POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Generalization of a Theorem of Mammana

Original
A Generalization of a Theorem of Mammana / Camporesi, Roberto; DI SCALA, ANTONIO JOSE'. - In: COLLOQUIUM
MATHEMATICUM. - ISSN 0010-1354. - STAMPA. - 122:2(2011), pp. 215-223. [10.4064/cm122-2-6]

Availability:
This version is available at: 11583/2424025 since: 2015-12-17T17:04:50Z

Publisher:
Institute Matematyczny PAN

Published
DOI:10.4064/cm122-2-6

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

25 April 2024



Post print (1.e. final draft post-refereeing) version of an article published on Cellog. Math. 122 (2011), 215-225 , DOI:
10.4064/cml122-2-6 .

Beyond the journal formatting, please note that there could be minor changes from this document to the final published version.
The final pubhished version 1s accessible from here:

http://journals.impan.pl/cgi-bin/doi?cmi22-2-6

This document has made accessible through PORTO, the Open Access Repository of Politecnico di Torino (http://porto.polito.it),

in compliance with the Publisher's cm&vrighte;pulicy as reported 1n the SHERPA-ROMEO website:
http://www.sherpa.ac.uk/romeo/issn/0010-1354/

A generalization of a theorem of Mammana

Roberto Camporesi and Antonio J. Di Scala
Dipartimento di Matematica, Politecnico di Torino
Corso Duca degli Abruzzi 24, 10129 Torino Italy
e-mail: camporesi@polito.it, antonio.discala@polito.it *

June 28. 2010

Abstract

We prove that any linear ordinary differential operator with complex-valued
coefficients continuous in an interval I can be factored into a product of first-order
operators globally defined on I. This generalizes a theorem of Mammana for the

'

1cients.

case of real-valued coe

*2000 Mathematics Subject Classification. 34A30.
Key words. Linear differential operators. Polya-Mammana factorization.



A generalization of a theorem of Mammana

Roberto Camporesi and Antonio J. Di Scala
Dipartimento di Matematica, Politecnico di Torino

Corso Duca degli Abruzzi 24, 10129 Torino Italy
e-mail: camporesi@polito.it, antonio.discala@polito.it *

June 28, 2010

Abstract

We prove that any linear ordinary differential operator with complex-valued
coefficients continuous in an interval I can be factored into a product of first-order
operators globally defined on I. This generalizes a theorem of Mammana for the
case of real-valued coefficients.

*2000 Mathematics Subject Classification. 34A30.
Key words. Linear differential operators, Polya-Mammana factorization.



1 Introduction

Let L be a linear ordinary differential operator of order n
L=(£)" +a@) ()" +- 4 an1(0) £ + an(2), (1.1)

where the coefficients aq, ..., a, are real-valued continuous functions in an interval I,
a; € C°(I). Mammana [4, 5] proved that L always admits a factorization of the form

L= (g — @) (i = e2(@) - (= anl2)) (1.2)

where the functions «y, ..., «, are in general complex-valued and continuous in the entire
interval I and such that a; € CV"1(I,C) (1 < j < n). (See [5], Teorema generale, p.207.)

A local factorization of the form (1.2) had been known for some time, dating back to
works of Frobenius and Floquet (see, for instance, [3], p.121).

The new point established in [4, 5] is that one can always find a global decomposition
of the form (1.2) (i.e., valid on the whole of the interval I) if one allows the «; to be
complex-valued. The proof is based on the existence of a fundamental system of solutions
of the homogeneous equation Ly = 0 whose complete chain of Wronskians is never zero
in I. More specifically, let z1, z9,..., 2, be a fundamental system of solutions with the
property that the sequence of Wronskian determinants

21 Z9 Zj
/ / ’
2 29 2 f2 .
w0=1,w1=zl,w2= ’ ’ ,...,’U)jz . . . (1§]§n)
21 %y : : :
G-1  _(G-1) (3-1)
Z]. Z2 cet Z]

never vanishes in the interval I. A generic fundamental system does not have this prop-
erty. Recall that zy,...,z, are linearly independent solutions of Ly = 0 if and only if
their Wronskian w,, is nonzero at some point of I, in which case w,,(t) # 0 Vt € I. How-
ever, the lower dimensional Wronskians w;, 7 < n, can vanish in /. Mammana proves
that a fundamental system with w;(z) # 0 Vx € I, Vj, always exists, with z; (generally)
complex-valued, while z,, ..., 2, can be taken to be real-valued. The functions ¢; in (1.2)
are then the logarithmic derivative of ratios of Wronskians, namely

d Wn—j+1

o = — log

1<5<n). 1.
ot asisw) (13)

The purpose of this paper is to generalize the result of Mammana to linear ordinary
differential operators (1.1) with complex-valued coeflicients a; € C°(I,C) (1 < j < n).
We prove that any such operator can be written in the form (1.2) with a;; € C¥7Y(I,C),
by showing that there exists a fundamental system with a nowhere-vanishing complete
chain of Wronskians (this condition being equivalent to factorization).

