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A Novel SAT-Based Approach to the Task Graph
Cost-Optimal Scheduling Problem

Sergio Nocco and Stefano Quer

Abstract—The task graph cost-optimal scheduling problem
consists in scheduling a certain number of interdependent tasks
onto a set of heterogeneous processors (characterized by idle
and running rates per time unit), minimizing the cost of the
entire process. This paper provides a novel formulation for this
scheduling puzzle, in which an optimal solution is computed
through a sequence of binate covering problems, hinged within
a bounded model checking paradigm. In this approach, each
covering instance, providing a min-cost trace for a given sched-
ule depth, can be solved with several strategies, resorting to
minimum-cost satisfiability solvers or pseudo-Boolean optimiza-
tion tools. Unfortunately, all direct resolution methods show very
low efficiency and scalability. As a consequence, we introduce
a specialized method to solve the same sequence of problems,
based on a traditional all-solution SAT solver. This approach
follows the “circuit cofactoring” strategy, as it exploits a powerful
technique to capture a large set of solutions for any new SAT
counter-example. The overall method is completed with a branch-
and-bound heuristic which evaluates lower and upper bounds of
the schedule length, to reduce the state space that has to be
visited. Our results show that the proposed strategy significantly
improves the blind binate covering schema, and it outperforms
general purpose state-of-the-art tools.

Index Terms—Formal methods, SAT, satisfiability, scheduling,
symbolic techniques.

I. Introduction

IN THE DESIGN of integrated circuits, scheduling [1]–
[3] consists in a manual or automatic process, during

which the designer decides when computational operations and
communication transactions take place. Scheduling is often
performed with binding, that establishes on which resource
each operation or transaction has to be run. The decisions
taken by the scheduler and the binder are constrained by
operand dependences, resource availability, control decisions,
and global costs. The target of this process is usually to
minimize the total number of time steps, i.e., the so called
latency (or makespan), necessary to complete all tasks in the
given system.

A. Related Works

Symbolic manipulations, based on both binary decision
diagrams (BDDs) and satisfiability solving (SAT), have re-
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cently attained interesting results in the framework of hard-
ware scheduling [4]–[9], as an alternative to integer linear
programming [10] and heuristic techniques [11], [12]. The
key idea of the symbolic approach is to use a set of non-
deterministic finite automata to describe the behavior of each
operation in the system. The automata are then composed,
and the resulting state space is visited adopting state-of-
the-art model checking techniques. In the simplest case of
systems without control choices (i.e., if-then-else constructs),
a schedule is a path. Therefore, symbolic scheduling works
just like invariant checking with counterexample extraction,
i.e., forward or backward traversals provide a scheduling
solution as a trace connecting initial and terminal states.
However, in control-dependent behavior fork and join nodes
are introduced to represent scheduling choices, depending on
values of control operands. This model requires a specific
BDD-based backward traversal procedure (called validation
in [13]), which does not directly correspond to standard model
checking procedures.

In [6], [8], [14], and [9] Cabodi et al. adapted the previous
model to support conventional model checking procedures
for control-dependent systems. More specifically, alternative
sub-traces were transformed into concurrent behaviors, sub-
sequently followed in parallel. The resulting schedule was
always a path (instead of a tree) connecting initial and final
states. As a by-product, the authors exploited a traditional
SAT-based bounded model checking paradigm to find the
scheduling solution.

At the same time, several attempts have been made to
apply tools designed for real-time and hybrid systems, usually
exploiting timed automata [15], to solve realistic scheduling
problems [16], [17]. In this area, the timed automata formalism
can be enriched by allowing the accumulation of costs dur-
ing behavior [18]–[20]. This leads to priced timed automata
models and consequently to a different optimization target,
i.e., minimizing the overall cost associated with a feasible
schedule instead of the latency. One concrete example for this
problem is the task graph cost-optimal scheduling, consisting
in mapping a number of interdependent tasks (e.g., perform-
ing some arithmetic operations) onto a set of heterogeneous
processors. Each processor is annotated with both idle and
running costs (representing, for example, power dissipation).
The target is then to reduce the cost of the entire schedule
trace, taking into account the execution and idle rates of all
resources. This concept of optimality is normally unsupported
by standard verification algorithms. Indeed, although the task

0278-0070/$26.00 c© 2010 IEEE
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graph cost-optimal scheduling problem has several applica-
tions in the electronic design automation (EDA) domain,
only a few methodologies are currently available for solving
it exactly. Among them, we mention mixed integer linear
programming [21], [22], and priced timed automata [23]–[25].

B. Proposed Methodology

In this paper, we propose a novel formulation of the task
graph cost-optimal scheduling problem, as an alternative to
previously used formalisms. Starting from the symbolic SAT-
based approach to high-level synthesis scheduling proposed by
Cabodi et al. [6], [8], [14], we:

1) allow each task to be executed by several (but usually
not all) resource units;

2) incorporate the idle and running costs for each resource;
3) shift the target from minimizing the global latency to

optimizing the total scheduling cost.

In our approach, an optimal solution is obtained through
a sequence of binate covering instances [26]–[28]. Each of
these instances can be solved by both minimum-cost satisfi-
ability [29], [30] and pseudo-Boolean optimization [31]–[33]
solvers. Nevertheless, our experiments prove that modern tools
for the binate covering problem still provide a limited scalabil-
ity. As a consequence, we present a novel resolution technique,
based on conventional SAT engines, that drastically improves
the binate covering schema. The approach consists in solving
the problem using a SAT solver, by inserting a blocking clause
for each discovered counter-example, and re-running the SAT
routine (“all-solution” SAT [34]–[36]). However, following the
“circuit-cofactoring” idea presented by Ganai et al. [37], in
order to avoid a complete solution enumeration we enlarge
each single counter-example to represent a large sub-set of
the entire solution space. This optimization leads to a very
effective state space pruning, thus drastically reducing the
number of enumeration steps. Finally, to further prune the
state space that has to be visited, we adopt an efficient branch-
and-bound strategy, following similar ideas adopted in other
domains [38], [39]. We show how it is possible to compute
on-the-fly tight lower and upper bounds for the latency, and
to use them to limit the number of binate covering instances
that have to be solved.

We present controlled experiments to demonstrate the power
of the previous ideas on both synthetic and standard bench-
marks. More specifically, we first show that our initial solu-
tion, based on blindly solving a sequence of binate covering
problems, though feasible, is still less efficient than state-of-
the-art priced timed automata tools. Then, we give evidence
to the fact that our all-solution SAT procedure is by far more
efficient and scalable than the other approaches. Lastly, we
detail the pruning power of our branch-and-bound technique.

C. Contributions

This paper includes the following contributions.

1) A new SAT-based formulation for the task graph cost-
optimal scheduling problem. This includes the definition
of a new automaton model to map tasks onto different

units, and a new strategy to represent the accumulation
of costs.

2) A complete methodology to solve cost-optimal schedul-
ing problems through bounded model checking, where
each instance actually corresponds to a binate covering
problem.

3) A fast resolution technique based on an all-solution SAT
strategy, with a novel optimization able to capture a large
set of solutions for any new SAT counter-example. Such
an optimization allows to effectively prune the search
space and drastically reduces the number of iterations
that must be performed by the algorithm.

