. The scheme in [18] suits
static sensor networks too, and it requires several nodes to
exchange information on the signal emitted by the node whose
location has to be verified. Moreover, it aims at assessing not
the position but whether the node is within a given region or
not. Our NPV solution, instead, allows any node to validate
the position of all of its neighbors through a fast, one-time
message exchange, which makes it suitable to both static and
mobile environments. Additionally, we show that our NPV
scheme is robust against several different colluding attacks.
Similar differences can be found between our work and [19].

In [20], the authors propose an NPV protocol that allows
nodes to validate the position of their neighbors through local
observations only. This is performed by checking whether

subsequent positions announced by one neighbor draw a
movement over time that is physically possible. The approach
in [20] forces a node to collect several data on its neighbor
movements before a decision can be taken, making the solution
unfit to situations where the location information is to be
obtained and verified in a short time span. Moreover, an
adversary can fool the protocol by simply announcing false
positions that follow a realistic mobility pattern. Conversely,
by exploiting cooperation among nodes, our NPV protocol is
(i) reactive, as it can be executed at any instant by any node,
returning a result in a short time span, and (ii) robust to fake,
yet realistic, mobility patterns announced by adversarialnodes
over time.

The scheme in [21] exploits Time-of-Flight distance bound-
ing and node cooperation to mitigate the problems of the
previous solutions. However, the cooperation is limited tocou-
ples of neighbor nodes, which renders the protocol ineffective
against colluding attackers.

To our knowledge, our protocol is the first to provide a
fully distributed, lightweight solution to the NPV problemthat
does not require any infrastructure or a-priori trusted neighbors
and is robust to several different attacks, including coordinated
attacks by colluding adversaries. Also, unlike previous works,
our solution is suitable for both low and high mobile environ-
ments and it only assumes RF communication. Indeed, non-
RF communication, e.g., infra-red or ultra-sound, is unfeasible
in mobile networks, where non-line-of-sight conditions are
frequent and device-to-device distances can be in the order
of tens or hundreds of meters. An early version of this work,
sketching the NPV protocol and some of the verification tests
to detect independent adversaries, can be found in [22].

III. SYSTEM AND ADVERSARY MODEL

We consider a mobile network and define ascommunication
neighborsof a node all the other nodes that it can reach
directly with its transmissions [7]. We assume that each node
knows its own position with some maximum errorǫp, and
that it shares a common time reference with the other nodes:
both requirements can be met by equipping communication
nodes with GPS receivers1. In addition, nodes can perform
Time of Flight (ToF)-based RF ranging with a maximum
error equal toǫr. As discussed in [17], this is a reasonable
assumption, although it requires modifications to off-the-shelf
radio interfaces; also, promising techniques for precise ToF-
based RF ranging have been developed [24].

We assume that node positions do not vary significantly
during a protocol execution, since a complete message ex-
change takes no more than a few hundreds of milliseconds.
The relative spatial movements of the nodes during such a
period are taken into account through the tolerance valueǫm.

Nodes carry a unique identity2 and can authenticate mes-
sages of other nodes through public key cryptography [27]. In
particular, we assume that each nodeX owns a private key,

1Small-footprint GPS receivers are commercially available, which achieve
low synchronization and localization errors [23].

2This can be a permanent identifier or a temporary pseudonym, so as to
ensure user privacy [25].
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kX , and a public key,KX , as well as a set of one-time use keys
{k′X ,K ′

X}, as proposed in emerging architectures for secure
and privacy-enhancing communication [2], [25]. NodeX can
encrypt and decrypt data with its keys and the public keys
of other nodes; also, it can produce digital signatures (SigX)
with its private key. We assume that the binding betweenX
andKX can be validated by any node, as in state-of-the-art
secure communication architectures [2], [26].

Nodes arecorrect if they comply with the NPV protocol,
and adversarial if they deviate from it. As authentication
essentially thwarts external adversaries, we focus on the more
powerful internal ones, i.e., nodes that possess the crypto-
graphic material to participate in the NPV and try to exploit
it, by advertising arbitrarily erroneous own positions or inject
misleading information. Internal adversaries cannot forge mes-
sages on behalf of other nodes whose keys they do not have.
Thus, attacks against the cryptosystem are not considered,
as correct implementation of cryptographic primitives makes
them computationally infeasible.

We further classify adversaries into:knowledgeable, if at
each time instant they know positions and (temporary) identi-
ties of all their communication neighbors, andunknowledge-
able, otherwise; independent, if they act individually, and
colluding, if they coordinate their actions.

IV. COOPERATIVENPV: AN OVERVIEW

We propose a fully-distributed cooperative scheme for NPV,
which enables a node, hereinafter called theverifier, to dis-
cover and verify the position of its communication neighbors.
For clarity, here we summarize the principles of the protocol as
well as the gist of its resilience analysis. Detailed discussions
of message format, verification tests and protocol resilience
are provided in Sec. V and Sec. VI.

A verifier, S, can initiate the protocol at any time instant,
by triggering the 4-step message exchange depicted in Fig. 1,
within its 1-hop neighborhood. The aim of the message
exchange is to letS collect information it can use to compute
distances between any pair of its communication neighbors.
To that end,POLL and REPLY messages are first broadcasted
by S and its neighbors, respectively. These messages are
anonymous and take advantage of the broadcast nature of the
wireless medium, allowing nodes to record reciprocal timing
information without disclosing their identities. Then, after a
REVEAL broadcast by the verifier, nodes disclose toS, through
secure and authenticatedREPORT messages, their identities
as well as the anonymous timing information they collected.
The verifierS uses such data to match timings and identities;
then, it uses the timings to perform ToF-based ranging and
compute distances between all pairs of communicating nodes
in its neighborhood.

OnceS has derived such distances, it runs several position
verification tests in order to classify each candidate neighbor
as either:

1) Verified, i.e., a node the verifier deems to be at the
claimed position;

2) Faulty, i.e., a node the verifier deems to have announced
an incorrect position;

positions

anonymous
committment
exchange

mapping of
committments
to neighbor

S ZX

Y

REPLY

POLL

REVEAL

REPORT

t t t t

Fig. 1. Message exchange overview, during one instance of the NPV protocol.

correct shared neighbor
adversary
adversary fake position
verified link
incorrect link

verifier

S M

M’

YX

Fig. 2. Example of topological information stored by verifier S at the end
of the message exchange and effect of a fake position announcement byM .

3) Unverifiable, i.e., a node the verifier cannot prove to be
either correct or faulty, due to insufficient information.

Clearly, the verification tests aim at avoiding false negatives
(i.e., adversaries announcing fake positions that are deemed
verified) and false positives (i.e., correct nodes whose positions
are deemed faulty), as well as at minimizing the number of
unverifiable nodes. We remark that our NPV scheme does
not target the creation of a consistent “map” of neighborhood
relations throughout an ephemeral network: rather, it allows
the verifier to independently classify its neighbors.

The basic principle the verification tests build upon is best
explained by means of the example in Fig. 2. There,M
is a malicious node announcing a false locationM ′, so as
to fraudulently gain some advantage over other nodes. The
figure portrays the actual network topology with black edges,
while the modified topology, induced by the fake position
announced byM , is shown with gray edges. It is evident that
the displacement ofM to M ′ causes its edges with the other
nodes to rotate, which, in turn, forces edge lengths to change as
well. The tests thus look for discrepancies in the node distance
information to identify incorrect node positions.