Our proof is quite different from the proof of Mammana in the real case. It is more of
a topological or differential-geometric nature. For example for n = 2 we use the fact that
a differentiable map f : I — CP! can not be surjective (by Sard’s theorem) to prove the
existence of a nowhere-vanishing complex linear combination of any given fundamental
system. This implies the factorization of L. The case n > 2 is handled by induction on
n using similar ideas.



2 The case n =2

We start with the following result, whose proof is easy.

Proposition 2.1. Let L be a second-order linear ordinary differential operator
2
L=(5)"+a(2)L + as(z),

where ay,as € C°(I,C), I an interval. Then the following conditions are equivalent:
1) L admits the factorization

L= (£ W) (£ - 6(x) (21)

for some v € C°(1,C) and 3 € C*(I,C).
2) There exists a solution 3 € C*(I,C) of the complex Riccati equation

ﬁ’+/5’2+a1/3+a2=0.

3) There ezists a solution o : I — C of Ly = 0 such that a(x) # 0, Vo € I. The
relation between the functions «, 3 and 7y is then

/
B=—, a=cf® ~N=_4 -5

a
If a; and as are real-valued, then the conditions 1), 2) and 3) above can always be
satisfied with a, 3 and v complex-valued. Indeed let y;,y2 be two linearly independent
real solutions of Ly = 0. Then the function a = y; + iys is never zero in I, and we get
the factorization (2.1) with f = o'/« [4]. It is natural to ask in the real case if there
exists a factorization of the form (2.1) with  and ~ real-valued. The answer is no, in
general. Indeed for I open or compact and ay, as real-valued, the conditions 1), 2) and

3) with «, 3,y real-valued are equivalent to

4) L is disconjugate on I, i.e., every nontrivial real solution of Ly = 0 has at most
one zero in I.

See, for instance, [2], Corollary 6.1, p.351, or [1] Theorem 1 p.5. This is also proved
in [4] (for I compact), but the connection between disconjugacy and the factorization of
a real linear differential operator of order n into a product of first-order real operators
was first discussed by Pélya in [6]. (The so-called Pélya factorization ([6], formula (18))
is equivalent to the Mammana factorization (1.2) (see [1], formula (8) p.92).) In general,
a real L is not disconjugate on I. For example if the differential equation Ly = 0 is
oscillatory on I, then every solution has infinitely many zeros in I.

When we move from real-valued coefficients to complex-valued coefficients, the equiv-
alence between disconjugacy and factorization breaks down. (The definition of disconju-
gacy in the complex case is similar to the one in the real case.) A technical reason for this
is that there is no analogue of Rolle’s theorem in the complex case. Rolle’s theorem is
used, in the real case, for proving one of the implications in the above mentioned equiva-
lence, as well as a number of important results, such as Sturm’s separation theorem (see
e.g., [1], Proposition 1 p.4).



This brings us to the question whether the conditions 1), 2) and 3) in Proposition
2.1 always hold for complex differential operators. We shall now see that this is indeed
the case. Thus for a; and as complex-valued, we can always arrange a factorization of
the form (2.1) (even if L is not disconjugate on I). Of course such a factorization is not
unique, in fact we shall see that the functions « as in 3) are quite abundant.

The proof is, however, quite different from the proof of Mammana in the real case. In-
deed, if 41, 92 is a fundamental system, it is not clear how to exhibit a nowhere-vanishing
linear combination of y; and ys as in the real case. Intuitively, one can reason by contra-
diction as follows. Suppose such a linear combination does not exist. Then every solution
of Ly = 0 has at least one zero in I. This implies that in order to specify a given solution,
it would be enough to know one of its zeros and the derivative at that point. This is one
real parameter plus one complex parameter, for a total of three real parameters. But we
know that the vector space of solutions is isomorphic to C? ~ R*. This argument would
allow us to construct an injective map R* — I x R? C R?, and one would have to prove
its continuity to get a contradiction.

Instead of making this argument more precise, we will proceed in a different (and
simpler) way. We will actually get the result as a corollary of the following proposition
about the impossibility of filling the sphere S? with a differentiable curve.