4) A branch-and-bound heuristic to dynamically evaluate
the latency lower and upper bounds, to further reduce
the state space that has to be visited.

As far as we know, this is the first time such extensions
are proposed and adopted. Our method shows an edge over
state-of-the-art general purpose tools, with a discrete modeling
power and generality. The experimental data support these
claims, showing an improvement of more than two orders of
magnitude in terms of speed-up in some cases.

D. Roadmap

This paper is organized as follows. Section II introduces
some background notions on the adopted models, model
checking, and scheduling. It also includes an instance of the
task graph cost-optimal scheduling problem used as a running
example in this paper. Section III describes how to model min-
imum latency scheduling problems by adopting a SAT-based
approach. Section IV presents our contributions to model
a task graph cost-optimal scheduling problem and to solve
it through a bounded model checking strategy, where each
instance is a binate covering problem. Section V shows how
to adopt an all-solution SAT method to make the resolution
process faster. Section VI introduces our branch-and-bound
technique. Section VII discusses experimental results. Finally,
Section VIII concludes this paper with some summarizing
remarks.

II. Background

A. Model and Notation

In our notation, B = {0, 1} indicates the set of Boolean
values. Symbols ∧, ∨, ¬, ⇒, and ⇔ are used to represent
the Boolean conjunction (AND), disjunction (OR), negation
(NOT), implication, and co-implication, respectively. Finally,
the symbol × denotes the Cartesian product.

The automata we address are usually represented implicitly
by Boolean formulas. For our purposes, an automaton is
defined as follows.

Definition 1: 1 An Automaton is a triple (I, TR, T), where:
1) I ⊂ Bm is the set of initial states;
2) T ⊂ Bm is the set of final (or target) states;
3) TR ⊆ Bm × Bm is the transition relation of the system.
The present (next) state space of an automaton is defined

by an indexed set of m Boolean variables P = {p1, . . . , pm}
(N = {n1, . . . , nm}). The behavior of an automaton is de-
scribed by its transition relation TR(P, N), which contains all
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pairs (present state p, next state n) such that there is a valid
transition from p to n.

B. Satisfiability and Minimum-Cost Satisfiability

Given a Boolean formula f depending on n variables
(x1, x2, . . . , xn), the Boolean satisfiability problem [40], usu-
ally known as SAT, consists in finding, if it exists, an assign-
ment to the variables of f , namely (v1, v2, . . . , vn), such that
f is true, i.e., f (v1, v2, . . . , vn) = 1.

The minimum-cost satisfiability problem (min-cost
SAT) [29], [30] is a SAT problem which minimizes the cost
of the satisfying assignment. Given a set of costs c1, . . . , cn,
with each ci ≥ 0 associated to a variable xi, the goal is to
find a variable assignment that satisfies f and minimizes

∑n
i=1 ci · vi (1)

where each vi ∈ {0, 1} is the value assigned to a variable xi

in the counter-example. A SAT problem can be viewed as the
special case of a min-cost SAT instance with all ci = 0.

C. Covering Problems

The covering problem [26]–[28] has been widely stud-
ied, and it has many applications in logic synthesis and
Boolean minimization [1]. Given a set of n Boolean variables
(x1, x2, . . . , xn), it consists in minimizing a cost value [ex-
pressed as in (1)], provided that a set of linear constraints are
satisfied. The ith constraint of a covering instance C can be
represented as

∑n
j=1 aij · xj ≥ bi. (2)

If each aij is in the set {0, 1} and bi = 1, then C is an
instance of the unate covering problem. If every aij is in the
set {−1, 0, 1} and bi = 1 − |{aij : aij = −1, 1 ≤ j ≤ n}|,
then C is an instance of the binate covering problem.

It is worth noticing that there is a strong relationship
between the binate covering problem and min-cost SAT. Given
the restrictions on the aij and bi coefficients, it is indeed
possible to prove that every constraint specified by (2) can
be expressed as a propositional clause, and vice-versa. This
means that a solution for a binate covering problem can be
obtained through a min-cost SAT solver, and that a min-cost
SAT instance can be actually solved by means of any other
approach developed for the binate covering case.

In turn, the covering problem can be viewed as a spe-
cial case of the more general pseudo-Boolean optimization
problem [31]–[33]. In fact, a pseudo-Boolean optimization
problem can be formulated as a covering problem, with the
only difference that bi and all aij are integer numbers without
restrictions. Thus, any covering instance can be solved through
a pseudo-Boolean solver.

The above observations will be taken into account in
Section VII for the experimental evaluation, but they do not
influence the underlying theory. Henceforth, without loss of
generality, in the sequel we will just mention min-cost SAT
instances, implicitly referring to binate covering problems that
could be solved by both min-cost SAT and pseudo-Boolean
optimization solvers.

D. Bounded Model Checking

Finding transition sequences with SAT [41]–[43] has been
applied to model checking since the introduction of SAT-
based bounded model checking (BMC) [44]. BMC builds a
propositional formula that is satisfiable iff there is a path from
I to T of bounded length k. More specifically, a BMC run of
depth k unfolds the transition relation k times

TRk(S0, . . . , Sk) =
∧

0≤j<k TR(Sj, Sj+1)

and uses a SAT solver to check the satisfiability of the formula

pathk(S0, . . . , Sk) = I(S0) ∧ TRk(S0, . . . , Sk) ∧ T(Sk). (3)

If such a formula is unsatisfiable, there is no path of length k

connecting I and T, and a larger value of k should be tried.

E. Priced Timed Automata

Priced timed automata (PTA) were introduced, indepen-
dently, in [18] and [19]. They are an extension of timed
automata [15], where edges and locations are further labeled
with non-negative costs and cost rates. More formally, the
following definition may be given.

Definition 2: A priced timed automaton is a tuple (X, L, l0,
A, E, I, C), where:

1) X is a set of clock variables;
2) L is a finite set of states (or locations, in the tradition

of the timed automata formalism);
3) l0 ∈ L is the initial location;
4) A is a set of possible actions that could be performed

by the automaton while making a transition;
5) E ⊂ L × X × A × L is the set of edges connecting the

locations;
6) I ⊂ L×X is a function assigning invariants to locations;
7) C ⊂ L × E × N0 assigns positive integer cost rates and

costs to locations and edges, respectively.

Intuitively, a clock is a non-negative real valued variable
that can be reset to zero and grows at fixed rate with the
passage of time. A timed automaton over a set of clocks X
is thus an annotated directed graph with a vertex set L, an
edge set E and a distinguished vertex l0. Edges are labeled
with guard expressions and an action set. A guard g is the
conjunction of simple constraints x�k, x being a clock in X,
k a non-negative integer value, and � ∈ {<, ≤, =, ≥, >}. An
edge is enabled when its guard g evaluates to true and the
source location is active. An action set a ⊂ A may include
resetting a sub-set of the clocks in X or modifying the value
of some variables. According to the PTA semantics, all actions
associated to an edge are performed when the edge is taken.
All locations may be labeled with invariants. An invariant i is
the conjunction of simple conditions x ≺ k, x being a clock
in X, k a non-negative integer value, and ≺ ∈ {<, ≤}. The
semantics of (priced) timed automata requires that an invariant
must evaluate to true whenever its location is active. Finally,
both edges and locations may be annotated with costs and
cost rates, respectively. When an edge is taken, it contributes
to the total cost with its own cost; when a location is active,
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Fig. 1. Very simple PTA.

