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Advances and Challenges in Variations-aware 
Static Timing Analysis

Strong  process  variations  is  a  characteristic  feature  of 
advanced process nodes since 60-nm. A wealth of papers has 
been published since middle of last decade proposing various 
techniques  of  accounting  for  process  and  environment 
variations in Static Timing Analysis (STA). The most prominent 
approach is  Statistical  STA which  enjoyed strong  interest  in 
academia but  has so far not been widely adopted in design 
community. Primary reason for the slow adoption of SSTA is its 
high runtime and memory costs, nontrivial effort in interpretation 
of  results,  inability  to  adequately  model  nonlinear  or  non-
Gaussian variations and huge size of statistical timing libraries 
and  extracted  parasitics.  An  alternative  approach  based  on 
running  multiple  process  corners  has  prevailing  usage  in 
industry, but it also suffers from several setbacks: (i) explosion 
of corners, (ii) difficulties in generating and managing large set 
of libraries and RC for various corners, (iii) lack of or inefficient 
support  of  MMMC  in  available  industrial  STA  solutions. 
Recently several new methods of handling on-chip variations in 
STA have emerged,  including Advanced OCV (AOCV) which 
became popular due to its low cost yet relatively good accuracy. 
Being an approximation of SSTA, AOCV is based on applying 
derating factors which are calculated in advance. At the same 
time various simplified flavors of SSTA (a Poor Men’s SSTA) 
have been evaluated such as based on extraction of statistical 
models from corner libraries, different combinations of MMMC 
and SSTA and others. In this talk we compare the mentioned 
methods  of  handling  process  variations  in  STA and discuss 
pro’s and con’s of each approach.

Vassilios  Gerousis,  Senior  Architect  &  Technologist, 
Cadence.
Vassilios  Gerousis  is  veteran  of  the  semiconductor  industry 
with  over  25  years  working  at  TI,  Motorola  and  Infineon. 
Vassilios is now Senior Architect and Technologist of Digital IC 
Design Implementation at  Cadence Design Systems,  heavily 
involved/driving the Cadence SSTA solution. Prior to Cadence, 
Vassilios worked as a senior technologist for 7 years at Infineon 
in  Germany.  After  doctorate  graduation  in  EE  from 
Northeastern  University  in  Boston,  he  joined  TI  in  1979  for 
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three years at Houston, Texas. He worked for Motorola for 18 
years  in  both  Austin  Texas  and  then  Chandler,  Arizona. 
Vassilios  has  focused  in  several  areas:  Physical  design  for 
advanced nodes, High Speed Digital Design, 3D IC design and 
analysis.
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Igor Keller received his M.A. and PhD degrees in Mechanics 
and Applied Mathematics from University of Perm, Russia. After 
that he spent several years in Russian Academy of Sciences 
and  Israel  Institute  of  Technology  (Technion)  researching 
complex phenomena in distributed nonlinear systems. For the 
last  9 years  Igor  has  been with Cadence  Designs  Systems 
working on advanced noise analysis, delay calculation and cell 
modeling technologies.  Prior  to Cadence,  he worked at Intel 
developing static noise and timing analysis solutions.
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Dipartimento di Elettronica, Politecnico di Torino, Italy
Email: simona.donati@polito.it

Abstract—This paper presents a general framework for the
assessment of the physics-based small-change sensitivity analysis
of AC device performances as a function of process parameters.
The proposed technique is based on the linearization of a partial-
derivative physical model (e.g. the drift-diffusion transport sys-
tem) around a nominal process parameter, and on the evaluation
of relevant Green’s functions linking the parameter variations
in each point of the device to external, circuit-oriented AC
performances. This technique allows for a considerable saving
of simulation time, even with respect to previously proposed AC
sensitivity tools, also based on Green’s functions. An example of
the evaluation of the Y -parameters variability of a high frequency
MESFET device is presented and validated, proving that this
technique is the basis for a general variability assessment of
analog devices and subsystems in linear conditions.