Recall that the complex projective space CP* is the compactification of C and can be
identified with the Riemann sphere S2.

Proposition 2.2. Let I C R be an interval. A differentiable map f : I — CP! can not
be surjective.

Proof. Sard’s theorem implies that the image by f of the set of critical values has measure
zero. Since all points in [ are critical, f(I) has measure zero and must be different from
S2.

Corollary 2.3. Let y1,ys : I — C be two differentiable functions without common zeros
in I. Then there exists a linear combination of y; and ys that vanishes nowhere in I.

Proof. Since y; and y, do not vanish simultaneously, there is a well defined map

frI—=CPL = fz) =) : pa(z)]-

Assume by contradiction that any linear combination has a zero in I. If (a, 8) € C?\ {0},
then the determinant

a yi(z)
B ya(z)
vanishes at some point x¢ € I. This implies that (y;(z0), y2(xo)) is proportional to («, [3).
Thus the map f is surjective, which contradicts Proposition (2.2).

Theorem 2.4. Let I C R be an interval, and let L = (d%)2 + a1(x) L + ax(z) be a
second-order linear differential operator, where ay,as : I — C are continuous functions.
Then there exists a solution o : I — C of Ly = 0 that vanishes nowhere in I. As a
consequence, L admits a factorization of the form (2.1).

Proof. Let y1,ys be two linearly independent solutions of Ly = 0. Then y;, y» have no
common zero in I, and the result follows from Corollary 2.3 and Proposition 2.1.
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3 The general case

Let fi, fo,..., fn : I — C be complex-valued functions. Let Z(f1, fo,..., fn) be the
linear span (over C) of the functions fi, fo,..., fn. Namely, f € Z(f1, fo,..., fn) if and
only if f is a linear combination with complex coefficients of fi, fo,..., fa-

Lemma 3.1. Let fi, fo,..., fu : I — C be C' functions without a common zero in I.
That is, for x € I there is j € {1,2,...,n} such that fj(x) # 0. Then there exists
feZ(fi, fas.. o, fn) such that

flx)#0 Vz e I

Proof. We proceed by induction on n. If n =1 it is obvious. Assume the lemma is true
for n and let us show it is true for n + 1. So let fi, fa, ..., fas fag1 : I — Cben+1 C*
functions without a common zero in I. Consider the map F : [ — C"™! given by

F(z) = (fi(2), fo(2), - [o(2), fosr(2).-

Let CP" be the complex projective space, namely the quotient of C*™\{0} under the
action of C*. It is standard to denote the projection C**\{0} — CP" by

77'(([1?1,.172, R 7xn+1)) = [‘Tl X xn-ﬁ-l]'

Note that 7(F(z)) is well defined since the functions fi, fo,..., f, do not vanish
simultaneously at any « € I. Since the map F is C*, the composition 7o I : I — CP"
can not be surjective by Sard’s theorem. Thus there exists a = [a; : ag : -+ : an41] such
that m(F(z)) # a for all x € I. Let M = (my;) be a (n+ 1) x (n + 1) invertible matrix
such that

aq 0
a9 0
M : =1 : | =¢n1-
an, 0
Api1 1

Regarding M as a linear map from C"™! into itself, we get that the composition
(M o F')(x) is not proportional to e,1 at any point = € I. Hence the n functions

n+1 n+1
Rl = E Migfr, - 5 2n = E Mok fr
k=1 k=1
do not vanish simultancously at any x € I. Since 2y, 29, ..., 2, are C', we can usc the

inductive hypothesis to get f € Z(z1,29,...,2,) such that f(z) # 0 Vo € I . But since
3(217327'--7271) C g(fhf%“'vfmfn—i-l): we get f € g(fhf%*-wfmfn-l—l)a which

proves the lemma.



Let fi, fo,..., fa : I — C be complex-valued functions of class C". Their Wronskian
is defined to be the following determinant:

A B e f)
W =] @ B A
F@) @) e 1)

Theorem 3.2. Assume the Wronskian W(fi, ..., f.) has no zeros in I. Then there eist

21,22,y 2n € L(f1, fo, ..., fn) Such that

W(zi)(z) = z1(z) #0 Vo € I,
W(z1,29)(x) #0 Va € 1,

(3.1)

Proof. The existence of z; follows from Lemma 3.1. Let us show how to construct zs.
Since z3 € Z(f1, fo,- .-, [n), Wwe need constants oy, o, .. ., a, such that

{zzm = fi(o) + aofole) + o+ anfala), (52)

W(z1, 22)(x) #0 Vo € 1.
Observe that

W(zl’ 22)(17) = W(zl» Oélfl + 042f2 + -+ Oénfn)(x)

= Zakw(zhfk)(x)

k=1

RN o z(z)  fr(z)
_; "l Az filw)

Thus the existence of z9(x) with the desired properties (3.2) is equivalent to the
existence of a linear combination of the 2 x 2 determinants

without zeros in /. Notice that Dy, D, ..., D, are C*. If we show that Dy, Ds,..., D,
do not have a common zero on I, then we can use Lemma 3.1 to show the existence of
Z9.