A malicious node, knowing the protocol, can try to outsmart
the tests in a number of different ways. Sec. VI contains a
comprehensive discussion of the protocol resilience, cover-
ing conceivable attack strategies that adversarial nodes could
adopt. Overall, our analysis proves that:

• An unknowledgeable adversary has no possibility of
success against our NPV protocol;

• An independent knowledgeable adversaryM can move
at most two links (with the verifierS and with a shared
neighborX) without being detected: however, any addi-
tional link (e.g., with another shared neighborY ) leads to
inconsistencies between distances and positions that allow
to identify the attacker: this is the situation depicted in
Fig. 2. In a nutshell, independent adversaries, although
knowledgeable, cannot harm the system;

• Colluding knowledgeable adversaries can announce tim-
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TABLE I
SUMMARY OF NOTATIONS

Notation Description
kX (KX ) private (public) key ofX
k′
X

(K ′

X
) private (public) one-time key ofX

tX (t′
X

) actual (fake) transmission time of a message byX
tXY (t′XY ) actual (fake) reception time atY of a message byX
pX (p′X ) actual (fake) position ofX
dXY distance betweenX andY
ǫp (ǫr) position (ranging) error
ǫm tolerance to node movements during protocol execution
R node proximity rangeNX current set ofX ’s comm. neighbors
TX random wait interval afterPOLL reception atX
ρX nonce sent byX
SigX digital signature ofX
CX certificate ofXX commitmentof X
iX temporary identifier assigned byS to XVX set ofverified comm. neighbors ofXUX set ofunverifiablecomm. neighbors ofXFX set of faulty comm. neighbors ofXWX set ofconditionally verifiedcomm. neighbors ofX

ing information that reciprocally validate their distances,
and pose a more dangerous threat to the system. However,
we prove that an overwhelming presence of colluders in
the verifier neighborhood is required for an attack to be
successful. Additionally, simulations in realistic scenarios
prove the robustness of the NPV protocol even against
large groups of colluding knowledgeable adversaries.

V. NPV PROTOCOL

We detail the message exchange between the verifier and
its communication neighbors, followed by a description of the
tests run by the verifier. Table I summarizes the notations used
throughout the protocol description.

A. Protocol message exchange

The valuepX is the current position ofX , andNX is the
current set of its communication neighbors. We denote bytX
the time at which a nodeX starts a broadcast transmission and
by tXY the time at which a nodeY starts receiving it. Note that
these time values refer to theactual instant at which the node
starts transmitting/receiving the first bit of the message at the
physical layer. To retrieve the exact transmission and reception
time instants, avoiding the unpredictable latencies introduced
by interrupts triggered at the drivers level, a solution such
as that implemented in [28] is required3. Furthermore, the
GPS receiver should be integrated in the 802.11 card; software
defined radio solutions combining GPS and 802.11 capabilities
are proposed, among others, in [29], [30].

Now, consider a verifierS that initiates the NPV protocol.
The message exchange procedure is outlined in Alg. 1 forS,
and in Alg. 2 for any ofS’s communication neighbors.

POLL message.The verifier starts the protocol by broad-
casting aPOLL whose transmission timetS it stores locally
(Alg. 1, lines 2-3). ThePOLL is anonymous, since (i) it does

3This leads to a timing precision of around 23 ns, dictated by the 44 MHz
clock of standard 802.11a/b/g cards. As mentioned above, weaccount for
these errors through theǫr parameter.

not carry the identity of the verifier, (ii) it is transmitted
employing a fresh, software-generated MAC address, and (iii)
it contains a public keyK ′

S taken fromS’s pool of anonymous
one-time use keys that do not allow neighbors to map the key
onto a specific node. We stress that keeping the identity of the
verifier hidden is important in order to make our NPV robust to
attacks (see the protocol analysis in Sec. VI). Since a source
address has to be included in the MAC-layer header of the
message, a fresh, software-generated MAC address is needed;
note that this is considered a part of emerging cooperative
systems [2], [25]. Including a one-time key in thePOLL also
ensures that the message is fresh (i.e., the key acts as a nonce).

REPLY message.A communication neighborX ∈ NS that
receives thePOLL stores its reception timetSX , and extracts
a random wait intervalTX ∈ [0, Tmax] (Alg.. 2, lines 2-4).
After TX has elapsed,X broadcasts an anonymousREPLY

message using a fresh MAC address, and locally records its
transmission timetX (Alg. 2, lines 5-9). For implementation
feasibility, the physical layer transmission time cannot be
stamped on theREPLY, but it is stored byX for later use. The
REPLY contains some information encrypted withS’s public
key (K ′

S), specifically thePOLL reception time and a nonce
ρX used to tie theREPLY to the next message sent byX :
we refer to these data asX ’s commitment, X (Alg. 2, line
7). The hashhK′

S
, derived from the public key of the verifier,

K ′

S, is also included to bindPOLL and REPLY belonging to
the same message exchange.

Upon reception of aREPLY from a neighborX , the verifier
S stores the reception timetXS and the commitmentX
(Alg. 1, lines 4-5). When a different neighbor ofS, e.g.,
Y , Y ∈ NS ∩ NX , broadcasts aREPLY too, X stores the
reception timetYX and the commitmentY (Alg. 2, lines 10-
11). SinceREPLY messages are anonymous, a node records all
commitments it receives without knowing their originators.

REVEAL message.After a time Tmax + ∆ + Tjitter , the
verifier broadcasts aREVEAL message using its real MAC
address (Alg. 1, line 6).∆ accounts for the propagation and
contention lag ofREPLY messages scheduled at timeTmax,
andTjitter is a random time added to thwart jamming efforts
on this message. TheREVEAL contains: (i) a mapmS , that
associates each commitmentX received by the verifier to a
temporary identifieriX (Alg. 1, line 7); (ii) a proof thatS is
the author of the originalPOLL, through the encrypted hash
Ek′

S
{hK′

S
}; (iii) the verifier identity, i.e., its certified public

key and signature (Alg. 1, line 8). Note that using certified
keys curtails continuous attempts at running the protocol by
an adversary who aims at learning neighbor positions (i.e.,at
becoming knowledgeable) or at launching a clogging attack
(see Sec. VI-D).

REPORT message.Once theREVEAL message is broadcast
and the identity of the verifier is known, each neighborX
that previously receivedS’s POLL unicasts toS an encrypted,
signedREPORT message. TheREPORT carriesX ’s position,
the transmission time ofX ’s REPLY, and the list of pairs
of reception times and temporary identifiers referring to the
REPLY broadcastsX received (Fig. 2, lines 12-14). The iden-
tifiers are obtained from the mapmS included in theREVEAL

message. Also,X discloses its own identity by including in the
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Algorithm 1 : Message exchange protocol: verifier

nodeS do1

S → ∗ : 〈POLL,K ′

S〉2

S : storetS3

when receiveREPLY from X ∈ NS do4

S : storetXS , X5

after Tmax +∆+ Tjitter do6

S : mS = {(X , iX) | ∃ tXS}7

S → ∗ : 〈REVEAL,mS , Ek′

S
{hK′

S
}, SigS, CS〉8

Algorithm 2 : Message exchange protocol: any neighbor

forall X ∈ NS do1

when receivePOLL by S do2

X : storetSX3

X : extractTX uniform r.v.∈ [0, Tmax]4

after TX do5

X : extract nonceρX6

X : X = EK′

S
{tSX , ρX}7

X → ∗ : 〈REPLY, X , hK′

S
〉8

X : storetX9

when receiveREPLY from Y ∈ NS ∩ NX do10

X : storetYX , Y11

when receiveREVEAL from S do12

X : tX = {(tYX , iY ) | ∃ tYX}13

X → S :14

〈REPORT, EKS
{pX , tX , tX , ρX , SigX , CX}〉

message its digital signature and certified public key; through
the nonceρX , it correlates theREPORTto its previously issued
REPLY. We remark that all sensitive data are encrypted using
S’s public key, KS , so that eavesdropping on the wireless
channel is not possible. At the end of the message exchange,
only the verifier knows all positions and timing information. If
needed, certified keys inREPORTmessages allow the matching
of such data and node identities (temporary or long-term, with
the help of an authority if needed [2].)