I. INTRODUCTION

During the last few years, nanometer CMOS processes have
been increasingly exploited in the implementation of RF ana-
log and mixed-signal subsystems [1], [2], such as the receiver
and transmitter blocks appearing in most radio applications
below the X band. Further, device downsizing currently allows
CMOS circuits to reach the microwave and millimeter wave
range [3], that are traditionally covered by GaAs- or InP-based
transistors such as MESFETs, (P)HEMTs and HBTs. From
a technological standpoint, process variability is a serious
issue also in Schottky-gate compound semiconductor FETs,
where nanometer gate lengths are obtained by lateral etching
rather than lithography alone. Process variability affects ana-
log subsystems in a rather different way when compared to
digital subsystems. While the complexity of analog circuits
is much lower than in the digital case, thus making the
variability issue intrinsically less dramatic, process variability
may induce fluctuations in the device small-signal parameters
(such as those influencing gain and input/output matching)
in potentially critical devices, therefore deeply affecting the
system performances (e.g., the receiver sensitivity). As a
consequence, process variability may influence in a complex
way the operation of linear or quasi-linear analog blocks,
such as low-noise amplifiers and mixers, leading to a potential
deterioration of the overall power or conversion gain and of
the noise figure through a combination of transconductance
fluctuations and input and output mismatch with respect to
the optimum (power or noise) conditions.

When analyzing the variability of analog circuits with

respect to process parameters, a basic, first-order tool is pro-
vided by the linear sensitivity model, relating small variations
of the circuit performances P , ∆P , to small variations of
some technological parameter σ, ∆σ. The relevant figure of
merit is therefore SPσ = ∆P/∆σ ≈ ∂P/∂σ. To perform
such an analysis, one must evaluate the circuit sensitivity
vs. variations of the active device small-signal parameters,
and the sensitivity of those vs. the technological parameters.
Although well established techniques exist to model and
analyze the variability of the analog circuit performances
induced by small-signal parameter fluctuations in the active
devices on the basis of sensitivity-based linear approaches [4],
problems arise whenever such device small-signal parameter
fluctuations have to be connected, at a modeling level, to the
variations of technological parameters (such as gate length,
electrode spacing, doping levels etc.). On the other hand,
while the evaluation through physics-based models of the
sensitivity of DC parameters such as the drain or collector
current with respect to technological parameter variations is
available through efficient techniques [5], [6], the computation
of the small-signal parameter sensitivity through a physics-
based model is in principle a formidable task, since such
sensitivities are, in fact, second-order sensitivities of the device
short-circuit currents or open-circuit voltages [5].

In the present paper we propose a novel approach to sensi-
tivity analysis that exploits, as a starting point, the large-signal
physics-based linearized model already proposed by some
of the present authors in [7], based on an efficient Green’s
function technique. This new approach basically provides,
under arbitrary loading conditions, the sensitivities of the
output current or voltage harmonics (DC, fundamental, higher
harmonics) with respect to the variations of technological
parameters. For the sake of definiteness, let us concentrate
on a device where frequency conversion is negligible, e.g.
the active element of a low-noise or high-gain amplifier. In
the presence of a small enough AC input and output exci-
tation superimposed to a DC bias, the first-harmonic output
currents under short-circuit loading conditions simply are the
(normalized) elements of the device admittance matrix and
their sensitivities are the small-signal sensitivities of the Y-
parameters. The same idea allows to evaluate the sensitivities
of the conversion matrix elements when the device is operated
in the so-called small-signal large-signal regime. From small-



signal or conversion parameter sensitivities, the sensitivity of
the circuit performances can be finally evaluated; notice that
since the device-level large-signal based sensitivity analysis
requires a mixed-mode simulation including the active device
together with the embedding circuit, circuit variability can
be in principle evaluated directly through the mixed-mode
simulation.

II. PHYSICS-BASED SMALL-SIGNAL SENSITIVITY

The formulation of sensitivity analysis for semiconductor
devices described by physics-based partial differential equa-
tion (PDE) models, i.e. models solving for the microscopic
internal distributions of variables in the device on the basis of
conservation equations derived in turn from the moments of
the Boltzmann transport equation, can be found in [5], [6]. We
summarize here the results, exploiting a general formulation
valid for all orders of PDE models, although of course the
numerical burden rapidly increases as nonstationary transport
is taken into account. For this reason, we make explicit refer-
ence to the bipolar drift-diffusion transport description, made
of Poisson and the electron and hole continuity equations.

Furthermore, since the aim of sensitivity analysis is the
assessment of the variation of terminal electrical variables
as a function of spatially localized (deterministic or random)
fluctuations inside the device volume, we add to the PDE
system (and to the relevant boundary conditions) a set of
equations linking the observation variables (here collectively
denoted as o(t), where o may contain currents, voltages or
any combination of these) to the microscopic PDE system
unknowns. After spatial discretization of the PDE part, the
resulting system can be expressed as

F (ψ,n,p, ṅ, ṗ;σ) = 0

χ (ψ,n,p; s, σ) = 0

O (ψ,n,p, ṅ, ṗ;o) = 0

(1)

where F = [F (ψ), F (n), F (p)]T includes (T denotes transpose)
the discretized Poisson, electron continuity and hole continuity
equations, respectively; χ = [χ(ψ), χ(n), χ(p)]T corresponds to
the discretized boundary conditions; O represents the consti-
tutive equations of the observable terminal electrical variables
o. Furthermore, α̇ denotes the first time derivative of α(t).
Finally, s is a set of external generators applied to the device
terminals. Notice that adding the set of observation variables
to the systems of equations leads to a better formulation of
the sensitivity problem, especially within the Green’s function
approach, with a negligible overhead in terms of matrix size
(details will be given elsewhere).