Fig. 2. Example of data flow graph.

it contributes to the total cost with an amount equal to the
product of its own cost rate and the number of time steps it
is active.

The following example describes a very simple PTA. A
more complex case, showing how a task graph cost-optimal
scheduling problem can be modeled through PTA, is illustrated
in Example 3.

Example 1: Fig. 1 shows a very simple PTA with three
states. The variable clk is set equal to 0 on the transition
between state Init and state Exe, whereas it has to be equal to
3 on the transition from state Exe to state Done. Costs, with
rates indicated by the variable cost′, are accumulated in state
Exe. As a consequence, the Done state can be reached with
minimum cost equal to 6 (3 · 2). �

F. High-Level Synthesis Scheduling

As described in the introduction, scheduling [1]–[3] consists
in deciding when computational operations and communica-
tion transactions take place.1 Such decisions are constrained
by hardware resource availability, operand dependences and
control decisions. The following example shows a very simple
scheduling problem, in which we target latency minimization.

Example 2: Let us suppose to have the set of operations
(or tasks) represented by the data flow graph (DFG) of Fig. 2,
where it is assumed that all tasks can be executed in one
time step by computational units of the same type. Notice
that the edges in Fig. 2 represent data dependences, so that,
for instance, task t4 cannot start executing until both tasks t1
and t2 have completed. The same consideration holds for task
t5 with t3 and t4.

Then, depending on the number of resources used to execute
the operations, it is evident that several planning solutions can
be found. Fig. 3 shows some of the possible scheduling traces,
obtained with a different resource availability.

1) In Fig. 3(a), there is no resource limit and the operations
execution is controlled by the data dependences only.

1Notice that the term “planning” usually indicates the process of deciding
which operations are necessary to perform. As a consequence, most existing
planners concentrate on action selection, and most existing schedulers focuses
on action execution. Nevertheless, in this paper we use the two terms without
distinction.

Fig. 3. Scheduling solutions for the DFG of Fig. 2. (a) When there is no
resource limit. (b) When only two resource units may be exploited. (c) When
just one computational unit is available.

Fig. 4. Simple task graph.

Thus, all tasks without dependences can be performed
in the first time step, as there are enough computational
units to execute them in parallel. The minimal amount
of time necessary to complete all operations, i.e., the
latency, is equal to three time units.

2) In Fig. 3(b) only two resource units are available. As a
consequence, in order to obtain the minimum latency, t3
has to be delayed until the second time step. The latency
is again equal to three time units.

3) In Fig. 3(c) one single computational unit is available.
Therefore, only one operation can be performed in each
single time step. In this case, the latency is equal to five
time steps. �

G. Task Graph Cost-Optimal Scheduling

A specific class of planning problems is represented by
task graph cost-optimal scheduling [45], [46]. Like high-level
synthesis scheduling, it consists in planning a set of tasks
related with each other by data dependences. Nevertheless,
every task may be performed (with distinct execution times)
by several (types of) resources, or processors, each of which
is annotated with idle and running costs. The target is to find
a schedule such that the total associated cost is minimized.
Notice that, in our problems, task graphs are acyclic in their
nature. The following example shows a very simple case of
task graph scheduling, targeting the optimization of the global
cost.

Example 3: Fig. 4 shows simple a task graph, taken
verbatim from [20], where three tasks (t1, t2, and t3) must run
on two processors (p1 and p2), with idle and running rates
(per time unit) represented in the table. Each task is annotated
with the required execution times on the processors, that is,
t1 can only execute on p1 (in 3 time steps), t2 only on p2 (in
five time units), and finally t3 can execute on both p1 (in ten
time units) and p2 (in 7).

Fig. 5 shows the priced timed automata model for such a
task graph. It includes five PTA, three for the tasks and two
for the processors, which synchronize by message passing over
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Fig. 5. PTA model for the task graph of Fig. 4.

the global arrays start, busy, done, and f .
In more detail, we obtain the following.

1) The automata for the processors (p1 and p2) are formally
identical, consisting of only two states (Idle and InUse),
both labeled with the proper cost rate (cost′i). The ith
resource automaton moves from the Idle to the InUse

location when a request start[i] is received. In the same
transition, the associated clock ci is also reset. Then, the
automaton remains in the InUse state for an amount of
time equal to busy[i]. Finally it returns to the Idle state
while emitting the done[i] message.

2) The automata for the tasks (t1, t2, and t3) differ according
to the number of processors they may execute on. Thus,
the PTA for tasks t1 and t2 may move from the Init

to the Done locations only through one intermediate
state, which models the fact that the task is currently
executing on the right processor. On the other hand,
the automaton for task t3 may reach the Done state
through two different paths, according to the resource
used to execute it. In all cases, as soon as the ith
automaton moves to its Done state, the corresponding
f [i] value is set to 1. This action correctly models the
data dependences existing between (t1, t2) and t3 (the
automaton for t3 may leave its Init state only when both
f [1] and f [2] have been set).

An optimal schedule trace corresponds to a path in the
resulting composed priced timed automaton which satisfies the
property EF (t1.Done∧ t2.Done∧ t3.Done), i.e., all three tasks
must be in the Done state, and minimizes the overall cost. A
minimum-cost solution for this task graph problem will be
provided in Examples 6 and 7. �

III. SAT-Based Scheduling

As a starting point for solving a planning problem, such as
the one represented in Example 2, by means of SAT (see [7]–

Fig. 6. BSA for an operation i with latency (a) 1 and (b) li.

[9]), each operation is modeled through a non-deterministic
automaton, also called basic scheduling automaton (BSA).
Each BSA provides information about the execution of the
associated operation.

More specifically, for any single-time-step operation i of
the given DFG, the related automaton may be represented as
in Fig. 6(a), where we indicate with 0 the state in which an
operation has not yet been scheduled and with 1 the state in
which the operation has been scheduled. More formally, as the
automaton has only two states, its transition relation may be
encoded with exactly two Boolean variables, i.e., Pi = {p} for
the present state, and Ni = {n} for the next state. The meaning
of the possible automaton transitions is hence the following.

1) p = 0 and n = 0: the operation has not been scheduled
in previous steps and will not be scheduled in the next
one.

2) p = 0 and n = 1: the operation has not been scheduled
in previous steps but it is going to be scheduled in the
next one.

3) p = 1 and n = 1: the operation has been previously
scheduled.

The automaton transition relation is thus2

TRi = [(p = 0) ⇒ (n = 0 ∨ n = 1)] ∧
[(p = 1) ⇒ (n = 1)]

which reduces to

TRi = [(p = 1) ⇒ (n = 1)].

When it is necessary to work with operations requiring
more than one time step, the previous representation must be
extended to the automaton shown in Fig. 6(b), which models
a task i with latency equal to li. The operation has not yet
started in state 0 and it has been completed in state li.