B. Position verification

Once the message exchange is concluded,S can decrypt
the received data and acquire the position of all neighbors that
participated in the protocol, i.e.,{pX , ∀X ∈ NS}. The verifier
S also knows the transmission timetS of its POLL and learns
that of all subsequentREPLY messages, i.e.,{tX , ∀X ∈ NS},
as well as the corresponding reception times recorded by the
recipients of such broadcasts, i.e.,{tXY , ∀X,Y ∈ NS ∪{S}}.
Applying a ToF-based technique,S thus computes its distance
from each communication neighbor, as well as the distances
between all neighbor pairs sharing a link. More precisely, by
denoting withc the speed of light, the verifier computes, for
any communicating pair(X,Y ) with X,Y ∈ NS ∪ {S},
two distances:dXY = (tXY − tX) · c, from the timing
information related to the broadcast message sent byX , and
dY X = (tY X − tY ) · c, from the information related to the
broadcast message byY .

Algorithm 3 : Direct Symmetry Test (DST)

nodeS do1

S : FS ← ∅2

forall X ∈ NS do3

if |dSX − dXS | > 2ǫr + ǫm or4

|‖pS − pX‖ − dSX | > 2ǫp + ǫr or5

dSX > R then6

S : FS ← X7

Once such distances have been computed,S can run the
following three verification tests to fill the setsFS , VS andUS with, respectively, faulty, verified and unverifiable nodes.

1) TheDirect Symmetry Test (DST) is the first verification
performed byS and is detailed in Alg. 3. There,|·| denotes the
absolute value operator and‖pX − pY ‖ the Euclidean distance
between locationspX andpY . In theDST, S verifies the direct
links with its communication neighbors. To this end, it checks
whether reciprocal ToF-derived distances are consistent (i)
with each other, (ii) with the position advertised by the neigh-
bor, and (iii) with a proximity rangeR. The latter corresponds
to the maximum nominal transmission range, and upper-
bounds the distance at which two nodes can communicate.
More specifically, the first check verifies that the distances
dSX anddXS , obtained from ranging, do not differ by more
than twice the ranging error plus a tolerance valueǫm (Alg. 3,
line 4), accounting for node spatial movements during the
protocol execution. The second check verifies that the position
advertised by the neighbor is consistent with such distances,
within an error margin of2ǫp + ǫr (Alg. 3, line 5). Although
trivial, this check is fundamental since it correlates positions
to computed distances: without it, an attacker could fool the
verifier by simply advertising an arbitrary position along with
correct broadcast transmission and reception timings. Finally,
as a sanity check,S verifies thatdSX is not larger thanR
(Alg. 3, line 6). The verifier tags a neighbor as faulty if a
mismatch is found in any of these checks4, since this implies
an inconsistency between the positionpX and the timings
announced by the neighbor (tSX , tX ) or recorded by the
verifier (tXS , tS).

2) TheCross-Symmetry Test (CST), in Alg. 4, implements
cross-verifications, i.e., it checks on the information mutually
gathered by each pair of communication neighbors. TheCST
ignores nodes already declared as faulty by theDST (Alg. 4,
line 5) and only considers nodes that proved to be communica-
tion neighbors between each other, i.e., for which ToF-derived
mutual distances are available (Alg. 4, line 6). However, pairs
of neighbors declaring collinear positions with respect toS
are not taken into account (Alg. 4, line 7, whereline(pX, pY )
is the line passing by pointspX and pY ). As shown in the
next section, this choice makes our NPV robust to attacks
in particular situations. For all other pairs(X,Y ), the CST
verifies the symmetry of the reciprocal distances (Alg. 4, line
9), their consistency with the positions declared by the nodes
(Alg. 4, line 10), and with the proximity range (Alg. 4, line

4The latter two checks are performed on bothdSX anddXS , however in
Alg. 3 they are done ondSX only, for clarity of presentation.
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Algorithm 4 : Cross-Symmetry Test (CST)

nodeS do1

S : US ← ∅, WS ← ∅2

forall X ∈ NS , X /∈ FS do3

S : lX = 0, mX = 04

forall (X,Y ) |X,Y ∈ NS , X,Y /∈ FS, X 6= Y do5

if ∃ dXY , dYX and6

pS /∈ line(pX , pY ) then7

S : lX = lX + 1, lY = lY + 18

if |dXY − dYX | > 2ǫr + ǫm or9

|‖pX − pY ‖ − dXY | > 2ǫp + ǫr or10

dXY > R then11

S : mX = mX + 1, mY = mY + 112

forall X ∈ NS , X /∈ FS do13

if lX < 2 then S : US ← X14

else switchmX

lX
do15

casemX

lX
> δ S : FS ← X16

casemX

lX
= δ S : US ← X17

casemX

lX
< δ S : WS ← X18

11). For each neighborX , S maintains a link counterlX
and a mismatch countermX . The former is incremented at
every new cross-check onX , and records the number of links
betweenX and other neighbors ofS (Alg. 4, line 8). The latter
is incremented every time at least one of the cross-checks on
distance and position fails (Alg. 4, line 12), and identifiesthe
potential forX being faulty.

Once all neighbor pairs have been processed, a nodeX is
added to the unverifiable setUS if it shares less than two
non-collinear neighbors withS (Alg. 4, line 14). Indeed, in
this case, the information available on the node is considered
to be insufficient to tag the node as verified or faulty (see
Sec. VI for details). Otherwise, ifS and X have two or
more non-collinear common neighbors,X is declared as
faulty, unverifiable, orconditionallyverified, depending on the
percentage of mismatches in the cross-checks it was involved
in (Alg. 4, lines 15-18). Specifically,X is added toFS or US ,
depending on whether the ratio of the number of mismatches
to the number of checks is greater or equal to a thresholdδ.
If such a ratio is less thanδ, X is added to a temporary setWS for conditionally verified nodes.

We point out that the lower theδ, the higher the probability
of false positives, while the higher theδ, the higher the
probability of false negatives. In the following, we setδ = 0.5
so that the verifier makes a decision on the correctness of
a node by relying on the opinion of the majority of shared
(non-collinear) communication neighbors. As shown later,this
choice makes our NPV highly resilient to attacks, unless the
presence of adversaries becomes overwhelming.

3) The Multilateration Test (MLT) , in Alg. 5, ignores
nodes already tagged as faulty or unverifiable and looks for
suspect neighbors inWS . For each neighborX that did
not notify about a link reported by another nodeY , with
X,Y ∈ WS , a curveLX(S, Y ) is computed and added to
the setLX (Alg. 5, lines 5-7). Such a curve is the locus of

Algorithm 5 : Multilateration Test (MLT)

nodeS do1

S : VS ← ∅2

forall X ∈ WS do3

S : LX ← ∅4

forall (X,Y ) |X,Y ∈ WS , X 6= Y do5

if ∃ tXY and∄ tYX then6

S : LX ← LX(S, Y )7

forall X ∈ WS do8

if |LX | ≥ 2 then9

S :10

pML
X = argminp

∑

Li,Lj∈LX
‖p− Li ∩ Lj‖

2

if
∥

∥pX − pML
X

∥

∥ > 2ǫp then11

S : FS ← X , WS = WS \X12

S : VS = WS13

points that can generate a transmission whose Time Difference
of Arrival (TDoA) at S andY matches that measured by the
two nodes, i.e.,|tXS − tXY |. It is easy to verify that such a
curve is a hyperbola, with foci inpS and pY , and passing
through the actual position ofX .

Once all couples of nodes inWS have been checked, each
nodeX for which two or more unnotified links, hence two or
more hyperbolas inLX , exist is considered as suspect (Alg. 5,
line 9). In such a case,S exploits the hyperbolae inLX to
multilaterateX ’s position, referred to aspML

X , similarly to
what is done in [17] (Alg. 5, line 10). Note thatLX must
include at least two hyperbolae forS to be able to compute
pML
X , and this implies the presence of at least two shared

neighbors betweenS andX . pML
X is then compared with the

position advertised byX , pX (Alg. 5, line 11). If the difference
exceeds an error margin2ǫp, X is moved to the faulty setFS .
At the end of the test, all nodes still inWS are tagged as
verified and moved toVS (Alg. 5, lines 12-13).

