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Abstract

The influence of the measurement setup on the estimation of dielectric permittivity spectra from

time-domain reflectometry (TDR) responses is investigated. The analysis is based on a simplified model

of the TDR measurement setup, where an ideal voltage step is applied to an ideal transmission line

that models the probe. The main result of this analysis is that the propagation in the probe has an

inherent band limiting effect, and the estimation of the high-frequency permittivity parameters is well

conditioned only if the wave attenuation for a round trip propagation in the dielectric sample is small.

This is a general result, holding for most permittivity model and estimation scheme. It has been verified

on real estimation problems by estimating the permittivity of liquid dielectrics and soil samples via an

high-order model of the TDR setup and a parametric inversion approach.

I. INTRODUCTION

The Time-Domain Reflectometry (TDR) is a well-known measurement technique for the

detection of discontinuites along the transmission paths of microwave and optical circuits. It has

also been applied to a variety of problems such as high-precision level measurement systems

(Gerding et al., 2006), and crack detection (Sun et al., 2009).

Recently, TDR has been widely applied in soil science, hydrology and agronomy to estimate

the electrical properties of soils and to infer from them the soil water content and its salt

concentration (Topp and Ferrè, 2002), (Robinson et al., 2003).

The two major features of TDR waveforms are the travel time and the ’late’ time amplitude

of the response: they are directly related to the apparent dielectric constant Ka and to the soil

electrical conductivity γ. Still, more information on the dielectric properties of the soil can be

obtained from the TDR waveforms. Therefore, interest has grown into the computation of the

whole permittivity spectrum of soil samples from TDR responses (Heimovaara, 1994).

Owing to this application, over the past twenty years, great efforts have been spent on the

design and testing of various type of probes (e.g., (Robinson et al., 2005; Evett et al., 2006));

on the calibration of the TDR system, i.e. the relationship between the apparent dielectric

permittivity and the soil water content (Topp et al., 1980; Roth et al., 1990; Hansson and Lundin,

2006), and on the methods to solve the inverse problem of estimating the permittivity from the
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reflection responses (e.g., see (Heimovaara, 1994; Oswald et al., 2006)).

In spite of the advances in the modeling of the TDR setup and in the evaluation of the

permittivity from the TDR response, the intrinsic limitations introduced by the TDR measurement

setup on the estimation of the permittivity spectrum has rarely been addressed. If the information

on the electrical properties of the sample under test are lost due to the characteristics of the

measurement system, it is not possible to retrieve such informations whatever the accuracy of

the inversion method used. The aim of this paper is to analyze the limitations introduced by

the TDR measurement setup and in particular the effect of the wave attenuation along the TDR

probe. It will be shown that the length of the TDR probe puts an upper limit to the frequency

and that this limit is independent on the well-known impact of the TDR instrument bandwidth

(Lin, 2003; Huisman et al., 2004).

The study exploits a simplified model of the TDR measurement system, where an ideal

voltage step is applied to an ideal cable connected to the probe. An equivalent circuit of the

TDR measurement setup based on transmission line theory (Pozar, 1990) is introduced and a

parametric representation of the permittivity spectrum as a one-pole real rational model (Debye’s

permittivity model) is assumed (Hasted, 1973). The limitations of the TDR measurement setup

are then highlighted by means of a frequency domain analysis.

The reflection coefficient S11(jω) at the input port of the probe is written as a function of the

model parameters in the frequency domain. The decomposition of S11 into a sequence of echoes

and the analysis of the second echo network function points out the role of the probe attenuation

and a threshold on the attenuation of the working condition of the measurement setup.

