
12 July 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Exploiting code mobility for dynamic binary obfuscation / Falcarin, Paolo; DI CARLO, Stefano; Cabutto, Alessandro;
Garazzino, Nicola; Barberis, Davide. - STAMPA. - (2011), pp. 114-120. (Intervento presentato al convegno IEEE World
Congress on Internet Security (WorldCIS) tenutosi a London, UK nel 21-23 Feb. 2011)
[10.1109/WorldCIS17046.2011.5749894].

Original

Exploiting code mobility for dynamic binary obfuscation

Publisher:

Published
DOI:10.1109/WorldCIS17046.2011.5749894

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2424125 since: 2020-12-12T17:41:04Z

IEEE

Exploit ing code mobil ity for dy-
namic binary obfuscation
Authors: Falcarin P., Di Carlo S., Cabutto A., Garazzino N., Barberis D.,

Published in the Proceedings of the IEEE World Congress on Internet Security (WorldCIS), 21-23

Feb. 2011, London, UK.

N.B. This is a copy of the ACCEPTED version of the manuscript. The final
PUBLISHED manuscript is available on IEEE Xplore®:

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5749894

© 2000 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale

or redistribution to servers or lists, or reuse of any copyrighted component of this work in

other works.

!Politecnico di Torino

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5749894
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5749894

Exploiting Code Mobility for Dynamic Binary Obfuscation

Abstract

Software protection aims at protecting the integrity of
software applications deployed on un-trusted hosts and be-
ing subject to illegal analysis. Within an un-trusted envi-
ronment a possibly malicious user has complete access to
system resources and tools in order to analyze and tamper
with the application code. To address this research problem,
we propose a novel binary obfuscation approach based on
the deployment of an incomplete application whose code ar-
rives from a trusted network entity as a flow of mobile code
blocks which are arranged in memory with a different cus-
tomized memory layout. This paper presents our approach
to contrast reverse engineering by defeating static and dy-
namic analysis, and discusses its effectiveness.

1. Introduction

Software protection aims at protecting the integrity of
data and software applications deployed on un-trusted hosts
and being subject to illegal analysis. Software Protec-
tion is an important requirement for software companies as
many of them are increasingly adopting tools with the in-
tention of defending their intellectual property from unau-
thorized reuse by competitors, i.e. to protect their products
against unauthorized reverse engineering, software cracks
and piracy.

The attacker has no restriction on the tools and tech-
niques to use to reverse-engineer and then to tamper with
the application (e.g., super-user privileges are assumed to be
available to the attacker). He/she can install any software on
the target machine (e.g., debuggers, emulators), to read and
write every memory location, processor registers and files.
Being in control of the target computer, the attackers can
mount environmental attacks in which the program will be
executed. System libraries and general purpose libraries are
controlled by the attackers, along with the operating system.
As a consequence, the attackers can use system calls, the
input/output subsystem, the network stack, and the memory
management subsystem for their purposes.

Attackers possess tools for manipulating binary files at
a higher conceptual level than strings of bits, tools that un-

derstand file formats and relationships between files. They
are assumed to use tools that enable them to transform pro-
grams between different formats and between different lev-
els of abstraction (disassemblers, decompilers).

To contrast such attacker goals, it is important to de-
feat both tools used to perform static analysis (disassem-
blers, decompilers) and debuggers used for dynamic anal-
ysis. To reach this objective, this work exploits the use of
code mobility to increase reverse engineering complexity in
order to make harder for an attacker understanding the ap-
plication structure and behaviour. To address this research
problem, we propose a novel binary obfuscation approach
based on the deployment of a mainly incomplete applica-
tion whose code arrives from a trusted network entity as a
flow of mobile code blocks which are disposed at run-time
in memory with a different customized memory layout. The
trusted server placed over the network is responsible of de-
ciding the customized memory layout of the binary code
that will be sent, block after block, to the application. This
paper presents our approach to contrast reverse engineering
by defeating static and dynamic analysis, and discusses its
effectiveness. The paper is organized as follows: first we
describe the problem and state of the art solutions are intro-
duced; then we describe how to enforce software protection
with mobile code; finally the effectiveness of our approach
is discussed and compared with related works before we
draw our conclusions.