VI. RESILIENCE ANALYSIS

We analyze the robustness of our scheme against different
types of internal adversaries. We classify the conceivable
attacks into two classes, depending on the goal of the ad-
versaries:

• Attacks where the adversaries aim at letting the verifier
validate their own fake position;

• Attacks where the adversaries aim at disrupting the
verification of correct node positions.

We focus on attacks of the first category in Sec. VI-A and
Sec. VI-B, where we discuss the case of independent and col-
luding adversaries, respectively. In case of attacks of this first
type, adversaries can tamper with the timing information in
the REPLYs andREPORTs they generate, so that these confirm
their false advertised locations. By considering the geometrical
properties of the ToF-based ranging, we analyze the entire
space of attacks against NPV. The effects ofcombinationsof
attacks of the first type is then investigated in our performance
evaluation.
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Attacks of the second category are analyzed in Sec. VI-C,
where adversaries try to induce the verifier to tag a correct
neighbor as faulty or unverifiable.

Finally, in Sec. VI-D we discuss the robustness of our NPV
scheme to generic attacks that are not specific to NPV. It
is worth remarking that the NPV verification tests disregard
nodes for which incomplete information is received, e.g., due
to link or node failures. Such failures, when involving correct
nodes, have the effect of degrading the number of nodes that
corroborate other nodes’ legitimate claims. We have taken
into account message losses in our simulation study of the
protocol (Sec. VII). In this section, instead, we evaluate the
NPV resilience level considering only the behavior of nodes
participating in the whole message exchange, that is, for which
the verifier has collected all the required information.

A. Faking own position: Independent adversaries

We start by analyzing the attacks of the first type that
can be launched by a single independent adversary in diverse
network conditions, and explain the NPV protocol reactions
they trigger. The discussion on the effects of the presence of
multiple independent adversaries follows.

1) Basic attack:In the simplest scenario, a verifierS runs
the NPV protocol in presence of an adversaryM , with which it
shares no common neighbor. Letp′M be the fake position that
M advertises: as briefly mentioned above,M can announce
a fake timingt′SM in its REPLY, and a fake timingt′M in its
REPORT, so thatp′M is accepted by the verifier (i.e.,M ∈ VS).

More precisely, theDST run by S on M verifies that the
reciprocal distances are consistent, i.e., that|dSM − dMS | ≤
2ǫr + ǫm, or:

|(t′SM − tS) · c− (tMS − t′M ) · c| ≤ 2ǫr + ǫm (1)

and that positions are also coherent with the distances, which
implies |‖pS − p′M‖ − dSM | ≤ 2ǫp + ǫr, or, equivalently:

|‖pS − p′M‖ − (t′SM − tS) · c| ≤ 2ǫp + ǫr (2)

Therefore, the adversary must forget′M and t′SM , so that
(1)–(2) still hold after its real positionpM is replaced with
p′M . Solving the equation system obtained by setting the error
margin to zero in (1)–(2) and expressing the ToF using the
node positions, we obtain:

t′M = tMS −
‖pS − p′M‖

c
= tM +

‖pS − pM‖

c
−
‖pS − p′M‖

c
(3)

t′SM = tS +
‖pS − p′M‖

c
= tSM −

‖pS − pM‖

c
+
‖pS − p′M‖

c
(4)

Note thatp′M is chosen byM , and thatM knows tM in (3)
(since this is the actual transmission time of its ownREPLY)
and tSM in (4) (since this is the time at which it actually
receivedS’s POLL). Thus, we have a system of two equations
in the two unknownst′M andt′SM ; M can solve it if it knows
pS . We call this forging of transmission and reception timings
with respect toS the basic attack.

We stress that, in order to knowpS , M must be a knowl-
edgeable adversary, which implies two conditions: first,M
must have previously run the NPV protocol to discover the

identity and position of its neighbors; second, the position
of the verifier must have not changed since such discovery
procedure. Clearly, asM cannot foresee whenS starts the
NPV protocol, such a condition is not easy to fulfill, especially
in highly mobile environments. Nevertheless, if aware ofS’s
location,M could successfully run abasic attack, provided
that the advertised positionp′M is within the proximity range
R. As a consequence, the NPV marks isolated neighbors as
unverifiable in theCST.

Let us now add to the previous scenarion ≥ 1 nodes,
X1, . . . , Xn, which are correct neighbors common toS and
M . The discussion above still holds, since the fake position
advertised byM must still pass theDST. Thus,M has to
knowS’s current position and to forget′M andt′SM according
to pS andp′M , as in (3)–(4). However, the presence of common
neighbor(s) introduces two additional levels of security,which
make thebasic attack ineffectual.

First, thePOLL andREPLY messages are anonymous; hence,
upon their reception, even a knowledgeableM does not know
which node amongS, X1, . . . , Xn is the verifier. Nevertheless,
in order to take part in the protocol,M is forced to advertise
the fake POLL reception time t′SM in its REPLY, before
receiving the REVEAL and discovering the identity of the
verifier. The only option forM is then to randomly guess
who the verifier is and properly changetSM into t′SM , as in
(4). This implies a probability of success in guessing the actual
sender of thePOLL equal to1/(n+ 1).

Second, in presence of shared (non-collinear) neighbors,S
can run theCST on the (M,Xi) pairs, with i = 1, . . . , n.
As the basic attack only forges messages transmission and
reception timings with respect toS, the fake positionp′M will
present discrepancies with the reciprocal reception timesof
REPLY messages atM and Xi. This will result in a CST
failure, revealing and thus preventing the attack.

2) REPLY-disregard attack:Whenever there aren neigh-
borsX1, . . . , Xn common toS andM , a possible strategy for
the adversary, provided that it correctly guesses the identity of
the verifier, isnot to announce one or more of the common
neighbors. That is,M will not include the(tXiM , iXi

) data in
its REPORT, thus deliberately denying to have receivedXi’s
REPLY. We name thisREPLY -disregard attack.

It follows thatS cannot perform a cross-check on the pairs
(M,Xi) in the CST. However, aREPLY -disregard attack
does not bring any significant advantage toM . Indeed, the
exclusion of (some or all of) the common neighbors reduces
the system to one of the scenarios discussed for thebasic
attack, hence the adversary is at most tagged as unverifiable
by S. More importantly, the maximum number ofREPLYs an
adversary can disregard is exactly one, otherwise it is classified
as faulty in theMLT .

3) Hyperbola-based attack:This attack again attempts to
fool the CST. More specifically, it scales up thebasic attack
by also forging the timings relative to the shared neighbor(s).

First, consider thatS andM share a non-collinear common
neighborX . The CST on the(M,X) pair atS requires that
|dXM − dMX | ≤ 2ǫr+ǫm and|‖pX − pM‖ − dXM | ≤ 2ǫp+
ǫr. Applying the same substitutions as in (3) and (4), this



8

M’

S X

R

M

(a) One shared neighbor

M’
R

M

X

Y

S

(b) Two shared neighbors

Fig. 3. Hyperbola-based attack: (a) If it correctly guessesS’s identity, a
knowledgeable adversaryM can forge timings with respect toS andX (black
lines), so that they agree with any fake positionM ′ lying on the hyperbola
with foci in S, X, and passing byM . M is unverifiable. (b)M can only
forge timings in agreement with fake positions that lie on both hyperbolae of
foci in S, X, andS, Y , and passing byM . The only such point, i.e., the
intersection, matchesM ’s actual position. When moving on the hyperbola of
foci S andX, the timing with respect to Y (crossed gray line) is not verified.

means thatM is forced to advertise the following fake timings:

t′M = tM +
‖pX − pM‖

c
−
‖pX − p′M‖

c
(5)

t′XM = tXM −
‖pX − pM‖

c
+
‖pX − p′M‖

c
(6)

If M is knowledgeable, and thus aware ofX ’s current position
pX , it can solve (6) and announce the forgedt′XM in its
REPORT to S. However, (5) introduces a second expression
for t′M , while M can advertise only onet′M in its REPORT.
In order to pass both theDST and theCST, M needs to
announce at′M that satisfies (3) and (5), which implies:

‖pS − pM‖ − ‖pS − p′M‖ = ‖pX − pM‖ − ‖pX − p′M‖ (7)

In other words,M is constrained to choose locations with
the same distance increment (or decrement) fromS and
X . In (7), pS , pX , and pM are fixed and known, hence
the distances betweenpS and pM , and betweenpX and
pM , can be considered as constant. We thus rewrite (7) as
‖pX − p′M‖ − ‖pS − p′M‖ = k. This is the equation, with
the unknownp′M , of a hyperbola with foci inpS and pX
that passes throughpM . It follows that only positionsp′M on
such hyperbola can satisfy the four constraints in (3), (4),(5),
and (6). As a conclusion, thehyperbola-basedattack consists
in advertising a fake position that lies on the aforementioned
curve, as well as message transmission and reception times that
validate such a position. An example is provided in Fig. 3(a).