The role of the probe attenuation is then verified on some real cases (water, methanol, dry

sand). To this end, a high-order model (in which the finite rise-time and the aberration of the real

input signal, and the junction between the probe and the port of the TDR instrument are kept

into account) and a parametric inversion approach for the permittivity evaluation are exploited.
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II. TDR SIMPLIFIED MODEL AND PROBE ATTENUATION

Our laboratory TDR measurement system is composed of a matched step source (1), a scope

detecting voltage (2), a coaxial cable (3), connectors and external cables (4), a coaxial probe to

be filled with the dielectric under test (5) and a probe termination (6). Parts (1)-(3) are included

in the TDR instrument, whereas parts (4)-(6) form the device whose reflection response is

measured (see Fig. 1a). In order to point out the inherent properties of the TDR responses, we

consider the simplified model shown in Fig. 2 where an ideal voltage step (infinite bandwidth) is

applied to an ideal cable of characteristic admittance Yo connected to the probe. The probe is an

open-ended ideal coaxial line and can be modeled as a TEM transmission line of characteristic

admittance and time delay of the empty line Ya and τa, respectively. In this lossless, simplified

model, the measured quantity is the time evolution of the backward wave at the probe input, i.e.,

r(t) = L−1[S11(s)(1/s)] where S11 is the reflection coefficient at the cable-probe discontinuity,

s = σ + jω is the Laplace variable, L−1 is the inverse Laplace transform operator, and lower-

case and upper-case letters are used to indicate transform pairs. When the probe is filled by a

dielectric with the relative permittivity εr(s), the S11 function is:

S11(s) =
Γ + P2

1 + Γ P2
(1)

where Γ(s) = (Yo−Ya

√
εr(s))/(Yo +Ya

√
εr(s)) is the partial reflection coefficient at the cable-

probe discontinuity and P(s) = exp(−sτa

√
εr(s)) is the propagation factor along the probe.

The Debye’s permittivity model is considered to describe the unknown permittivity:

εr(s) = ε∞ + (εs − ε∞)/(1 +
s

ωrel

) (2)

where ε∞, εs, and ωrel = 2πfrel are the model parameters. Therefore, the measurement setup

is described by five parameters (εs, ε∞, ωrel, Ya, τa). To facilitate the analysis, the following

normalized quantities are introduced:

T = τa
√

ε∞ ωrel, η = εs/ε∞ ,Y = Ya
√

ε∞/Yo (3)

together with the normalized time T = t ωrel and complex frequency S = s/ωrel, respectively.

The analysis exploits the decomposition of the normalized reflection coefficient, S̄11(S), into a
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sequence of echoes:
S̄11(S) = Γ̄(S) + (1− Γ̄2(S)) P̄2(S)+

(1− Γ̄2(S)) (−Γ̄)P̄4 + . . .
(4)

The partial reflection coefficient, Γ̄(S), and the propagation factor, P̄(S), can be expressed as a

function of the normalized quantities as follows:

Γ̄(S) =
1− Y√ε̄

1 + Y√ε̄

P̄ (S) = e−T S
√

ε̄

(5)

where Y = Ya
√

ε∞/Y0, and ε̄ = 1 + (η − 1)/(1 + S) and S = jΩ, where Ω is the normalized

angular frequency.

The first term of equation (4), H̄1(S) = Γ̄(S), is the network function relating the incident

wave to the wave reflected by the cable-probe discontinuity. The second term, H̄2(S) = (1 −
Γ̄2(S)) P̄2(S), relates the incident wave to the wave reflected by the probe load and so on. In

the time domain, these terms start at T = 0, 2T , 4T , ..., and give rise to the echoes forming

the observed response, i.e., r̄(T ) = r̄1(T ) + r̄2(T ) + .... In order to study the properties of the

ideal model responses, it is convenient to focus on the second echo, because it is the simplest

term containing information on both the probe-cable discontinuity and on the propagation in

the dielectric. The behavior of the second echo is decided by the network functions H̄2(S)

and, in particular, by the square propagation factor P̄ 2(S) = exp(−2T S
√

ε̄). Figure 3a,b shows

|P̄ 2(jΩ)| for T = 6, 15, 40 and η = 1.5, 3. (Panel b is a close-up view of the middle lower

part of panel a). For growing T and η values, the high-frequency magnitude of |P̄ 2| becomes

negligibly small and, therefore, H̄2 becomes a bandlimited function. This bandlimiting effect is

due to the imaginary part of ε̄(jΩ), that is responsible for the attenuation constant of P̄ 2:

α = −<e{j2 Ω T
√

ε̄(jΩ)} = −2 Ω T =m
{√

1 +
η − 1

1 + jΩ

}
(6)

The attenuation constant is plotted vs. frequency in Fig. 3c. Every attenuation curve is composed

of a quadratic low-frequency part (the constant slope part in the bi-logarithmic scales of Fig. 3c)

and by a constant high-frequency part. The constant part arises from the high frequency behavior
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of =m{
√

ε̄(jΩ)}, that is inversely proportional to Ω. The high-frequency asymptotic value of

α is:

lim
Ω→∞

α(jΩ) = ξ = T (η − 1) (7)

and the asymptotic value of |P̄ 2| is exp(−ξ). For ξ = 5, the asymptotic value of |P̄ 2| is close to

6.7×10−3 and can be considered small. The relation between the |P̄ 2| and α curves of Fig. 3 is

explained by this property. Bandlimited propagation factors are associated to attenuation curves

with ξ > 5, and the propagation factors become small where their attenuation curves overpass

the threshold level (see Fig. 3a,b,c).

In the following, we use the term low-attenuation (high-attenuation) to indicate measurement

setups and TDR responses characterized by ξ > 5 (ξ < 5). Measurement setups working

in high-attenuation conditions have H̄2 functions with small high frequency magnitudes. In

these conditions, the network functions of the higher order echoes have small high-frequency

magnitudes as well, because they include powers of the factor P̄ 2. As a consequence, in high-

attenuation conditions, the high-frequency content of the measured TDR waveforms is low and

their relation to the high-frequency permittivity spectrum is expected to be weak. According to

this analysis, measurement setup operating in the low-attenuation domain are preferable.

As an example, consider the TDR waveforms corresponding to the low- and high-attenuation

frequency responses shown in Fig. 4 with parameters εs = 12, ε∞ = 6, frel = 0.7 GHz, Za =
√
L/C = 77 Ω, τa = 0.34 ns (low-attenuation, ξ = 3.7) and τa = 1 ns (high-attenuation, ξ = 11).

When the wave reflected from the probe end has harmonic components with significant amplitude

for frequency larger than frel the observed TDR waveforms are of low-attenuation type. This

reflection behavior is illustrated in Fig. 4a, where the solid line curve is the magnitude of the

network function of the first echo from the probe end for a low-attenuation case and the dotted

straight line corresponds to the relaxation frequency (the bandwidth of the instrument source is

larger than the relaxation frequency of the dielectric under test). Similarly, when the harmonic

components of the wave reflected from the probe end have negligible amplitude for frequency

larger than frel, the TDR waveform are of high-attenuation type (dashed curve of Fig. 4a).

The bandwidth of the waveforms of high-attenuation type is therefore inherently limited to frel,

regardless of the source bandwidth, and these waveforms are scarcely sensitive to the high-
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frequency parameters of the permittivity. The two types of waveform can be easily identified

because, in the low-attenuation waveform, the rising edge corresponding to the first echo from the

probe end is asymmetric and steep, whereas, in the high-attenuation case, the edge is symmetric

and gradual (see Fig. 4b, where ρ(t) = 2vo(t)/ef − 1, ef asymptotic value of e(t)) for the

transmission line model shown in Fig. 1b).

The low-attenuation condition can be expressed in physical parameters as:

ξ = τaωrel
εs − ε∞√

ε∞
< 5 (8)

or, equivalently, as:

2τa

√
ε∞ < 10 ε∞/ωrel(εs − ε∞) (9)

where 2τa
√

ε∞ is the probe round trip delay. This means that 2τa
√

ε∞, i.e., the probe electrical

length, must be limited in order to obtain low-attenuation operation.