The automaton may start its execution non-deterministically,
but then it proceeds with a new state at every time step, until
it reaches the final state.3 With abuse of notation (as P and N

denote sets of variables), we will represent the fact that such
an automaton is in a present (next) state numbered j as Pi = j

(Ni = j).4 Thus, in this case the automaton transition relation

2For the sake of readability, in this section we leave the support variables im-
plicit. We thus simply write TRi (TRxx) instead of TRi(Pi, Ni) (TRxx(P, N),
respectively).

3Note that pre-emptive scheduling can be achieved by letting every operation
proceed to the next state, like in Fig. 6(b), or remain in the same state. This
behavior can be obtained from the one analyzed in this paper with few minor
modifications. We do not consider it in the sequel for the sake of simplicity.

4The Boolean meaning of such a notation actually depends on the strategy
adopted to encode the problem. Previous experience [9] with this model has
shown that the thermometric encoding is usually a good choice.
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can be expressed as

TRi = [(Pi = 0) ⇒ (Ni = 0 ∨ Ni = 1)] ∧
∧li−1

k=1 [(Pi = k) ⇒ (Ni = (k + 1))] ∧
[(Pi = li) ⇒ (Ni = li)].

(4)

It is worth noticing that a scheduling activity occurs iff
the automaton next state differs from its current state. This
condition can also be expressed as (Pi �= li) ∧ (Ni �= 0).

Once the basic automata for all operations in the problem
have been generated, they are combined together by means of
a Cartesian product. The resulting automaton, further restricted
by several constraints, incorporates all the allowed system
behaviors, and can indeed be used for solving the scheduling
problem. Following [8] and [9], the overall formulation is

TR = TRop ∧ TRdd ∧ TRrc (5)

where TR, i.e., the transition relation of the entire system, is
computed as the conjunction of three terms.

1) TRop describes the behavior of the basic scheduling au-
tomata. It is the Cartesian product (Boolean conjunction)
of all the BSA relations given by (4)

TRop =
∧

i∈BSA TRi.

2) TRdd represents the constraint introduced by data de-
pendences (dd) or required conditions, i.e., it is illegal
to start an operation with a predecessor that has not yet
been completed. Hence, the expression (Pi �= li) ∧ (Nj �=
0) is illegal for any i → j expressing a data dependence

TRdd =
∧

(i→j)∈dd [(Pi = li) ∨ (Nj = 0)].

3) TRrc represents the resource constraints. Let br be the
number of instances available of a given resource class
r in the set of classes R, and ρr the set of operations
competing for such a resource set. Then, it is illegal to
schedule more than br concurrent operations from ρr. In
other words, for any sub-set αr ⊆ ρr such that |αr| > br,
it is illegal to have all operations in αr active at the same
time

illegalr =
∨

αr⊆ρr, |αr |>br

∧
i∈αr

[(Pi �= li) ∧ (Ni �= 0)]

and so

TRrc =
∧

r∈R ¬illegalr.

Notice that the expression of TRrc, being basically an
“at-most” constraint, can be actually encoded in CNF in
several ways [47], [48].

Finally, the description of the composed automaton is com-
pleted by defining its initial state I, i.e., the state in which no
operation has been scheduled, and final state T, i.e., the one
in which all tasks have been scheduled. In practice, I and T
are the Boolean conjunction of all BSA initial and final states.

Given this information, a valid schedule trace can be ob-
tained by looking for paths connecting I and T through TR.
This can be efficiently achieved with a BMC analysis. For

instance, a shortest execution latency scheduling trace is given
by the smallest value of k for which the Boolean formula pathk

of (3) is satisfiable.

IV. Min-Cost SAT-Based Scheduling

To extend the previous model to solve minimum-cost plan-
ning problems through min-cost SAT, we have to face two
main problems.

1) While in Section III each operation is implicitly assumed
to be performed only by a computational unit of a
specific resource class, now tasks may be executed by
several (different types of) resource units.

2) While in Section III the total cost is measured in terms of
the length of the schedule trace, now each computational
unit is characterized by idle and running cost rates.

These two problems will be respectively analyzed in the next
two sub-sections.

A. Compound Scheduling Automata

We introduce the concept of compound scheduling automata
to map each task over different types of resources. A com-
pound scheduling automaton (CSA) represents an operation
that can be performed by a number n ≥ 1 of computational
units belonging to different resource classes. It consists of
exactly n independent BSA, which may run in parallel.
Roughly speaking, each BSA within a compound represents
the execution of the operation over one of the functional units
that can be used, i.e., a possible binding. Thus, the transition
relation of a CSA is the Cartesian product of the transition
relations of all the BSA in the compound itself. Moreover,
the initial and final states of a CSA can be derived from the
physical meaning of the compound.

1) When the operation represented by the CSA has not yet
started, all BSA within the compound must be in their
initial states. In other words, the initial state of the CSA
is given by the Boolean conjunction of the initial states
of the included BSA.

2) When the task represented by the CSA has been com-
pleted, it has been executed by at least one of the
functional units able to perform it. This means that the
CSA final state is given by the Boolean disjunction of
the final states of the included BSA.

Once the compound automata have been introduced in
the model, extending the relations analyzed in Section III is
straightforward. As far as TRop is concerned, conceptually
nothing changes. For TRdd it is enough to replace the ex-
pressions identifying the BSA initial and final states with the
corresponding ones for the involved CSA. The same is true for
the initial and final states of the composed automaton. Finally,
the correct expression of TRrc can be obtained by working
with all the flattened BSA present in the problem.

Example 4: Let us consider the task graph introduced
within Example 3. For such a system, three CSA are defined,
as represented in Fig. 7. Two of them actually coincide with
the BSA for tasks t1 and t2 (namely t1

1 and t2
2). The last one

contains two distinct BSA (t1
3 and t2

3), one for each binding of
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Fig. 7. CSA model for the task graph of Fig. 4.

t3 over the two processors. For every BSA, a transition relation
is built according to (4). For instance, for t1

1 we have

TRt1
1

= [(Pt1
1

= 0) ⇒ (Nt1
1

= 0 ∨ Nt1
1

= 1)] ∧
[(Pt1

1
= 1) ⇒ (Nt1

1
= 2)] ∧

[(Pt1
1

= 2 ∨ Pt1
1

= 3) ⇒ (Nt1
1

= 3)].

Concerning the data dependences, we have that t3 depends on
both t1 and t2. The generated TRdd term is hence

TRdd = [Pt1
1

= 3 ∨ (Nt1
3

= 0 ∧ Nt2
3

= 0)] ∧
[Pt2

2
= 5 ∨ (Nt1

3
= 0 ∧ Nt2

3
= 0)].

Then, there are two pairs of BSA in the model sharing the
same resource, i.e., (t1

1 , t1
3) and (t2

2 , t2
3). The TRrc component

is hence5

TRrc = [Pt1
1

= 3 ∨ Nt1
1

= 0 ∨ Pt1
3

= 10 ∨ Nt1
3

= 0] ∧
[Pt2

2
= 5 ∨ Nt2

2
= 0 ∨ Pt2

3
= 7 ∨ Nt2

3
= 0].