The device discretized equations and boundary conditions
depend on the parameter set σ, relative to physical and
technological data such as e.g. mobility models, doping, device
dimensions (geometry) etc. For the sake of simplicity we
consider here a single parameter only: the extension to the
vector case (e.g., the doping level spatially discretized on
the simulation mesh) is trivial, since linearity guarantees the
application of the superposition principle. A constant variation

∆σ with respect to the nominal value σ0, is the primary cause
of the variations we are looking for.

According to the shape of the source term s, different
sensitivity analyses are actually possible:

• if s = s0, i.e. the device is driven in time-invariant
conditions, the resulting variations (of course proportional
to ∆σ if a small-change analysis is carried out) allow to
evaluate the device DC sensitivity [5];

• if s = s̃(t) where the impressed generators are time-
periodic, the parametric variations are used to estimate
the AC sensitivity [6]. In case of a small amplitude time-
varying component of s(t) (i.e., if s = s0 + s̃(t) where
s̃(t) is small enough to drive the device in linearity
around s0), the small-signal (SS) AC sensitivity is defined
[5].

Let us denote with subscript 0 the solution of (1) with the
nominal value σ0 of the parameter. If the parameter undergoes
a variation ∆σ and we can assume that the corresponding
variation in the observable variables ∆o is small, linearity
implies ∆o ∝ ∆σ. The linearity assumption allows to ex-
press all variables α as the superposition of the value for
nominal parameter α0 and the induced variation ∆α, and to
obtain the equation system providing the link between ∆o
and ∆σ through a linearization of (1) around the nominal
solution. For DC sensitivity analysis, the resulting problem
is a time-invariant linear system, while in the AC case a
linear, periodically time-varying (LPTV) system is defined.
Notice that linearization [5], [6] implies an input term to the
linear system which is proportional to the parameter variation
∆σ multiplied by a function of the unperturbed solution f (β)

(β = ψ, n, p denotes the equation where the input term is
placed) corresponding to the Jacobian elements of (1) related
to the first derivative with respect to σ.

Because of the linearity of the system, we can provide a
full characterization by evaluating the corresponding Green’s
function, which is the resulting fluctuation when the input
parameter variation is a unit impulse (as a function of time
and space). In spatially discretized form, provided that the
generalized boxes discretization scheme is exploited, the unit
impulse (a δ function in the continuous formulation) becomes
simply a 1 in the node i where the δ function is centered.
Therefore, the corresponding variation on observable oj , i.e.
the Green’s function, is denoted as G(β)

oj ,i
, where β = ψ, n, p

represents the equation where the impulse source is placed.1

Discretized spatial superposition allows to finally express the
output variation as

∆oj =
∑

β=ψ,n,p

∑
i

G
(β)
oj ,i

f
(β)
i Ωi∆σ

=
∑
i

s
oj
σ,iΩi∆σ = Sojσ ∆σ (2)

where
s
oj
σ,i =

∑
β=ψ,n,p

G
(β)
oj ,i

f
(β)
i (3)

1This simplified formulation holds since ∆σ is time independent.



is the (space dependent) distributed sensitivity [5]. Ωi is
the control volume associated to mesh node i. Clearly, the
required sensitivity Sojσ is obtained as a spatial integral of the
distributed sensitivity s

oj
σ,i, which in turn is easily evaluated

once the relevant Green’s functions are available.
This formulation is very convenient from a numerical