2. State-of-the-art

The problem of executing software in an un-trusted com-
puting environment has recently gained considerable atten-
tion. The literature can be divided into either hardware-
based or software-based solutions. The Trusted Computing
Group is defining a set of standards to address the prob-
lem of executing software in a trustworthy computing envi-
ronment from a hardware perspective. Some related works
[15, 17] build software protections on top of a tamper-proof
hardware component, e.g., the Trusted Platform Module
[5], which is situated locally on the motherboard. The prob-
lem with hardware components is that they cannot be re-
placed in case of design errors and they may require an
expensive . The trustworthiness they provide, covers the

machine as a whole (including BIOS and OS) and cannot
be granted at a fine-grained level, e.g., for selected appli-
cations. Moreover, the integrity verification method is per-
formed off-line and it reacts after the fact.

Many software-based protection techniques have been
proposed in latest years both to prevent reverse engineering
and code analysis (like obfuscation), or to detect at run-time
if the program integrity has been violated by means of ad-
ditional code bundled in the application. These techniques
aim at producing tamper-resistant applications.

Obfuscation aims at increasing the attack complexity by
making it hard for the attacker to comprehend the behavior
of a decompiled program [9].

Obfuscation techniques are based on the addition of
complexity to the source code structure (without chang-
ing its behavior) through different kinds of code transfor-
mations both regarding program’s control flow and/or data
structures [9]. However, Barak et al. [7] showed that some
functions cannot be obfuscated, and other papers claim that
perfect obfuscation is impossible. In most cases, breaking
obfuscation is just a matter of time and attacker’s skills.

Binary obfuscation techniques have been recently pro-
posed to increase reverse engineering complexity: Linn et
al. [14] proposed a tool for inflating binary code with re-
dundant and/or garbage instructions to defeat disassemblers
or to produce a very complex assembly code: they evalu-
ate obfuscation strength with their confusion factor, as the
percentage of instructions not correctly disassembled be-
cause of binary obfuscation. Kanzaki et al. [13] used self-
modifying binary code to defeat static analysis and disas-
sembling, while Birrer et al. [8] provide metamorphic bi-
nary code by means of program fragmentation.

Code obfuscation transformations are also employed to
hide other kind of protections embedded in the software
(like tamper-resistant code) so that it cannot be easily de-
tected and removed. Tamper-resistant code aims at identi-
fying attacks like unexpected binary modifications and typ-
ically react by stopping the application. Some of these pro-
tections rely on an external source of trust, like a locally
bundled secure hardware or a trusted network server.

Protection schemes going beyond obfuscation have been
proposed but no one so far provides absolute protection. It
is therefore highly recommended to complement each pro-
tection technique with obfuscation, to increase the expected
expiration time of a protected version of a program.

The pioneering work of Aucsmith [6] was proposed to
resist to code observation: his technique to break a binary
program into individually encrypted segments, so that the
hash value of a block is the secret key for decrypting the
next block; if the program was altered the hash value is
changed and then the next block cannot be decrypted prop-
erly and the program cannot continue to run. In this case
finding the first key allows to recover the full chain of keys.

Other techniques that can be strengthen by obfusca-
tion include: integrity self-checking, customization, self-
modifying code and mobile code.

Customization creates many different copies from an
initial version of a program. Each copy of the protected
program is different in its binary shape, but is function-
ally equivalent to other copies [6]. Thus, attacks designed
to work with one version might not work with other cus-
tomized versions. This kind of protection discourages dif-
fusion of cracks but it does not aim at detecting and re-
acting to tampering. More recent research works use self-
modifying code, or mobile code to thwart static analysis.
Self-modifying code [6, 11], at binary level, defeats static
analysis and increases the difficulty of dynamic analysis.

Mobile code approaches are only applicable on client-
server applications where parts of the binary code (contain-
ing both application logic and protection code) are down-
loaded at run-time from a trusted server: some works pro-
vide remote integrity attestation using mobile code on mod-
ified JVMs with dynamic AOP [10] or by natively extending
JVM 5 through its JVM Tool Interface [16].