As a consequence of (9), two limitations on the instrument resolution and on the length of

the probe should be taken into account. The instrument resolution must be significantly finer

than 10 ε∞/ωrel(εs − ε∞). In practice, the resolution of TDR instruments is limited by the rise

time of their sources that is on the order of 150÷ 200 ps for conventional field instruments and

of 30 ps for high-end instruments, and low attenuation measurements can be obtained only for

dielectric with ωrel(εs − ε∞)/ε∞ small enough. On the other hand, a too short probe (l = τac)

cannot be considered both for practical reasons and because the transmission line model requires

the cross-section to be much smaller than the length of the probe.

Some examples of parameter values are listed in Tab. 1. The ethanol can be considered as a

limit case. In fact, the maximum round trip delay is 445 ps and can be detected by a standard

TDR instrument, and the length of the probe in this case should be 3 cm.

III. RESULTS

In this Section, the role of the probe attenuation and the type of attenuation condition (low

or high) are investigated on some cases of practical interest.
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To this end, the high-order model defined by the chain network of Fig. 1b is considered. In

this model, the TDR source (part (1) of Fig. 1a) is represented by a matched source driving the

network with the same waveform measured in the actual TDR instrument. The model source,

therefore, takes into account the finite rise time and the aberration of the real input signal. The

two-port element corresponding to part (4) of Fig. 1 takes into account the distortion effects due

to the connector of the probe. The two-port element has been identified by fitting the response

of the chain network to the response measured with the probe left empty (part 5). The unknown

permittivity is assumed to be represented by Debye’s relation modified in order to keep into

account the conductivity γ of the dielectric under test:

ε̃r(s) = ε∞ + (εs − ε∞)/(1 +
s

ωrel

) +
γ

jω
(10)

The four parameters (εs, ε∞, ωrel, γ) of eq. (10) are estimated by a parametric inversion approach,

i.e. by fitting the high-order model response to the measured one.

We consider the results shown in Fig. 5 for two reference liquids: water and methanol. The

solid line curves are the measurements obtained by a HP 54120B digitalizing oscilloscope rise

time 10ps, and a coaxial probe (Maury Microwave Airline, model no. 2653S10, ` = 10.5 cm,

shield and inner conductor radii 3.5 mm and 1.5 mm, respectively, dc-resistance of inner con-

ductor 9.4 mΩ/ m). A 50 Ω load is used to terminate the probe. The dashed line curves of Fig. 5

are obtained by using the Debye’s permittivity representation (10) and by fitting the response

of the high-order model to the measured curves. The TDR waveform of these examples is of

the high-attenuation type due to a rising edge corresponding to the first echo from the probe

that is symmetric. This is confirmed by the estimation procedure in which the sensitivity of

the response to the high-frequency parameters (ε∞ and frel) is weak. For these examples, only

the low-frequency parameters (εs, γ) can be obtained. The best fit of the measured responses is

obtained for εs = 78, γ = 0.3 mS/m for water (Lide, 1992), and εs = 32, γ = 0.1 mS/m for

methanol (Weerts et al., 2001).

In the third example, we apply the parametric inversion procedure to the TDR response of a

3.4% volumetric water content dry sand sample. The TDR response shown in Fig. 6 (solid line)

has been obtained with a Tektronix 1502B reflectometer (horizontal setting 0.1 m per division

and a propagation velocity setting of 0.99) and the same coaxial probe of the previous example
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(Maury Microwave Airline, model no. 2653S10) A 50 Ω load was used to terminate the probe and

a 13-bit data acquisition is exploited (range from 0 to 8192). The TDR response of this example is

a low-attenuation waveform and, according to the analysis of the previous Section, its estimation

problem is expected to be well conditioned for the high-frequency part of the permittivity, too.

The model response that best fits the measured curve is shown in Fig. 6 (dashed line) and the

estimated values of the permittivity parameters are: εs = 3.18, ε∞ = 2.69, frel = 413 MHz

and γ = 6.36 · 10−4 S/m. These parameter values correspond to ξ = 0.28, confirming that the

measured response is of low-attenuation type, as expected.