standpoint, since the required Green’s functions, linking an
external observation variable oj to the variation of physical
properties in each point inside the device, can be efficiently
calculated by means of the numerical techniques in [7]–
[9], originally devised for physics-based noise analysis and
essentially exploiting an adjoint-like approach. The approach
proposed in this paper has a major advantage also with respect
to the SS sensitivity analysis proposed in [5], also based on
Green’s functions, but where the linearization with respect
to the parameter variation is carried out on the linearized
AC response calculated with nominal parameter. As a con-
sequence, the second order derivative of the model equations
is required, or rather (to be more precise) their Hessian matrix.
Furthermore, the linearized system leading to the SS parameter
variations is characterized by a forcing term which in turn
depends on the DC variations of the model variables in the
entire device volume. The determination of such variations
can of course still be carried out exploiting the DC Green’s
functions, but since the resulting perturbation is required on the
entire volume the observation points of the Green’s functions
should cover all the device, thus preventing the use of the
efficient numerical techniques in [8]. Hence, the formulation
in [5] does not seem suitable for inclusion into up-to-date
TCAD tools, especially beacuse of the implementation effort
required for the Hessian matrix calculation. Such technique
will not be considered for comparison with other approaches
in the following Sec. III. The technique proposed in this work,
on the contrary, can be easily included into commercial tools,
such as Synopsys Sentaurus, provided that a multi-harmonic
mixed-mode simulation environment is available.

An example of SS AC sensitivity is the variation of the Y
parameters of the device as a consequence of a variation of
the gate length L. This is an example of geometric sensitivity
[10] particularly significant in Schottky-gate III-V or III-N
(e.g. AlGaN/GaN) (P)HEMTs, the latter being affected by
considerable process immaturity. In this case, the device is
biased by a DC value of terminal voltages and a small input
tone VAC,j exp(iωt) at frequency ω is superimposed to the
DC voltage bias of terminal j. The terminal currents are also
composed by the DC and the AC small-amplitude values.
Namely, the current at the kth terminal will be given by a DC
value IDC,k plus a small amplitude tone IAC,k exp(iωt). Once
converted into the frequency domain, the system of equations
will be solved with nominal value of gate length allowing for
the simulataneous evaluation of nominal values of IDC,k and
IAC,k, ∀k. Note that the value of the AC phasor allows for the
evaluation of the nominal Y parameters as

Ykj =
IAC,k

VAC,j
.

Then, the system is linearized to assess the variation with
respect to the gate length, and the relevant Green’s functions
are computed. Since we are interested into the sensitivity of
AC parmeters, we have selected as the observation variable the
variations of the AC phasors at each terminal: more precisely,
the Green’s function yields the sensitivity SIAC,k

L of the short-
circuit AC current phasor at terminal k with respect to the
variation of the gate length L. Since VAC,j is an impressed
voltage, the sensitivity of IAC,k and of Ykj are simply related
through

S
Ykj

L =
S
IAC,k
L

VAC,j
. (4)

As a final remark, notice that, since the system is solved
in frequency domain, keeping both DC and AC phasors, the
variation of the DC current will be also be available at the same
time as the sensitivity of the AC phasors, thus allowing for a
simultaneous DC and AC sensitivity estimation environment.

III. EXAMPLE

As an example of application, we consider the sensitivity
of Y -parameters as a function of the gate length of a typical
GaAs MESFET for high-frequency applications: the epitaxial
layer is 150 nm thick and n-doped with ND = 1017 cm−3. The
gate contact nominal length is 0.25 µm, while the gate-source
spacing is 0.9 µm and the gate-drain distance is 2.5 µm. The
simulation has been performed with a DC bias VGS = 0 V
and VDS = 5 V and an AC tone with 0.1 mV amplitude at 1
GHz, so as to drive the system into a linear AC behavior. The
device geometry has been varied by changing the device gate
length with steps of 5 nm up to 50 nm, i.e. a total variation up
to 20% around the nominal 0.25 µm value. First a reference
solution has been found by an incremental approach, i.e. by
solving the system with varying gate length. Each time the
gate length is varied the device grid is adapted in order to fit
the given parameter variation [10]. Then the linearized Green’s
function approach has been carried out and compared to the
reference solution in order to validate the proposed sensitivity
analysis. Finally a standard small-signal AC solution, with
linearization around the DC bias point, and repeated analyses
with varying gate length values have also been carried out
for further reference. Notice that the latter approach turns out
to be the most time consuming in terms of simulation time.
Fig. 1 shows the comparison of the incremental and linearized
Green’s function approach for the DC drain current while
Fig. 2–5 show the comparison of the variations of the most
relevant Y parameters with respect to gate length variations as
resulting from the three proposed approaches. Similar results
hold also for Y12 and Y22, not shown here. The agreement is
remarkable especially for variations of the gate length within
10%, demonstrating the capability of the proposed technique.
Further validation has been obtained with different devices and
various parameters, such as doping variations. Details will be
given elsewhere.
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Fig. 1: DC drain current variation as a function of the gate length.
Black full line: incremental, full model solution. Squares: this work.
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Fig. 2: Variation of the real part of Y11 as a function of the gate length.
Black full line: incremental, full model solution. Squares: this work.
Diamonds: incremental small-signal analysis.