3. Software Protection by Mobile Code

To counter reverse engineering, current protections of-
ten rely on obfuscation and/or on software-based tamper-
resistance techniques relying on code checkers whose posi-
tion is hidden in the application. However, we observe that
any technique that allows the attacker using static analysis
is not robust enough. Indeed, code-checkers can be even-
tually identified and inhibited by an attacker with enough
knowledge, time, and reverse engineering tools. Even in
presence of binary obfuscation some tools [2] can transform
and clean the binary code to remove protections in few days,
as shown by the T2 challenge proposed yearly to the reverse
engineering community [4]. To overcome the drawbacks of
local protection techniques, network-based techniques can
be applied. In this scenario a trusted entity placed on the
network, and out of the control of the attacker, is in charge
of monitoring the execution of the application to protect,
and together with dynamic code replacement, reverse en-
gineering attempts can be made more complex by forcing
the attacker to continuously face different versions of the
program.

The main idea, highlighted in this paper, is to use code
mobility to make it more difficult for an attacker to tam-
per with the code. In particular, code mobility is exploited
to create different customized versions of a given program.
These versions can be different in space for their different
binary structure and in time since during the execution, in a
particular point in time, only a subset of the binary code is
actually stored in the client host’s memory. Mobility can be
therefore used to reduce the visibility on the whole binary

code thus limiting the attacker’s knowledge and contrasting
static analysis.

Code mobility shows many features which are helpful to
improve tamper resistance:

• Protection of code against static and dynamic analy-
sis, as the whole code is not completely available when
running on the hostile host;

• Application structure behavior is not-predictable as it
is decided by the trusted server and customized for ev-
ery execution;

• Single instance dependency: it is unfeasible to create a
custom crack for each different installed copy;

• Easy possibility of extending the architecture with new
protection techniques.

Fig. 1 depicts a possible application of code mobility to
implement a tamper-proofing architecture.

BINDER()

Empty Code Section

Target Application (P)

Trusted Entity

P's Code

Blocs

Code
Block

Code
Block

Control

Figure 1. Tamper-resistant architecture with

Mobile Code and Replacement.

An application P is deployed to the final user as an al-
most empty box, containing an empty code section where
to place blocks of code and a Binder able to receive these
blocks and to map them into the code section thus managing
the overall program execution. The trusted entity is a com-
plete secure machine or device placed somewhere on the
network. With completely secure we intend that an attacker
has no way to tamper with this machine, and moreover it
does not know anything about the services running in it.

The network communication between the trusted server
and the program to be protected (running on the remote
host), created through a network socket, includes two log-
ical channels: a bidirectional control channel used to ex-
change control information, and a unidirectional channel
used to send blocks of code to the program. We reuse
and adapt the ISO Symmetric Key Three-Pass Mutual Au-
thentication [12] protocol to guarantee mutual authentica-
tion between the trusted server and the un-trusted client

during start-up phase. When the connection is established
with this protocol, the trusted and the un-trusted node can
start to communicate. In order to encrypt the communica-
tion between the two nodes, and therefore to prevent man-
in-the-middle attacks, the channel have been secured us-
ing the AES encryption algorithm. The message is finally
signed through the MD5 algorithm for better performance.
With the signature of the message, the receiver (the trusted
server) can be sure that the message was sent by the cor-
rect node. If the signature is incorrect, then the message has
been hacked and the flow of code blocks should be inter-
rupted.

The clean program (on the trusted node) will be split in
code blocks. Figure 2 shows an example of code block.
Any time the application needs to jump outside the block,
either because the execution reaches the end of the block
or, control flow instructions need to modify the sequential
execution flow, a call to the binder is inserted.

CODE BLOCK

MOV AX,00
ADD AX,01
...

callnz Binder()
...
...
...
call Binder

Figure 2. Program block example

In order to continue the execution, each time it is called
the binder has to:

• Retrieve the position inside the block where the call
was issued (this is always possible looking at the ap-
plication stack);

• Send this information to the trusted entity that will in
turn calculate the next block, and the position in the
next block where the execution should restart;

• Wait for the transmission of the target block if not al-
ready present. Every time a block is sent to the binder,
its target location in the code section is decided by the
trusted host (e.g., randomly) and sent to the program
through the control channel. This step is crucial to
make sure that, for every execution of the application,
and for multiple executions of the same block during
a single execution of the application, the memory lay-
out will be continuously different thus reducing the ef-
fectiveness of both static and dynamic analysis. This
translates into the fact that the binder does not contain
any fixed information about the structure of the pro-
gram that can be statically analyzed by an attacker. All
information are dynamically generate by the server at
run-time.