The condition of the estimation problem is decided by the behavior of the error function

around the estimated parameter values. An indicator of this behavior can be obtained by plots

of the function over planes of the parameter space. The error function of this example over

the plane (ε∞, frel) is shown in Fig. 7 and looks as a well behaved convex surface, thereby

suggesting the good condition of the estimation of the high-frequency parameters.

The examples of this Section confirm that the attenuation regime of the measured waveforms

can be effectively predicted from their shape and that low-attenuation setup leads to well-

conditioned estimation problem.

IV. CONCLUSION

The role of probe attenuation in the estimation of the dielectric permittivity spectrum from TDR

waveforms has been studied. The analysis is based on an idealized model of the measurement

setup and on Debye’s model of the unknown permittivity. The main result is that two types

of TDR waveforms (low-attenuation and high-attenuation) can be identified. The transition

between the two types of waveforms is controlled by the wave attenuation along the probe.

Low-attenuation operation can be obtained by using short probes and yields waveforms that

are more sensitive to the high-frequency behavior of the permittivity, since their harmonic

content extends beyond the relaxation frequency frel. Measurements on liquid dielectrics and

sand samples confirm the prediction of the idealized model.
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Table captions:

Table. 1 Debye’s parameter values for some typical dielectrics. 10ε∞/ωrel(εs − ε∞) is the

maximum round trip delay for low-attenuation operation.
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Figure captions:

Fig. 1 TDR setup model exploited for permittivity estimation via waveform fitting (see Sec. III).

Fig. 2 Ideal model of a TDR measurement system.

Fig. 3 Magnitude of the propagation factor P (panels a and b) and attenuation constant α (panel

c) versus normalized angular frequency Ω for T = 6, 15, 40, and ε = 1.5, 3. Panel b is a close-

up view of panel a. The dashed horizontal lines of panel b and c indicate the threshold level

|P̄ 2| = exp(−5) and ξ = 5, respectively.

Fig. 4 Panel a : magnitude of the network function of the first echo from the probe end for a low-

attenuation case (solid line) and an high-attenuation case (dashed line). Panel b: TDR waveforms

corresponding to the response of panel a. ρ(t) = 2vo(t)/ef − 1, ef asymptotic value of e(t) for

the transmission line model shown in Fig. 1b. Dashed line: low-attenuation, τa = 0.34 ns and

ξ = 3.7. Solid line: high-attenuation, τa = 1 ns and ξ = 11. Parameter values: εs = 12, ε∞ = 6,

frel = 0.7 GHz, Za =
√
L/C = 77 Ω, τa = 0.34 ns (low-attenuation, ξ = 3.7) and τa = 1 ns

(high-attenuation, ξ = 11). The responses of this figure hold for an ideal step input.

Fig. 5 Measured (solid lines) and simulated (dashed lines) TDR waveforms (i.e., ρ(t) = 2vo(t)/ef−
1, ef asymptotic value of e(t)) for the setup of Fig. 1b.

Fig. 6 Measured TDR response ( ρ(t) = 2vo(t)/ef − 1, ef asymptotic value of e(t)) for the

setup of Fig. 1b) for a dry sand sample (solid line) and the best fit response of the model of

this paper (dashed line). Model fitted parameters: εs = 3.18, ε∞ = 2.69, frel = 413 MHz, and

γ = 6.36 · 10−4 S/m, corresponding to ξ = 0.28.

Fig. 7 Error surface in the (ε∞, frel) plane for the TDR response of Fig. 6.
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Medium frel εs ε∞ 10ε∞/ωrel(εs − ε∞) ref.

deionized water 17 GHz 80 4.22 5.2ps (Heimovaara, 1994)

wet sand 7 GHz 15 3 57ps (Feng et al., 1999)

ethanol 0.782 GHz 25.2 4.52 445ps (Heimovaara, 1994)

dry sand 7 GHz 3 2.8 5.25ns (Feng et al., 1999)

Table 1
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Figure 1
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u(t)

G = Yo
Ya, τa, εr(jω)

S11 →

Figure 2
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