Finally, the expressions for initial and final states of the
composed automaton are

I = Pt1
1

= 0 ∧ Pt2
2

= 0 ∧ (Pt1
3

= 0 ∧ Pt2
3

= 0)
T = Pt1

1
= 3 ∧ Pt2

2
= 5 ∧ (Pt1

3
= 10 ∨ Pt2

3
= 7).

�

B. Modeling Execution and Idle Costs

To take into account the resource costs, we initially assume
only one functional unit available for each resource class (this
assumption will then be removed). First, all the BSA in the
system (after flattening all CSA components) are associated
with a new set M of monitor variables. Each Boolean variable
mi ∈ M records the related automaton activity during the
current step. More precisely, mi is true iff the associated
automaton is currently being scheduled

mi ⇔ (Pi �= li) ∧ (Ni �= 0). (6)

After that, we introduce another set E of execution variables,
associated to the resources, in order to get an expression for
the state (idle or busy) of the available computational units.
In more detail, for each class r ∈ R, let ρr be the set of BSA
competing for such a resource. Then, the related er variable
is defined as a function of the sub-set of M corresponding to

5Our tool [8] is able to detect that t1
1 and t1

3 cannot execute at the same time
because of the dependence constraint, and similarly for t2

2 and t2
3 . In such a

case, TRrc would actually be computed as the constant one.

the BSA in ρr, by the following relation:

er ⇔ ∨
i∈ρr

mi. (7)

It is easy to see that the meaning of the E variables is the
following. er = 1 witnesses a busy state for the functional unit
in class r, whereas er = 0 means that the unit is idle. The
intuition behind the definitions of (6) and (7) is that each er

variable provides an automated way to check whether a given
functional unit is idle or busy. Therefore, we can now attach
to every er variable the corresponding execution cost, and
consequently compute the cost of a schedule trace following
Behrmann et al. [20].

Unfortunately, this is not enough in order to obtain the
correct optimal cost as a result of a min-cost SAT instance.
This is because, in a min-cost SAT problem, each variable may
have only one cost value, whereas we have two costs (busy
and idle). For this reason, similarly to the E set, we finally
introduce a new set I of idle variables, whose meaning is the
reverse of the execution variables

ir ⇔ ¬er

and properly attach an idle cost to each of them.
In summary, if we define the term TRexe as

TRexe =
∧

i∈BSA [mi ⇔ (Pi �= li) ∧ (Ni �= 0)]∧∧
r∈R [(er ⇔ ∨

i∈ρr
mi) ∧ (ir ⇔ ¬er)]

(8)

we can conjoin TRexe with the system transition relation
(5) without modifying the satisfiability of the BMC checks
generated during the search for the optimal latency. The
minimum-cost problem can be then obtained by defining the
costs ci for any CNF variable xi in the following way.

1) The cost ce
r of the running state for computational units

in resource class r, if xi corresponds to one of the
unrolled CNF variables for er.

2) The cost ci
r of the idle state for resources in class r, if

xi is one of the unrolled CNF variables for ir.
3) Zero in all the other cases.

Example 5: With respect to the system presented in Exam-
ple 3, the transition relation specified in Example 4 must be
extended (conjoined) with the following expression:

TRexe = [mt1
1
⇔ (Pt1

1
�= 3 ∧ Nt1

1
�= 0)] ∧

[mt2
2
⇔ (Pt2

2
�= 5 ∧ Nt2

2
�= 0)] ∧

[mt1
3
⇔ (Pt1

3
�= 10 ∧ Nt1

3
�= 0)] ∧

[mt2
3
⇔ (Pt2

3
�= 7 ∧ Nt2

3
�= 0)] ∧

[ep1 ⇔ (mt1
1
∨ mt1

3
)] ∧ [ip1 ⇔ ¬ep1 ] ∧

[ep2 ⇔ (mt2
2
∨ mt2

3
)] ∧ [ip2 ⇔ ¬ep2 ].

The CNF costs are: 5 for variables derived for ep1 , 4 for ep2 ,
2 for ip1 , 1 for ip2 , and 0 for all the others. �

The given formulation is fine when, for any resource class
r, the number of available function units is br = 1. When
br > 1, it fails because the term on the right side of (7) is true
whenever at least one of the involved computational units is
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Fig. 8. Top-level scheduling procedure based on min-cost SAT.

used, but we do not know the exact number. The problem can
be overcome in two possible ways.

The most straightforward one consists in a pre-processing
step. Each resource class r with br > 1 is broken into br

distinct sub-classes, each of which with only one functional
unit available. Then, operations initially mapped onto class
r will have the choice for execution among the generated
br sub-classes, thus reducing the problem to the previous
formulation. This strategy, however, increases the complexity
of the problem, as the total number of BSA in the global
automaton becomes larger.

The second strategy consists in taking into account all
possible legal resource states, distinguishing among the cases
of 0, 1, . . . , br functional units used for class r. This can
be effectively performed through the use of the concurrency
cliques presented in [8]. Hence, for any class r, exactly br

execution (and idle) variables are introduced, each of which
expresses a different resource exploitation.

C. Overall Algorithm

As mentioned in Section III, valid scheduling traces can
be obtained by applying a BMC paradigm, i.e., by SAT
solving the pathk Boolean formula [see (3)] for various bounds
(latencies) k. Similarly, a minimum-cost planning trace for
a given bound can be found by exploiting a min-cost SAT
solver over the same formula, with the only difference that
the system TR must be extended as previously discussed.
Unfortunately, in general, the optimal minimum-cost schedule
trace does not correspond to the shortest execution latency. As
a consequence, the cost-optimal scheduling problem requires
the exploration of a range of possible bounds.

The high-level algorithm to solve this puzzle is presented
in Fig. 8. Function MinCostSatScheduling receives the original
task graph TG and the set of available resources R. It starts
generating the automaton model of the DFG (line 2), following
Sections III and IV. After that, it estimates the range of
latencies that should be tried (i.e., the lower, lb, and upper,
ub, bounds), in such a way that the latency corresponding to
a minimum-cost trace is in the range [lb, ub]. This topic will
be better analyzed in Section VI. After that, the procedure
executes two consecutive cycles.

1) The purpose of the first one (lines 5–8) is to discover the
shortest execution latency for the system, as the lower
bound estimate returned by function EstimateBounds
may be too coarse and deliver some unsatisfiable in-
stances. Notice that we exploit standard SAT within this
loop, since SAT solvers are much more efficient than
min-cost SAT solvers. More in general, the loop may
be actually replaced by any other algorithm or search
strategy [49] delivering the minimum execution latency.

2) Once the first satisfiable instance has been detected,
the second loop (lines 10–15) performs a min-cost SAT
analysis on all the next instances, keeping track of the
optimal cost and the corresponding latency.

V. All-Solution SAT Approach

The algorithm of Fig. 8 is guaranteed to find an optimal
cost scheduling trace. However, due to the limited efficiency
of min-cost SAT solvers, it cannot be practically used even in
medium-size cases, as we will show in Section VII. Thus, we
propose in this section an improved all-solution SAT approach,
which is able to overcome this problem.

In principle, a min-cost SAT routine can be seen as (and
substituted by) an all-solution SAT search, where the following
occurs for each counter-example.