Bogus blocks can be periodically sent to the program in
order to continuously confuse the attacker, and to overwrite
portions of the empty code section thus reducing the time
the attacker has to understand a given portion of code. Bo-
gus block may include, unelectable blocks that generate er-
rors when executed (e.g., they contain illegal microproces-
sor instructions), and no-effect blocks containing code per-
forming computations that do not produce any useful result
for the program.

3.1 Binary Code Instrumentation

In order to implement the proposed program execution
schema it is mandatory to be able to split a program binary
into a set of different blocks, and to instrument each block
in order to insert calls to the binder. Fig. 3 shows the auto-
mated instrumentation flow able to start with a stand alone
application and to automatically generate the related pool of
code blocks. The generation is tuned by a set of parameters
aiming at defining the optimal length of the blocks to avoid
the generation of blocks that are too small or too big.

Initial Program
(e.g. test.exe)

DISASSEMBLER

SPLITTING

Binder calls insertion

Address rearranging

CODE BLOCKS

Figure 3. Instrumentation flow

To instrument a program we first need to interpret its
assembly code. This is particularly important to identify
control flow instructions that need to be properly managed.
This first step can be efficiently performed using a disas-
sembler tool. Disassemblers provide a text description of a
binary application easier to be processed. In this work we
considered the Intel instruction set architecture.

Given the disassembled code of the program we need to
split it into Code Blocks (CBs). A code block is a sequence
of contiguous assembly instructions. We can define differ-
ent approaches to split the code segment into CBs. Each
block may represent a function/method in the original pro-
gram, CBs can be defined by splitting the code into por-
tions of the same size, and CBs can be defined by splitting
the original code into portions with a random size. Among
the three possibilities, the first one is less effective since it
gives a direct correlation between code lines and program

functions that can be exploited by an attacker to reverse en-
gineer the program. The other two possibilities can both be
applied in an easy way. Once we have the code blocks, we
need to properly instrument these blocks in order to make
it possible to easily relocate them everywhere in the code
section. This means that all control flow instructions (i.e.,
jump, call, etc.) need to consider the new location where the
code is mapped. Fig. 4 shows a typical example. It reports
a single code block including two unconditioned jump in-
structions. We distinguish between two situations. The first
situation, represented by the first jump is what we call Intra
CB jump, i.e., the program execution jumps to a memory
location that is still contained in the same code line. This
is the easiest situation. If the target address is expressed as
a code displacement (as possible in the Intel IA32 architec-
tures) no modification of the block is required. The second
situation is represented by the second jump that we call ex-
tra CB jump. It identifies all situations where the program
needs to jump to instructions contained in a different code
block (the same situation happens in Fig. 4 at the end of
the execution of the code block). In this case we need to
be able to replace this instruction with a call to the binder.
Since the target address not always is explained as an im-
mediate value, but can also be contained into a register, this
operation must be performed at runtime. Actually, since
the trusted node has all the information regarding where the
different code blocks are mapped, calculating the target ad-
dress is a trivial task.

CL_n
MOV AX,00
...
...
...
JMP L1
...
...
JMP L2

L1: ...
...

Intra CL
Jump

Extra CL
Jump

Next block is CL_n+1

Figure 4. Code Block example

In order to insert the call to the binder we first have to
make space for this instruction. We perform this operation
by inserting NOP operations (one byte operation) before the
target jump to get enough space for the call. In the IA32
architecture the call instruction can be encoded with 5 or 6
bytes, we always consider the worst case. Every time a NOP
is inserted all intra CB jumps become inconsistent. Their
target address has to be fixed (address rearranging phase) in
order to keep the consistency of the block. This operation
may present side effects. In particular relative jumps (most
of them) can be encoded with addresses on 8, 16 or 32 bits.
Injecting NOP operations may lead to the situation where
a short jump, i.e., 8 bits address, has to jump to a location

outside its maximum range. This in turn require to modify
a short jump into a longer jump. But this operation will
lead again to a modification of the code that may in turn
require another code inspection to readjust the addresses.
This operation must be reiterated until a stable situation is
generated.