Note that, in order to successfully perform ahyperbola-
based attack, an adversary has to (i) know the position of
bothS andX , (ii) correctly guess the identity of the verifier,
and (iii) advertise a fake position only along a specific curve.
Although these are restrictive conditions, theCST still marks
as unverifiable the nodes that passed theDST but share only
one neighbor with the verifier, so as to avoid any possibility
of successfulhyperbola-basedattack.

We now consider a second correct, non-collinear node
Y ∈ NS ∩ NM , and show that, in such a scenario, also
the hyperbola-based attack becomes futile. Note that no
assumption is made on the connectivity between the two
neighborsX andY . By extending the previous reasoning, in
presence of two common correct neighbors,X andY , M has
to forge four time values, i.e.,t′M , t′SM , t′XM , and t′Y M , so
that six equations are satisfied, i.e., (3), (4), (5), (6) andtwo

additional equations5 corresponding to the cross-check with
the second common neighborY . This implies that the fake
REPLY transmission timet′M announced byM must now fulfill
three constraints, or, equivalently,M must advertise a position
p′M that is equally farther from (or closer to)S, X andY with
respect to its actual locationpM . The only point satisfying
such a condition lies at the intersection of three hyperbolae
with foci in pS andpX , pS andpY , pX andpY , respectively,
and it corresponds to the real position of the adversary,pM . In
other words, if it shares two neighbors withS, an adversary
cannot successfully claim to be at any location other than its
actual one, not even if it is knowledgeable, it correctly guesses
the role of all other nodes, and it performs ahyperbola-based
attack. An example is provided in Fig. 3(b). We also stress that
the presence of additional shared neighbors simply introduces
other constraints ont′M , and thus further bindsM to its actual
position.

Similarly, combining ahyperbola-basedattack with aRE-
PLY -disregard attack yields no chance of success. As a matter
of fact, ignoringREPLY messages from one or multiple shared
neighbors results in reverting the system to one of the cases
previously analyzed, with the adversary being tagged at best
as unverifiable.

4) Collinear attack: The above discussion shows that the
presence of two or more correct common neighbors, which
can be used to perform the cross-checks in theCST, is a
condition that foils all the attack strategies introduced so far.
There exists however a last type of attack, which we name
collinear attack, that we need to discuss.

The collinear attack builds on the following geometrical
property: if three points are collinear (i.e., lie on the same line),
the hyperbola having as foci two of the points (one of which
is that in the middle) and passing by the third degenerates
into the half-line originating at the intermediate point and
passing by the third one. This property implies that, if two
shared neighborsX andY lie betweenS and the adversary
M , and all four nodes are collinear, the hyperbolae that pin
the actual position of the adversarypM degenerate to partially
overlapping half-lines. This allowsM to forge timings relative
to S, X and Y consistent with any fake position over the
segment originating at the shared collinear neighbor that is
closer toM , passing bypM and bounded byR. An example
is given in Fig. 4(a).

In the more general case of any number of common
neighbors toS andM , the collinear attack would allow an
adversary to appear correct to the shared neighbors that are
collinear with it andS, as in Fig. 4(b). Again, this requires the
adversary to be knowledgeable, to correctly guess the origin of
POLL andREPLY messages it receives, and to limit the choice
of its fake position to a specific segment.

As a countermeasure tocollinear attacks, in theCST S
discards pairs of neighbors that announce collinear positions
with it (Alg. 4, line 7). When collinear neighbors are dropped,
a collinear attack results, for instance, in the adversary being
tagged as unverifiable in Fig. 4(a) (since there are no non-

5The latter two equations can be obtained from (5)–(6) by replacing pX ,
tXM and t′

XM
, respectively, withpY , tY M and t′

Y M
.
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M
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(a) Two shared neighbors

Y

J
K

XZS

R

M

M’

(b) Multiple shared neighbors

Fig. 4. Collinear attack: (a) The hyperbola of foci inS, X (Y ) and passing
by M degenerates into a half-line with origin inX (Y ). The hyperbolae
intersection region, over whichM can announce a fake positionM ′ with
correct timings, becomes the segment originating atY and bounded byR
(dashed gray line).M is unverifiable. (b)M can announce timings that
are consistent with its fake positionM ′ with respect to the three collinear
neighborsX, Y , andZ (black lines). This is not possible with respect toJ
andK (crossed-out gray lines). As a countermeasure, collinear neighbors are
not cross-checked in theCST. M is tagged as faulty.

collinear shared neighbors) and as faulty in Fig. 4(b) (since
there are two non-collinear shared neighbors).

We remark that, on the one hand, not allowing cross-checks
that involve collinear nodes preventscollinear attacks. On the
other, it reduces the number of correct neighbors that can
contribute to identifying adversarial nodes. However, as shown
in Sec. VII, this approach ensures high resilience to attacks as
well as reliability in identifying correct nodes as verified.

5) Multiple independent adversaries:Multiple independent
adversaries in the neighborhood of the verifier just damage
each other, by announcing false positions that reciprocally
spoil the time computations discussed in the previous sections.
Thus, all cross-checks on pairs of non-colluding adversaries
result in mismatches in theCST, increasing their chances to
be tagged as faulty by the verifier.

Where multiple independent adversaries can harm the sys-
tem is in the verification of correct neighbors. As a matter of
fact, a node is tagged as verified if it passes the strict majority
of cross-checks it undergoes. A correct node surrounded by
several adversaries can thus be marked as faulty (unverifiable),
if it shares with the verifier a number of non-collinear inde-
pendent adversaries greater than (equal to) the number of non-
collinear correct nodes. However, situations where a correct
node shares mostly uncoordinated adversarial neighbors with
the verifier are unlikely to occur in realistic scenarios, asalso
shown by our performance evaluation.

6) SUMMARY: We conclude that a single independent
adversary cannot perform any successful attack against the
NPV scheme. Indeed, in presence of a limited number of
non-collinear neighbors in common with the verifier, a knowl-
edgeable adversary can attempt one of the strategies outlined
before, but it is tagged at most as unverifiable. When the
shared neighborhood increases in size, the probability that the
adversary is tagged as faulty rapidly grows to 1. Multiple in-
dependent adversaries can only harm each other, thus reducing
their probability of successfully announcing a fake position.

B. Faking own position: Colluding adversaries

We assume that colluders share out-of-band links with
negligible latency, through which they exchange informa-
tion, and can perform complex distributed computations. This
notwithstanding, in the following we show that our scheme is

1M’

1M
2M’

3M’

3M

2M

S

X

R

Y

Z

Fig. 5. Cooperative basic attack. The colluding adversaries M1, M2, and
M3 can forge timings that validate their fake positionsM ′

1
, M ′

2
, andM ′

3
with

respect toS, as well as to each other (black lines). However, cross-checks
with non-colluding neighbors fail (crossed-out gray lines). M1, sharing with
S the other two colluders andX, is tagged as verified.M2, sharing withS
the other two colluders andX, Y , is unverifiable.M3, sharing withS the
other two colluders andX, Y , Z, is marked as faulty.

resistant to coordinated attacks6 as well, unless the presence
of colluding adversaries in the neighborhood of the verifier
becomes overwhelming.