ACKNOWLEDGMENT

This work was supported by the European Union ENIAC
Joint Undertaking through the MODERN project.

REFERENCES

[1] B. Razavi, “CMOS technology characterization for analog and RF
design,” IEEE Journal of Solid-State Circuits, vol.34, no.3, pp. 268–
276, Mar 1999.

[2] B. Razavi, “Design Considerations for Future RF Circuits,” IEEE Int.
Symp. on Circuits and Systems, pp. 741–744, 27-30 May 2007

[3] C.H. Doan, S. Emami, A.M. Niknejad, R.W. Brodersen, “Millimeter-
wave CMOS design,” IEEE Journal of Solid-State Circuits, vol. 40, no.
1, pp. 144–155, Jan. 2005

[4] J. Vlach, K. Singhal, Computer methods for circuit analysis and design,
Van Nostrand Reinhold, New York, 1983.

[5] S. Donati, F. Bonani, M. Pirola, G. Ghione, “Sensitivity-based opti-
mization and statistical analysis of microwave semiconductor devices
through multidimensional physical simulation”, Int. J. Microwave and
Millimeter-Wave Computer-Aided Engineering, Vol. 7, No. 1, pp. 129–
143, January 1997.

[6] F. Bonani, S. Donati, F. Filicori, G. Ghione, M. Pirola, “Physics-based
large-signal sensitivity analysis of microwave circuits using technolog-
ical parametric sensitivity from multidimensional semiconductor device
models”, IEEE Trans. Microwave Theory Techn., Vol. MTT-45, No. 5,
pp. 846–855, May 1997.

[7] F. Bonani, S. Donati Guerrieri, G. Ghione, M. Pirola, “A TCAD
approach to the physics-based modeling of frequency conversion and
noise in semiconductor devices under large-signal forced operation”,
IEEE Trans. El. Dev., Vol. ED-48, No. 5, pp. 966–977, May 2001.

-50 -40 -30 -20 -10 0 10 20 30 40 50
-5

-4

-3

-2

-1

0

1

2

3

4

5

Gate length variation, nm

Im
a

g
in

a
ry

 p
a

rt
 o

f 
Y

 v
a

ri
a

ti
o

n
, 

m
S

/c
m

11

Incremental full model

This work

Incremental SS model

Fig. 3: Variation of the imaginary part of Y11 as a function of the gate
length. Black full line: incremental, full model solution. Squares: this
work. Diamonds: incremental small-signal analysis.

-40

-30

-20

-10

10

20

30

-50 -40 -30 -20 -10 0 10 20 30 40 50

Gate length variation, nm

R
e

a
l 
p

a
rt

 o
f 
Y

 v
a

ri
a

tio
n

, 
m

S
/c

m
2

1

Incremental full model

This work

Incremental SS model

0

Fig. 4: Variation of the real part of Y21 as a function of the gate length.
Black full line: incremental, full model solution. Squares: this work.
Diamonds: incremental small-signal analysis.

-4

-3

-2

-1

0

1

2

3

4

-50 -40 -30 -20 -10 0 10 20 30 40 50

Gate length variation, nm

Im
a

g
in

a
ry

 p
a

rt
 o

f 
Y

 v
a

ri
a
ti
o
n

, 
m

S
/c

m
2
1

Incremental full model

This work

Incremental SS model

Fig. 5: Variation of the imaginary part of Y21 as a function of the gate
length. Black full line: incremental, full model solution. Squares: this
work. Diamonds: incremental small-signal analysis.

[8] F. Bonani, G. Ghione, M. R. Pinto, R. K. Smith, “An efficient approach
to noise analysis through multidimensional physics-based models”, IEEE
Trans. El. Dev., Vol. ED-45, No. 1, pp. 261-269, January 1998.

[9] F. Bonani, G. Ghione, “Noise in semiconductor devices: modeling and
simulation”, Springer Series in Advanced Microelectronics, Springer
Verlag: Heidelberg, 2001.

[10] A. Gnudi, P. Ciampolini, R. Guerrieri, M. Rudan, G. Baccarani “Sen-
sitivity Analysis for Device Design”, IEEE Trans. Computer-Aided
Design, vol. CAD-6, no. 5, pp. 879–885, Sept. 1987.


	Pages from Program_Flyer_VARI_2011.pdf
	Pages from Program_Flyer_VARI_2011-2
	VARI 2011