1) Its corresponding cost is computed and possibly saved,
if it represents the new minimum.

2) A blocking clause is added to the clause database,
forbidding that solution to appear again [34]–[36].

3) The search is restarted in order to find a new solution.

Unfortunately, adopting this crude approach in Fig. 8 will not
provide any advantage, since this algorithm (further enhanced
with specific optimizations [30]) is already used by a class of
min-cost SAT solvers. Nonetheless, we can have an edge over
general min-cost solvers using some high level information
gathered while generating a SAT instance. In particular, we can
observe that all k-latency schedule traces involving the same
resource profile are characterized by the same cost. In other
words, if we want to find a minimum-cost schedule for a given
bound k, we do not need to explore all traces (SAT solutions)
feasible for every bound. On the contrary, we only have to
analyze all “representative” solutions, i.e., the ones involving a
different resource exploitation, and hence delivering a different
cost.

In general, this cannot be trivially achieved. For every SAT
solution, we should count the number of time steps each
processor is running and somehow impose such a number to
be different in all the subsequent solutions for at least one
processor. However, we can easily obtain almost the same
effect by working on the set of BSA that have been scheduled
in the current solution. Indeed, at every new SAT counter-
example, we can do the following.

1) Collect the set of BSA that have been scheduled. If
more than one BSA related to the same CSA have been
scheduled, we select the one which completed first.6

6Notice that selecting any other BSA in the involved CSA may not guarantee
the validity of the schedule itself.
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Fig. 9. Top-level scheduling procedure based on all-solution SAT.

2) Impose at least one of those BSA to be not scheduled
in all the subsequent SAT solutions. Given the behavior
of the BSA (see Section III), this constraint can be
generated by forcing any of the involved BSA to be not
in its final state only in the last time step of the schedule.
This will intrinsically forbid all traces where the same
sub-set of BSA has completed, even in different time
steps from the current solution.

Furthermore, we can notice that all traces found at a given
latency can also be “replicated” at larger depths, by a simple
insertion of an “idling” time step at the end (or at the
beginning, or even somewhere in the middle) of the schedule.
All these traces are of no interest, because the related cost
is certainly not the optimal one. Thus, such traces can be
immediately ruled-out, and this can be achieved by means of
the same set of constraints added for the smaller latencies. This
means that all the blocking constraints can be accumulated and
re-used for the next values of the bound.

This way to manage the SAT solutions, enlarging and re-
using them, is probably the major contribution of this paper,
as it represents a key factor for efficiency. The mechanism
is conceptually similar to the one presented in [37], as each
single SAT counter-example is used to derive (and prune
out) a potentially large sub-set of the entire solution space.
To this respect, though other techniques [34]–[36] have been
presented to solve the all-solution SAT problem by making the
blocking clauses stronger, in our case (as in [37]) the adopted
constraints are obtained through a high-level reasoning on the
problem. As such, they cannot be automatically derived by a
general-purpose all-solution SAT engine.

The improved algorithm is reported in Fig. 9. The first part
of the pseudo-code (lines 2−9) is identical to the one presented
in Fig. 8. The second part implements the all-solution SAT
algorithm just described and further detailed in the following
example.

Example 6: Let us consider again the task graph presented
in Example 3. Following the algorithm of Fig. 9, we have that

Fig. 10. Shortest schedule trace for the problem of Example 3.

Fig. 11. Alternative schedule trace for the problem of Example 3.

the first satisfiable instance is found for bound 12. A possible
schedule trace, obtained through the first SAT call for this
latency, is represented in Fig. 10.

When this solution is returned by the SAT solver, the
blocking expression built by function BlockSolution is

(Pt1
1
�= 3) ∨ (Pt2

2
�= 5) ∨ (Pt2

3
�= 7)

meaning that we now look for a schedule where at least one
of the three BSA involved in the previous trace does not
complete. After this constraint is added at time frame 12, no
more solutions can be found for bound 12. In fact, even though
two other valid schedule traces exist (i.e., the ones in which
task t1 is shifted in time of 1 or 2 time-frames), both violate
this constraint, and the SAT solver thus reports an UNSAT
result. Similarly, for bound 13 (and 14) the number of valid
schedule traces is equal to 11 (and 26), but all of them violate
the previous condition when expressed at time frame 13 (and
14). Hence, they are immediately ruled-out and not reported
by the SAT solver. In other words, for these bounds the nested
loop of Fig. 9 consists in just one iteration, that simply detects
the unsatisfiability of the instance.

Finally, coming at latency 15, the solver discovers one
alternative solution, depicted in Fig. 11, as another 50 traces
similar to the previous ones are skipped again. In this case,
the expression built by function BlockSolution is

(Pt1
1
�= 3) ∨ (Pt2

2
�= 5) ∨ (Pt1

3
�= 10).

Once this is also added to the clause database, all the subse-
quent CNF instances become UNSAT, no matter the bound we
consider and the actual number of schedule traces that could
be obtained. �

VI. Latency Lower and Upper Bound Estimations

A common operation to both the algorithms of Figs. 8 and 9
is the estimation of the latency range that must be explored.
This is a crucial task, as estimates must be conservative (i.e.,
keep the optimal cost latency within the range), and tight (as
loose estimates generate large numbers of iterations).

Lower and upper bounds on the value of a cost function are
often identified by branch-and-bound algorithms [30], [39],
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and the search is pruned when the lower bound estimation is
higher than or equal to the upper bound.

As far as the lower bound is concerned, we compute it in
two possible ways.

1) The sum over all tasks of the smallest time (l) required
to execute the task itself, divided by the number of
available processors (|R|)

lbR =
⌈∑

i∈CSA li/|R|⌉ . (9)

2) The latency provided by an ASAP algorithm when the
number of processors is assumed to be boundless

lb∞ = ASAP(TG, ∞). (10)

In general, none of the two estimates is superior to the other.
The first one is more suitable when the problem can be
decomposed into several independent connected components
and the number of available resources is small. The second
is better when dependence constraints dominate all the others.
The final value of the lower bound is taken as the maximum
between the previous estimates.

As far as the upper bound is concerned, a possible initial
estimate is given by the sum over all tasks of the largest time
(L) needed to execute the task itself

ubL =
∑

i∈CSA Li. (11)

However, we may dynamically infer much closer estimates
starting from cost considerations. Given a specific value k for
the latency, we can under-estimate the cost for that latency
in the following way. For each task, we select the resource
able to execute it with the smallest cost. Let be lr the total
number of time steps each resource r is running according
to the previous selection criterion. Then, an under-estimate c

of the total cost for latency k is given by the sum over all
resources of their execution cost ce

r for lr steps and their idle
cost ci

r for the remaining ones

c =
∑

r∈R[ce
r · lr + ci

r · (k − lr)].

Finally, if we have at hand an upper bound C for the total
cost, we can exploit the previous expression in order to derive
an over-estimate ubC of the latency, by imposing c < C

∑
r∈R[ce

r · lr + ci
r · (ubC − lr)] < C

which leads to

ubC <
[
C − ∑

r∈R(ce
r − ci

r) · lr
]
/
∑

r∈R ci
r. (12)

Equation (12) provides an important relation, as it allows us
to dynamically update the latency upper bound ub as long
as new values C for the minimum cost are found during the
SAT search (this detail was omitted in the previous pseudo-
codes for the sake of simplicity). The initial cost estimate C

is found by running a heuristic ASAP algorithm complying
with the resource constraints.