1) Basic attack: The simplest way adversarial nodes can
cooperate to make the verifierS trust the fake positions
they announce is by extending thebasic attack introduced
in Sec. VI-A1. More precisely, other than individually an-
nouncingPOLL reception timings that agree with their fake
positions, colluding adversaries can mutually validate the false
information they generate. They can forge the reception times
of reciprocalREPLY messages, so that all cross-checks in the
CST involving the colluders are passed. A perfect cooperation
thus results in the colluding adversaries ability to alter all
distances between them without being noticed.

We remark that the adversaries still need to knowS’s
position in order to compute and advertise timings that confirm
their fake position. This time, however, if at least three
adversaries cooperate to perform the attack, they do not need
to be knowledgeable. As a matter of fact, they can exploit
their real positions andPOLL reception times to multilaterate
the coordinates of the verifier.

Our NPV correctly identifies such abasicattack through the
CST, as long as the majority of the (non-collinear) neighbors
shared byS and an adversary are not colluding with the latter.
An example is shown in Fig. 5.

2) REPLY-disregard attack:As in the case of independent
adversaries, multiple colluders can gain advantage by ignoring
REPLY messages from non-colluding nodes. This lets them
avoid cross-checks that could result in mismatches, and, even-
tually, in being tagged as faulty. Indeed,n ≥ 3 colluders could
disregard theREPLY received from all non-colluding nodes and
still advertise a numbern − 1 ≥ 2 of neighbors that would
report consistent timings with theirs – a sufficient condition
to pass theCST. This behavior, however, is properly handled
in our NPV by theMLT , which tags as faulty a neighbor that
disregarded (intentionally or not) two or moreREPLY messages
and announced a location other than the multilaterated one.

3) Hyperbola-based attack:The colluding attackers agree
not only on the position of the verifier (either guessed or
multilaterated), but also pick a non-collinear common neigh-
bor, X , that they share withS: each colluder then computes
the hyperbola with fociS, X , and passing through its own
real position, and announces a fake location on such a curve.

6Note that, since our NPV exploits ToF-based ranging, wormhole attacks
reduce to Sybil attacks, as discussed in Sec. VI-D.
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Fig. 6. Cooperative hyperbola-based attack: If two colluding adversaries,M1

andM2, are knowledgeable and correctly guess the identity ofS, they can
forge timings with respect toS andX as well as to each other (black lines)
and announce the fake positionsM ′

1
and M ′

2
, respectively.M ′

1
(M ′

2
) can

be any point on the hyperbola with foci inS, X, and passing byM1 (M2).
However,M1 shares 4 correct and one colluding, non-collinear neighbors with
S, while M2 shares 2 correct and one colluding, non-collinear neighbors with
S, henceM1 is tagged as faulty andM2 is tagged as verified.

M’1M 2M

3M
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3M’

R
SY

Z

X

Fig. 7. Cooperative collinear attack. The adversaryM1 announces a fake
position M ′

1
that is collinear with the verifierS and the non-colluding

neighborsX, Y , avoiding cross-checks with the latter two.M2 and M3,
colluding with M1, declare non-collinear false locations (M ′

2
, M ′

3
), thus

guaranteeing toM1 a majority of validated cross-checks. The adversaryM1

is tagged as verified, whileM2 andM3 are marked as faulty.

This allows the adversaries to announce correct links (i) with
the verifier, (ii) among themselves, and (iii) with the selected
neighborX , which becomes an involuntary ally in the attack.
Again, the location ofX must be randomly guessed by two
colluders, while it can be multilaterated by three or more
cooperating adversaries.

In presence of such ahyperbola-basedattack, theCST
correctly tags an adversaryM as faulty if the non-collinear
common neighbors between the verifier andM that do not
collude withM outnumber the colluding ones by 3. Note that
the two additional correct neighbors are required to counter
the effect ofX unintentionally taking part into the attack. An
example is depicted in Fig. 6.

4) Collinear attack: Unlike independent adversaries
(Sec. VI-A4), multiple colluders can take advantage of a
collinear attack. In particular, one or more adversaries can
purposelyannounce positions that are collinear with those of
some non-colluding neighbors, so as to avoid cross-checks
with them. Then, they can rely on colluders that declared
non-collinear positions to pass theCST, as in Fig. 7.

In other words, colluders can launch acollinear attack as a
legal mean to avoid unwanted neighbors. Such a gain comes
at the cost of a restricted freedom of movement, since the
fake position must lie on a specific segment (see Sec. VI-A4).
The robustness of our NPV to this kind of attacks depends on
the network layout: environments where nodes tend to form
straight topologies (such as vehicular ones) are more proneto
suffer fromcollinear attacks. In general, the NPV is resistant
to collinear attacks as long as the majority of the shared
neighbors are not colluding or collinear.

5) SUMMARY: As a conclusion on coordinated attacks,
it is the nature of the neighborhood that determines the
performance of the NPV scheme in presence of colluders.

However, the simulation results in Sec. VII show that, in
realistic environments, our solution is very robust even to
attacks launched by large groups of knowledgeable colluders.

C. Discrediting other neighbors

A different objective of the adversary can be to discredit
other nodes by inducing the verifier to tag them as faulty or
unverifiable. To this end, an adversaryM needs to announce
a fake timingt′XM (i.e., the time at whichM claims it has
receivedX ’s REPLY), for any neighborX ∈ NS ∩ NM that
it wants to discredit. By doing so,M can disrupt the cross-
checks made byS on the pair(X,M) in the CST. When
launched by a single adversary, such an attack can succeed if
there are only two additional correct nodes (which are tagged
as unverifiable byS). In all other configurations, a single
adversary cannot affect the assessment of other correct nodes.

When launched by multiple adversaries, no matter whether
they are independent or colluding, the effect of this attackis
the same as the one highlighted in Sec. VI-A5. We recall that
our NPV protocol provides protection to a correct nodeX , as
long as the number of adversarial neighbors it shares with the
verifierS is lower than that of correct common neighbors. Vice
versa, if the number of adversarial shared neighbors tryingto
discreditX is greater than (equal to) the number of correct
common neighbors,X is tagged as faulty (unverifiable).

D. Other attacks

Jamming. This is the only external attack that can harm
the system. Any adversary (internal or external) can jam the
channel and eraseREPLY or REPORT messages. However,
to succeed,M should jam the medium continuously for a
long time, since it cannot know when exactly a node will
transmit itsREPLY or REPORT. Or,M could erase theREVEAL,
but, again, jamming should cover the entireTjitter time.
Overall, there is no easy point to target: a jammer has to act
throughout the NPV execution, which implies a high energy
consumption and is a disruptive action possible against any
wireless protocol. In addition, mobility makes it harder to
repeatedly jam different instances of the NPV protocol run
by the same verifier.
Clogging. An adversary could initiate the NPV protocol
multiple times in a short period and get repeatedREPLY