4. Discussion

An attacker usually tries to reach his goal according to
the following procedure: (i) disassembling the executable
file with tools like IDA [1] or METASM [2], and (ii) iden-
tifying and removing software protections using debuggers
[3].

Our main contribution is exploiting code mobility and
continuous dynamic binary code replacement in memory.

Indeed, using mobile code blocks extends the control of
software providers over released applications beyond the
deployment phase. After the release, software is no more
at complete mercy of possibly hostile users. In fact, after
deployment, the provider retains control of (parts of) the
application and is able to apply changes by means of code
blocks replacements. Additionally, replacement not only in-
creases the power of software providers, but also lessens the
resources of an adversary by capping the attack time.

While obfuscation is performed before deployment, our
approach takes place during deployment (when the applica-
tion’s memory layout is rebuilt) and even during run-time
(when code blocks are stored and/or replaced).

Another important contribution of our approach is pro-
viding code splitting at binary level, by using a disassembler
during the instrumentation phase before deployment, and
the usage of network to continuously transfer a code blocks
flow. Moreover in our case the code blocks layout can be
customized for different hosts and such information is de-
cided at the server-side and then applied by the Binder. This
strongly improves similar approaches such as Binary Frag-
mentation proposed by Birrer et al. [8]. In this approach
fragment locations are chosen at the source code level, thus
simplifying the implementation of their metamorphic en-
gine. The problem with this approach is that the binary
program layout can be obtained after analyzing the meta-
morphic engine and it is not customized by the server as in
our case.

When compared to existing obfuscation techniques, our
approach extends prior art in several directions. First, it
provides program fragmentation at binary code level and
it uses a trusted server to decide a different memory lay-
out for each program instance. Second, and more impor-
tant, the program is deployed incomplete and binary code
blocks are sent by the trusted server to the Binder who ex-
ecutes server commands and actually insert/withdraw code
blocks into/from memory. Such quality improves the over-

all strength of the technique we propose since attackers have
limited time resources to figure out the application’s mem-
ory layout for each run of the application.

From the attacker viewpoint, disabling code blocks
insertion, and thus avoiding correct installation of code
blocks, is useless, because the running application would
be still incomplete. On the other hand, once the binder is
identified among the rest of garbage or useless binary code,
the attacker could decompile it, understand its behavior, and
replace it with a forged copy. It is unlikely that such a com-
plex attack can be completed manually because the actual
layout of blocks is decided by the trusted server and contin-
uously sent at run-time. Moreover, forging the binder does
not assure the possibility of mounting useful attacks. The
functionality of the binder is limited to the installation of
blocks into memory, and no protection tasks are devoted to
this element.

To establish how effective our approach is at thwart-
ing reverse-engineers, we applied it to a simple cars-race
game with a very simple user interface. The protected pro-
gram was analyzed using IDA Pro, a popular disassem-
bler/debugger [1]. IDA has difficulty in correctly handling
the program: as the program is deployed incomplete, the
empty section is filled with random data bytes, and it is
not disassembled correctly. The random bytes causes disas-
sembler to shift instruction boundaries (which have variable
length in Intel architecture), and displays wrong assembly
instructions to the attacker.

Our approach also prevents breakpoints from working as
expected in both the free memory area of the program and
on the part of it actually filled by code blocks located by
the Binder. In the free memory area, if the user places a
breakpoint on one of the random data bytes, thinking it is a
valid instruction, the breakpoint is never met and does not
stop the execution. In addition, placing breakpoints in a
code block often cause the program to crash.

The Binder determines the code block to be executed de-
pending on information coming from the trusted server; at-
tackers may try to reconstruct the control flow and the cur-
rent memory layout by looking at binder behavior but as
they need run-time information and debuggers cannot be
used properly, reconstructing the control flow is really hard.
Every new execution of the program causes the creation of a
new session with the server and a new customized memory
layout is decided and then disposed by the binder.

The communication with the trusted server can be medi-
ated by software that the attacker controls. Thus the com-
munication can be read and changed by the attacker. Never-
theless, if the attacker breaks or alters the code blocks flow
coming from the server he/she cannot use the application.