Example 7: Let us consider once more the task graph
scheduling problem presented in Example 3. Following (9)
and (10), our estimates for the lower bound are

lbR = �(3 + 5 + 7)/2� = 8
lb∞ = ASAP(TG, ∞) = 12

and hence

lb = max(lbR, lb∞) = 12.

According to (11), we obtain the following estimate for the
upper bound:

ubL = 3 + 5 + 10 = 18.

However, by running the ASAP algorithm, we find the sched-
ule trace depicted in Fig. 10, which is characterized by a cost
equal to 81. Therefore, by applying (12)

ubC < [81 − (5 − 2) · 3 − (4 − 1) · 12)]/(2 + 1) = 36/3 = 12

we obtain an upper bound ub smaller than the lower bound.
This means that, at least in this trivial case, the solution
returned by the ASAP scheduling algorithm corresponds to
the optimal one. Thus, the process terminates without even
resorting to SAT. �

VII. Experimental Results

We implemented the novel techniques presented in this
paper in our SAT-based scheduling tool [8], extending it from
a minimum latency search to a cost-optimal analysis. We
adopted the Minisat [50] tool (version p1.14) as underlying
SAT solver and MinCostChaff [30] as min-cost SAT engine.
Furthermore, as all min-cost SAT instances can be represented
as binate covering problems, and in turn as pseudo-Boolean
optimization problems, for performance evaluation we inves-
tigated both Minisat+ [50], [51] (version 2007 January 05)
and SCIP [52], [53] (version 1.2.0). Minisat+ is a SAT-based
solver including all main generalizations of SAT to PB, such
as multiple ways of translating pseudo-Boolean constraints to
clauses. On the other hand, SCIP combines several solving
strategies, such as branching, cutting, pricing, and propagation.
Moreover, it won five categories of the 2009 pseudo-Boolean
competition [54] and ranked second in two more categories.

All our experiments run on a 3.0 GHz Dual Core worksta-
tion, equipped with 3 GB of main memory and running Debian
Linux. Time and memory limits were always set to 3600 s and
1 GB, respectively. We compare the min-cost SAT (possibly
in its pseudo-Boolean version) strategy of Section IV with the
improved all-solution SAT technique described in Section V.
Furthermore, the state-of-the-art priced timed automata tool
UPPAAL CORA [20], [55] (version 4.0.6) is used as an
alternative approach to solve the same problem. Notice that
UPPAAL CORA is able to deliver both optimal and pseudo-
optimal results. We compare our methods against its most
efficient exact strategy.



NOCCO AND QUER: A NOVEL SAT-BASED APPROACH TO THE TASK GRAPH COST-OPTIMAL SCHEDULING PROBLEM 2037

TABLE I

Synthetic Benchmarks Characteristics

Name Tasks #P Latency Cost
#CSA #BSA Min Opt Max

f01 5 8 3 19 20 22 548
f02 10 17 3 32 34 35 1273
f03 15 29 3 45 47 52 1608
f04 20 33 4 67 70 71 2435
f05 30 42 4 98 101 103 3776
f06 40 60 4 120 122 124 4700
f07 50 72 5 141 144 146 6384
r01 5 12 3 10 11 12 455
r02 10 23 3 24 26 29 1624
r03 15 30 4 46 48 49 2210
r04 20 39 4 59 65 65 3060
r05 30 46 4 83 87 92 4495
r06 40 71 4 118 119 125 6041

We present results on both automatically generated prob-
lems, and a large set of instances derived from standard
benchmarks [56].

As far as the synthetic problems are concerned, all task
graphs consist in a single connected component. However,
this is not a real limitation, as several connected components
can be managed in the same way. The set includes two
families of designs, named fi and ri, which differ in their
graph shape. More specifically, every fi instance has a large
number of operations without predecessors or successors, i.e.,
inputs and outputs of the task graph, whereas the number of
tasks at intermediate levels is quite small. Conversely, each
ri problem has a small number of inputs and outputs and a
large number of tasks at intermediate levels. Furthermore, the
tasks in the r family may execute, on average, over a larger
number of resources. Table I shows the main characteristics
of such benchmarks. For each model, it reports the number of
tasks (column #CSA) the total number of BSA (#BSA), the
number of the available processors (#P), the shortest (Min),
optimal (Opt), and maximum (Max) execution latency, and
the total cost for the optimal solution (Cost). Notice that the
value Max−Min+1 represents the number of min-cost SAT (or
pseudo-Boolean) calls performed by our algorithms.

Table VII shows the results we collected with all the
discussed solving strategies. MCS, PBO, UPC and IAS
denote the results for the min-cost SAT model, its pseudo-
Boolean optimization counter-part (Minisat+ and SCIP), UP-
PAAL CORA, and the improved all-SAT strategy, respectively.
For all those strategies, the table reports the total CPU time
and the peak memory required to find the optimal solution
of each problem. When a time/memory overflow occurred,
we report (between parentheses) the memory/time used up
to that moment. From our data, we can draw the following
conclusions. The min-cost SAT approach is poorly scalable, as
it could solve only the simplest problems. Although some of its
inefficiencies might be overcome (e.g., we did not implement
an incremental SAT [57] approach, because the source code
of the solver is not available), this strategy does not seem
powerful enough to solve complex instances. Almost the same
considerations hold for the cases where a pseudo-Boolean
solver is exploited (with SCIP with a discrete edge over
Minisat+), as both the engines could solve only the smallest
instances. Interestingly, we can notice that, although designed

to solve a more general problem, SCIP behaves slightly better
even than MinCostChaff. We argue this could be due to some
recent improvements in pseudo-Boolean solving [58], [59] that
have been not incorporated into the min-cost SAT solver. Any-
how, even with these advances, the PBO version of the min-
cost SAT strategy is also not competitive. The priced timed au-
tomata model, as implemented in UPPAAL CORA, currently
appears to be a superior approach. However, among all the
engines, our improved all-solution SAT technique is by far the
most efficient and scalable method, as it is the only able to
solve the largest instances. Moreover, while the limiting factor
for the other strategies is often the amount of available mem-
ory, this is absolutely not a problem for the all-SAT strategy.

As far as standard instances are concerned, we adapted7 to
our needs the benchmarks taken from [56]. This web-site hosts
a huge set of instances, designed to evaluate multiprocessor
scheduling algorithms targeting minimum latency, when a set
of t tasks (having arbitrary precedence constraints and arbitrary
processing times) are assigned to p processors of the same
capability. The graph shapes have been generated according
to four different methods, fully described in [56]. The number
of tasks t varies between 50 and 2700, whereas the number
of processors p is arbitrarily selected.