and REPORT messages from other nodes, so as to congest
the channel. In particular,REPORTs are larger in size, thus
likely cause the most damage. However, NPV has a way of
preventing that: the initiator must unveil its identity before
such messages are transmitted by neighbors. An exceedingly
frequent initiator can be identified, and itsREVEALs ignored,
thanks to the use of certified keys.REPLYs instead are small
in size and are broadcast messages (thus require no ACK):
their damage is limited, but their unnecessary transmission
is much harder to thwart. Indeed,REPLY messages are sent
after an anonymousPOLL; such an anonymity is a hard-to
dismiss requirement, since it is instrumental for keeping the
identity of the verifier hidden. As a general rule, correct nodes
can reasonably self-limit their responses ifPOLLs arrive at
excessive rates.
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Adversarial use of directional antennas.Assume that ad-
versaries are equipped with directional antennas and multiple
radio interfaces. As a correct nodeS starts the NPV protocol,
a knowledgeable adversaryM can send differentREPLYs
through each interface at different time instants: any correct
neighborX would record a timet′MX , compliant with the fake
position p′M , allowing M to pass the cross-check withX in
the CST. If M can fool a sufficient number of neighbors, it
is tagged as verified. However,M needs as many directional
antennas and radio interfaces as the number of neighbors it
wants to fool, hoping that no two such neighbors are within the
beam of the same antenna. The complexity, cost, and chances
of failure make this attack hardly viable. We also remark that,
since our approach exploits ToF-based ranging, such an attack
cannot be launched by using a steerable antenna, which takes
an exceedingly long time to swap from one sector to another.
Sybil and relay (wormhole) attacks. An adversary can
assume several trusted identities,M = {M1, . . . ,MI}, if (i)
it owns several certificated pairs of public/private keys (Sybil
attack), or (ii) it impersonates colluding adversaries at the end
of wormholes. The availability of several identities couldbe
used by an adversary to acquire its neighbor positions, i.e.,
to become knowledgeable. However, as shown in Sec. VI-A,
attacks launched by independent, knowledgeable adversaries
have no chance of success. Furthermore, by announcing
timings that are consistent among the identities inM, the
adversary can behave as a group of colluders of sizeI.
The analysis in Sec. VI-B thus applies to such attacks as
well, except for the fact that the adversary cannot acquire
the position of other nodes through triangulation. A verifier
suspecting7 that this attack is being launched can run theMLT
to determine whether messages from nodes inM come from
the same location.

VII. PERFORMANCE EVALUATION

We evaluated the performance of our NPV protocol in a
vehicular scenario. Results obtained in a pedestrian scenario
are available as Supplemental Material.

We focus on knowledgeable adversaries whose goal is to
make the verifier believe their fake positions, and we describe
the best attack strategythey can adopt in Sec. VII-A. Such a
strategy, which depends on the neighborhood of the adversary
and builds on a combination of the attacks described in
Secs. VI-A and VI-B, will be assumed while deriving the
results shown in Sec. VII-B.

The results, which therefore represent a worst-case analysis
of the proposed NPV, are shown in terms of the probability
that the tests return false positives and false negatives as
well as of the probability that a (correct or adversary) node
is tagged as unverifiable. In addition, we plot the average
difference between the true position of a successful adversary
and the fake position it advertises, as well as the overhead
introduced by our NPV scheme. The results on attacks aimed
at discrediting the position of other nodes are omitted, since
they are very close to those we present later in this section.

7An example of suspect situation is the case where the neighborhood of the
verifier is split into groups of nodes, whose members pass thecross-checks
in the CST only with the nodes belonging to the same group.
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Fig. 8. Road layout of the 7×3 km2 vehicular scenario.

A. Adversaries attack strategy

The adversary decision on the kind of attack to launch is
driven by the tradeoff between the chances of success and the
freedom of choice on its fake position. Thebasicattack allows
the adversary to choose any false position, but it requires a
high percentage of colluders in the neighborhood in order
to be successful. Thehyperbola-based attack implies less
freedom of choice but has higher chances of success. The
collinear attack pins the adversary into a precise angle with
the verifier, and strictly bounds its distance from the verifier
itself. However, if the network topology features a sufficient
number of collinear nodes, this attack has the highest success
probability.

It follows from Sec. VI that the best strategy that an
adversary can adopt depends on its neighborhood. Firstly,
if it colludes with other adversaries outnumbering the non-
colluding neighbors, abasic attack is launched. Otherwise, if
the ratio between colluding and non-colluding neighbors isnot
greater than (but close enough to) 1, ahyperbola-basedattack
is attempted. As a third option, if non-colluding neighbors
greatly outnumber the colluding ones, but some of the former
are collinear with the verifier and among themselves, the ad-
versary launches acollinear attack. Through it, the adversary
can have the non-colluding, collinear neighbors thrown outof
the cross-checks in theCST. If none of the above conditions
are met, the adversary picks ahyperbola-basedattack, i.e.,
the one with the highest chances of success in absence of non-
colluding, collinear neighbors. Also, an adversary alwaysruns
a REPLY -disregard on onenon-colluding neighbor, avoiding
a mismatch with it. Recall that disregarding just oneREPLY

does not trigger theMLT on the adversary.

B. Results

We employed movement traces representing vehicle traffic
over a real-world road topology. More precisely, we considered
car movements within a 20 km2 portion of the Karlsruhe urban
area depicted in Fig. 8, extracting 3 hours of vehicular mobility
that reproduce mild to heavy traffic density conditions. These
synthetic traces were generated using the IDM-LC model of
the VanetMobiSim simulator, which takes into account car-to-
car interactions, traffic lights, stop signs and lane changes, and
has been proven to realistically reproduce vehicular movement
patters in urban scenarios [31].

In our simulations, we setTmax = 200 ms,Tjitter = 50 ms,
∆ = 1 ms and assume that CSMA/CA is used to access the
wireless medium, hence messages can be lost due to collisions.
Unless otherwise specified, we fix the proximity range,R,
which is equal to the maximum nominal transmission range,
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Fig. 9. Probability that a neighbor is tagged incorrectly oras unverifiable, versus the colluder cluster size (a,b), andversusR (c,d). C: correct; M/Bas,
M/Hyp andM/Col : adversaries launching thebasic, hyperbola-basedandcollinear attack, each combined with theREPLY -disregard attack.

10-3

10-2

10-1

100

 0  0.05  0.1  0.15  0.2  0.25  0.3

F
al

se
 p

os
iti

ve
s/

ne
ga

tiv
es

 p
ro

b.

Malicious nodes ratio

C faulty
M/Bas verified
M/Hyp verified
M/Col verified

(a)

10-3

10-2

10-1

100

 0  0.05  0.1  0.15  0.2  0.25  0.3

U
nv

er
ifi

ab
le

 p
ro

b.

Malicious nodes ratio

C unverifiable
M/Bas unverifiable
M/Hyp unverifiable
M/Col unverifiable

(b)

10-3

10-2

10-1

100

 0  5  10  15  20

F
al

se
 p

os
iti

ve
s/

ne
ga

tiv
es

 p
ro

b.
Poisitioning error (m)

C faulty
M/Bas verified
M/Hyp verified
M/Col verified

(c)

10-3

10-2

10-1

100

 0  5  10  15  20

U
nv

er
ifi

ab
le

 p
ro

b.

Poisitioning error (m)

C unverifiable
M/Bas unverifiable
M/Hyp unverifiable
M/Col unverifiable

(d)
Fig. 10. Probability that a neighbor is tagged incorrectly or as unverifiable, versus the ratio of adversaries (a,b), andposition error (c,d).C: correct;M/Bas,
M/Hyp andM/Col : adversaries launching thebasic, hyperbola-basedandcollinear attack, each combined with theREPLY -disregard attack.

to 250 m (resulting in an average neighborhood size of 73.4
nodes), whileǫr = 6.8 m, ǫp = 10 m, and the tolerance value
ǫm = 5 m (roughly corresponding to the case of two vehicles
moving at 50 km/h in opposite directions).

To evaluate the performance of our NPV, at every simulation
second we randomly select 1% of the nodes as verifiers. Then,
for each verifier, we compare the outcome of the verification
tests with the actual nature of the neighbors. We consider
colluding adversaries acting in groups, referred to asclusters.
Note that a colluding cluster size equal to 1 corresponds to
independent attacks. Also, adversaries are knowledgeable, i.e.,
they perfectly know the identity and location of all colluding
and non-colluding neighbors, and always adopt the best attack
strategy as described in Sec. VII-A. In the following, unless
otherwise specified, adversaries amount to 5% of the overall
nodes and are divided into clusters of 5 colluders each.