5. Conclusions

The main contribution of our work is the definition of
a new kind of binary obfuscation relying on code mobility
and binary code splitting. With our dynamic obfuscation,
dynamic analysis is thwarted, as a full binary version of the
program is not present in memory at run-time.

Our solution shows that splitting program in code blocks
transmitted via network by a trusted server is a suitable and
low-cost software protection that can be useful in defend-
ing software programs from reverse-engineering. Our pro-
tection creates problems for common reverse engineering
tools and makes the code comprehension task more diffi-
cult for the attacker. By making reverse-engineering more
difficult, this technique can help not disclosing proprietary
code to competitors. Further research will be devoted to
integrate program splitting with other techniques like self-
modifying code and remote attestation in order to integrate
tamper-detection techniques to improve the level of protec-
tion; furthermore we plan to empirically evaluate whether
our binary obfuscation will present any particular level of
difficulty to a reverse engineer by means of empirical ex-
periments.

6. Acknowledgements

The authors want to thank Nicola Garazzino and Da-
vide Barberis for their contribution to this work, which was
funded by the EU project RE-TRUST, contract IST-021186.

References

[1] Ida-pro disassembler, http://www.hex-rays.com/idapro/.
[2] Metasm, the assembly manipulation suite,

http://metasm.cr0.org/.
[3] Rasta ring 0 debugger, http://rr0d.droids-corp.org/.
[4] T2 information security conference challenge.

http://www.t2.fi/challenge/.
[5] Trusted computing platform.

http://www.trustedcomputing.org/.
[6] D. Aucsmith. Tamper resistant software: An implementa-

tion. In Proceedings of the First International Workshop on
Information Hiding, volume 1174 of LNCS, pages 317–333.
Springer-Verlag London, UK, 1996.

[7] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sa-
hai, S. Vadhan, and K. Yang. On the (im) possibility of soft-
ware obfuscation. In Crypto 2001, pages 1–18, 2001.

[8] B. D. Birrer, R. A. Raines, R. O. Baldwin, B. E. Mullins, and
R. W. Bennington. Program fragmentation as a metamorphic
software protection. In Information Assurance and Security,
2007. IAS 2007. Third International Symposium on, pages
369–374, 2007.

[9] C. S. Collberg and C. Thomborson. Watermarking, tamper-
proofing, and obfuscation - tools for software protection.

IEEE Transactions on Software Engineering, 28(8):735–
746, August 2002.

[10] P. Falcarin, R. Scandariato, and M. Baldi. Remote trust with
aspect oriented programming. In IEEE Advanced Informa-
tion and Networking Applications (AINA-06). IEEE, 2006.

[11] J. T. Giffin, M. Christodorescu, and L. Kruger. Strength-
ening software self-checksumming via self-modifying code.
In ACM 21st Annual Computer Security Applications Con-
ference, pages 23–32. ACM, 2005.

[12] Y.-J. He and M.-C. Lee. Towards a secure mutual authen-
tication and key exchange protocol for mobile communica-
tions. In Modeling and Optimization in Mobile, Ad Hoc, and
Wireless Networks and Workshops, 2008. WiOPT 2008. 6th
International Symposium on, pages 225–231, April 2008.

[13] Y. Kanzaki, A. Monden, M. Nakamura, and K. Matsumoto.
Exploiting self-modification mechanism for program pro-
tection. In Computer Software and Applications Conference,
2003. COMPSAC 2003. Proceedings. 27th Annual Interna-
tional, pages 170–179, 2003.

[14] C. Linn and S. Debray. Obfuscation of executable code
to improve resistance to static disassembly. In Computer
and Communications Security Conference (CCS-03), pages
290–299. ACM, 2003.

[15] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and
implementation of a TCG-based integrity measurement ar-
chitecture. In 3th USENIX Security Symposium, San Diego,
CA, USA, August 2004.

[16] R. Scandariato, Y. Ofek, P. Falcarin, and M. Baldi.
Application-Oriented Trust in Distributed Computing. In
Proceedings of the 2008 Third International Conference on
Availability, Reliability and Security, pages 434–439. IEEE
Computer Society, 2008.

[17] P. C. Van Oorschot. Revisiting software protection. In Inter-
national Conference on Information Security (ISC), Bristol,
UK, October 2003.