For our purposes, since even the instances with 50 tasks
were very hard to solve when expressed as task graph cost-
optimal scheduling problems,8 we extracted our benchmarks
by cutting the instances in this suite to the first n tasks, with
n equal to 10, 20, 30, and 40. After that, for each value of n,
we generated a problem instance with a number of processors
p equal to 2, 3, and 4. While doing that, we enriched the
description with (randomly generated) information about the
costs of the available processors and the association between
every task and the given set of resources. To be more specific,
for the (idle and running) costs, we generated integer values
ranging from 2 to 15 (with the idle cost always smaller than the
running one). Moreover, each task was (randomly) associated
to a number of processors varying from 1 to p. Depending on
the mean and variance values of these parameters, we were
able to generate instances with distinct latency and costs, and
implying a different effort to be solved. To sum up, the process
outlined above allowed us to obtain a total of 2160 test cases.

For these benchmarks we limited our analysis to the two
most efficient techniques outlined by Table VII, i.e., the
UPPAAL CORA priced timed automata model (UPC) and
the improved all-SAT method (IAS).

The results are summarized by the scattered plots of Fig. 12,
which contrast the CPU time and memory requirements for
UPPAAL CORA and our tool. For a fair comparison, the plot
of Fig. 12(a) [Fig. 12(b)] does not report those cases in which
a memory (time) overflow has been hit by any of the tools.
For this reason, only 1288 (2032) points appear in Fig. 12(a)
[Fig. 12(b)].

As far as the time comparison is concerned, our tool shows
a fair edge on UPPAAL CORA in the vast majority of the

7Just like the authors of [24], we were not able to find a set of publicly
available benchmarks suited for the problem we are targeting.

8This fact is not really surprising, as the task graph cost-optimal scheduling
problem is far more complex than the original simple minimum latency puzzle.
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TABLE II

Results for the Two Synthetic Benchmark Families

Name MCS PBO UPC IAS
Minisat+ SCIP

Time Mem Time Mem Time Mem Time Mem Time Mem
[s] [MB] [s] [MB] [s] [MB] [s] [MB] [s] [MB]

f01 9 19 159 25 2 21 0 0 0 0
f02 124 176 ovf (80) 80 84 1 22 1 12
f03 ovf (832) ovf (144) ovf (170) 243 162 5 17
f04 (2934) ovf ovf (367) ovf (256) 466 311 8 20
f05 (1878) ovf ovf (511) ovf (483) (2242) ovf 27 28
f06 (1743) ovf ovf (783) ovf (639) (1628) ovf 240 40
f07 (1190) ovf ovf (924) ovf (772) (1521) ovf 2829 54
r01 14 23 134 31 15 31 0 0 0 0
r02 ovf (257) ovf (105) 3332 121 44 59 1 13
r03 (1462) ovf ovf (198) ovf (176) 216 183 2 17
r04 (1151) ovf ovf (412) ovf (220) (2090) ovf 48 19
r05 (1235) ovf ovf (581) ovf (303) (1874) ovf 1163 27
r06 (986) ovf ovf (853) ovf (640) (1979) ovf 3351 55

ovf indicates a time (3600 s) or memory (1 GB) overflow. MCS, PBO, UPC, and IAS denote
min-cost SAT, pseudo-Boolean optimization, UPPAAL CORA, and the improved all-SAT
strategy, respectively.

Fig. 12. (a) CPU time and (b) memory usage for standard benchmarks. All-
SAT vs. UPPAAL comparison.

cases (more than 1000 points are located below the diagonal).
We can also observe that UPPAAL CORA is faster than our
approach in a non-negligible number of benchmarks (about
260), though almost all of them could be solved as well with
our method within half of the time limit. For these test cases,
we observed that a considerable amount of time has been

spent by our tool to prove the unsatisfiability of some CNF
instances while searching for the minimum execution latency
(first loop of Fig. 9). To this respect, the exploitation of an
up-to-date SAT solver may further improve the performance
of our strategy. Anyway, the presence of such cases witness
that the two approaches we are comparing are orthogonal and
somehow complementary.

The comparison on memory is even more clear. With
the exception of some benchmarks, that UPPAAL CORA
solved very quickly, the memory requirements of our tool are
consistently smaller than the priced timed automata engine.
In most of the cases, a few MB are enough to complete the
experiments with our method, whereas several hundred MB
are usually required by UPPAAL CORA.9

The previous results can be further appreciated when consid-
ering the overall statistics. Our tool was able to solve a total of
2026 benchmarks, i.e., more than 90% of all instances, while
hitting 113 overflows on time and 21 overflows on memory.
On the other hand, UPPAAL CORA could solve only 1291
test cases (less than 60%), hitting 21 and 859 overflows on
time and memory, respectively. The total run-time (including
all overflows) has been almost 252 h for our tool, as opposed
to 350 h taken by UPPAAL CORA. This means that our tool
solved about 50% more benchmarks than UPPAAL CORA,
while requiring slightly more than 70% of its running time.
Clearly, these data confirm that our approach is more robust
and scalable. On the other hand, the cases in which UPPAAL
CORA outperformed our tool are apparently due to the cost-
optimal branch-based reachability analysis implemented in
that tool. Given the nature of the two compared methods, it
seems reasonable that UPPAAL CORA shows some advantage
on specific instances.

Finally, it is important to remark the impact of the latency
estimates (see Section VI) in our algorithm. As it can be
noticed from Table I, the maximum latency values that had to
be explored are very close to the optimal ones, meaning that

9To this respect, it should be further noticed that we always ran UPPAAL
CORA using the on-line interface, thus avoiding the graphical-user interface.
This method is obviously faster and less memory consuming.
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Fig. 13. Cost and upper bound estimate as a function of the latency.

our estimates are precise and avoid useless BMC iterations.
Fig. 13 further highlights the role played by (12) in our
framework. It plots the minimum cost and the upper bound
estimation as a function of the latency for the r04 benchmark
of Tables I and VII. The initial cost provided by the heuristic
ASAP algorithm (equal to 3214) corresponds to a latency
estimate equal to 68 (these two values have been reported
in the graph for a latency equal to 58). As shown in Table I,
the first satisfiable instance is obtained at latency 59. For this
value, our all-SAT routine provides a minimum cost equal to
3105 and consequently an upper bound estimation equal to
66. We proceed in a similar way until the latency becomes
equal to 65. For this bound, we found a new minimum cost
(equal to 3060) and the estimate of the latency is updated to
64. This confirms that the optimal solution has been found and
terminates the execution.

VIII. Conclusion

This paper described the application of min-cost SAT and
all-solution SAT in order to solve the task graph cost-optimal
scheduling problem. To sum up, our work included the follow-
ing contributions: 1) a new SAT-based model of the problem;
2) a complete strategy to solve those models, based on
minimum-cost satisfiability or pseudo-Boolean optimization
and bounded model checking; 3) an improved all-solution
SAT-based strategy to capture a large set of solutions for
any new SAT counter-example, thus drastically reducing the
number of iterations that must be performed by the algorithm;
and (4) a branch-and-bound heuristic to dynamically evaluate
and use new latency bounds as long as the solving process
proceeds.

As far as we know, the model and the related example-
specific optimizations have never been proposed before. Ex-
perimental results, performed on both synthetic and standard
problems, show that the proposed approach is much more
efficient than existing techniques.
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[50] N. Eén and N. Sörensson. (2009, Apr.). The Minisat SAT Solver [Online].
Available: http://minisat.se
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