In the legend of the plots,C stands for correct node (e.g.,
the label “C faulty” refers to the probability of false positives),
while M/Bas, M/Hyp andM/Col stand for adversaries launch-
ing, respectively, thebasic, hyperbola-basedand collinear
attack (e.g., the label “M/Bas verified” refers to the probability
of false negatives due to basic attacks).

We first examine the NPV protocol performance for differ-
ent values of colluding cluster sizes andR = 250 m (Figs. 9(a)
and 9(b)).

The false negative/positive probability in Fig. 9(a) clearly
shows that (i) the chance of wrong classification reaches 0.01
only for a very large adversarial cluster size, namely 10, (ii)
the hyperbola-basedand thecollinear attacks are the most
threatening and (iii) an attack by the colluders is most effective

in passing themselves off as verified when there are at least
three of them. The cluster size also affects the colluders ability
to disrupt the positioning of correct nodes, which exhibit as
high as a 0.4% chance to be tagged as faulty.

Conversely, as shown in Fig. 9(b), the cluster size does not
cause more correct nodes to be unverifiable, since the main
reason for correct nodes to be tagged as unverifiable is the lack
of non-collinear neighbors that can verify them. The chancefor
an adversary to be unverifiable increases with the cluster size,
although it is significant only in case ofcollinear attacks. This
is in agreement with the fact that the outcome of thecollinear
attack is the avoidance of a sizable number of cross-checks
between the adversary and correct nodes, thus likely leading
the adversary to be tagged as unverifiable.

The neighborhood size proves to play an important role, as
evident in Figs. 9(c) and 9(d) where we consider a 5-colluder
cluster and vary the transmission range. A smallR (hence
few neighbors) affects the NPV capability to correctly tag a
node. Widening the transmission range with a fixed colluding
cluster size significantly favors the verifier, allowing it to reach
a conclusive and exact verdict on either correct or adversary
nodes: the larger theR, the higher the number of cross-checks
involving correct nodes in theCST. We note that, for transmis-
sion ranges larger than 300 m, we obtain false positive/negative
probabilities that are smaller than 0.001. Below 150-m ranges
(corresponding to an average neighborhood size of 12 nodes),
such probabilities are still 0.01.

Beside the impact of the cluster size and of the transmission
range, it is important to understand the effect of the percentage
of adversaries in the vehicular network. Thus, in Fig. 10(a)
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Fig. 11. Displacement gain of adversaries running a successful attack against
the NPV (a) and traffic load induced by one instance of the protocol (b).

we fix R to 250 m and the cluster size to 5, and we show the
robustness of our NPV to the density of adversaries: the prob-
ability that adversaries are verified increases ever so slightly
with their density. The highest effect is on the probabilityof
correct nodes being tagged as faulty, which however reachesits
highest value (0.1) only for 30% of adversaries in the network.
A further effect of the growing presence of adversaries, as
shown in Fig. 10(b), is the unverifiable tag being slapped onto
more correct nodes. A final observation can be made looking at
the false positive/negative probability as the positioning error
varies (Figs. 10(c) and 10(d)). Interestingly, for any positioning
error different from 0, the metrics are only marginally affected.

Finally, we further increase the level of detail of our
analysis and study the advantage obtained by adversaries that
perform a successful attack against the NPV protocol. Such an
adversarial gain is expressed in terms of spatial displacement,
i.e., difference of position between the real and fraudulently
advertised locations of the successful attacker: clearly,a larger
displacement range implies a higher freedom of movement,
which, in turn, enables potentially more dangerous actions
against the system. The results in Fig. 11(a) are broken
down based on the type of attack launched by the successful
adversary, and are limited to the impact of the transmission
range, since the other parameters did not show significant
influence on the displacement of successful attackers.

We can observe that successfulcollinear attacks yield
small advantage for adversaries, who are forced to announce
positions quite close to their real locations. Moreover, we
recall that these attacks constrain adversaries to advertise
fake positions along a precise axis, thus further limiting
their freedom of movement. We can conclude thatcollinear
attacks, typically those with the highest chances of success
as previously discussed, are also those resulting in the small-
est gain for the adversaries. Conversely,basic attacks allow
the largest average displacements, but we showed that they
have extremely low success probability. Thehyperbola-based
attacks appear then to be the most dangerous ones, if the
displacement gain is taken into consideration. However, such a
gain becomes significant only for large transmission ranges, in
presence of which we already observed that the actual success
probability of the attacks becomes negligible.

Finally, we comment on the overhead introduced by our
scheme. The NPV protocol generates at most2n+2 messages
for one execution initiated by a verifier withn communication
neighbors. Also, NPV messages are relatively small in size:

with SHA-1 hashing and ECDSA-160 encryption [27], the
length of signatures is 21 bytes (with coordinates compres-
sion). Assuming that messages include headers with 4-byte
source and destination identifiers and 1-byte message type
field, POLL, REPLY, andREVEAL are 26, 71, and 67 bytes in
size, respectively. TheREPORTlength depends on the quantity
of common neighbor data it carries, amounting to 4 bytes per
shared neighbor: information on more than 360 neighbors can
thus fit in a single IP packet.

Fig. 11(b) portrays the traffic induced on the network by
one instance of the NPV protocol. The plot only accounts
for transmission range variations since, once more, the other
parameters do not have an impact on the overhead. We can
observe that security comes at a cost, since the traffic load of
the NPV protocol is higher than that of a basic non-secure
neighbor position discovery, consisting of only one poll and
associated position replies from neighbors. More precisely, the
NPV protocol overhead is comparable to that of the non-
secure discovery for smaller transmission ranges, while the
difference tends to increase for larger ranges. However, the
cost of the NPV protocol is affordable in absolute terms, since
one run requires just a few tens of kbytes to be exchanged
among nodes, even in presence of dense networks and large
transmission ranges. Note that the results above do not take
into account the overhead induced by the distribution of
certificates, as it is out of the scope of this work (the interested
reader can refer to [26]).

Summary. Given that we assumed the best possible con-
ditions for the adversaries, the above results prove our NPV
to be highly resilient to attacks. Indeed, we observed typical
probabilities of false positives/negatives below 1%, while that
of a node being tagged as unverifiable is below 5%. Moreover,
we showed that a significant portion of the successful attacks
yields small advantage to the adversaries in terms of displace-
ment. Finally, the overhead introduced by the NPV protocol
is reasonable, as it does not exceed a few tens of kbytes even
in the most critical conditions.

VIII. C ONCLUSION

We presented a distributed solution for NPV, which allows
any node in a mobile ad hoc network to verify the position
of its communication neighbors without relying on a-priori
trustworthy nodes. Our analysis showed that our protocol is
very robust to attacks by independent as well as colluding
adversaries, even when they have perfect knowledge of the
neighborhood of the verifier. Simulation results confirm that
our solution is effective in identifying nodes advertisingfalse
positions, while keeping the probability of false positives low.
Only an overwhelming presence of colluding adversaries in the
neighborhood of the verifier, or the unlikely presence of fully-
collinear network topologies, can degrade the effectiveness
of our NPV. Future work will aim at integrating the NPV
protocol in higher-layer protocols, as well as at extendingit
to a proactive paradigm, useful in presence of applications
that need each node to constantly verify the position of its
neighbors.
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[17] S. Čapkun, J.-P. Hubaux, “Secure Positioning in Wireless Networks,”
IEEE JSAC, vol. 24, no. 2, pp. 221–232, 2006.

[18] A. Vora, M. Nesterenko, “Secure Location Verification Using Radio
Broadcast,”IEEE Trans. on Dependable and Secure Computing, vol. 3,
no. 4, pp. 377–385, 2006.

[19] J. Hwang, T. He, Y. Kim, “Detecting Phantom Nodes in Wireless Sensor
Networks,” IEEE Infocom, Anchorage, AK, May 2007.
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