We claim that D, Do, ..., D, do not have a common zero on I. Indeed, if g € I and
D1 (xg) = Da(x0) = -+ = Dy(x9) = 0, it follows that the rank of the matrix

(fl(fﬂo) fa(wg) -+ fn(fo)>
fi(xo) fa(zo) -+ fr(x0)



is one since cach column < 1;(wo) ) is proportional to the non zero column < Z}(%) ) .

f1(o) (o)
That is to say, the first two rows of the Wronskian W(fy,..., f,)(zo) are proportional.
Since the Wronskian was assumed to be non zero on I, we have a contradiction. It
follows that Dy, Do, ..., D, do not have a common zero on I, and Lemma 3.1 implies
the existence of a linear combination a;D; + --+ + o, D,, without zeros in I. Then
29 = f1 + aafo + -+ + au, fr, satisfies the conditions (3.2).

Suppose now that we have constructed z; € Z(fi, fo, ..., fn) (j < n) such that

W(z1)(z) = z1(x) #0 Vo € 1,

and let us show the existence of 2,1 € Z(f1, f2, ..., fn) such that
W(Zl, 22y vy 2,y Z]'+1)({,C) 7& 0 Vel

As for zy, we look for constants (3, ..., B, such that

Wiz, 20,..., 25, Bfr + -+ Bufu) () #0 Vo € 1.

That is, we look for a linear combination of the determinants
Eyp(x) == W(z1, 20,...., 2, fr)(x) (k=1,...,n)

without zeros in I. Note that the functions Fj are C!. If we show that the £} do not
have a common zero in I, then we can use Lemma 3.1 to conclude that such a linear
combination does exist, and so we can use these coefficients to define z;;;. We claim
that the Ej do not have a common zero in /. Indeed, assume on the contrary that there

exists xg € I such that Ey(zg) = Fa(xg) = -+ = E,(z9) = 0. Then the matrix
filzo)  folmo) - fulzo)
filwo)  folzo) -+ filzo)
Do) £ (wo) -+ £ (wo)

has rank < j because all its columns are linear combinations of the columns of the matrix

z1(w0)  za(w0) zj(z0)
z1(wo)  z3(20) 2;(w0)
Zy).(wo) Zéj).(tfo) T Zj(j)'(%)

whose rank is j because W(z1, 22, ..., zj)(z) # 0 Va € I. It follows that the first j+1 rows
of the Wronskian W(f1, ..., f.)(zo) are linearly dependent and so W(fi, ..., f,,)(zo) = 0.
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This is a contradiction because we assume the Wronskian W(f1, ..., f,) has no zeros in
1. This proves the existence of a linear combination 2221 OrEy, of the determinants Ej,
(k=1,...,n) which never vanishes in I. Then z;1 := (1 f1 + -+ + [ fn satisfies

Wiz, 22,...,2j,241)(x) #0 Vo € 1.
This completes the proof of the theorem.

Theorem 3.3. Let L be a linear ordinary differential operator of order n
n n—1
L= (%) +a1(:r) (%) +"'+an_1($)%+an($),

with coefficients a; € C°(I,C), I an interval. Then L has the property W, i.e., there
exists a fundamental system zi,...,z, of solutions of Ly = 0 such that (3.1) holds.
Consequently, L admits the factorization

L= (G — a1(2)) (G = e2(@) - (F — an(@)),
where a; € C97H(I,C) (1 < j < n)is given by (1.3), withwo = 1 and w; = W(z1,. .., z;).

Proof. Let fi,..., f, be any fundamental system of solutions of Ly = 0. We apply
Theorem 3.2 to find z1,..., 2, with the required property. The equivalence (in the real
case) between the property W of L and the factorization of L into first-order factors is
proved in [1], Theorem 2 p. 91. Note that the proof remains unchanged in the case of
complex-valued coefficients. (The condition that the partial Wronskians are all positive
throughout I is replaced by the condition that they vanish nowhere in I.) See also [6],
and [5], Lemma IT p.198.
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