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Abstract

In the present work, we illustrate a methodology for the reconstruction and modeling of three-
dimensional micro-structures of highly anisotropic composite materials. Specifically, we focus
on disk-shaped nano-fillers dispersed in a polymer matrix and detailed numerical investiga-
tions, based on the lattice Boltzmann method (LBM), are carried out on the global thermal
conductivity.

Key Words: Lattice Boltzmann method, Thermal conductivity, Carbon nano-fillers, Contin-
uum percolation theory.

Symbols !

PP Polypropylene . . . . . . . [—]
KS4 Commercial graphite . .~ .. [—]
LB Lattice Boltzmann . . . . ... [—]
SEM Scanning electron microscope . . . .. .. .. [—]
S Genericsurface . .. [—]

A Areaofasurface. ... . ... [um?]
X,y,z Cartesianaxes. . . . . ... [—]

Q Global rate of conductiveheat .~ .. ... ... ... ... [LB]
Qs Rate of conductive heat through the filler .~ .. .. . | [LB]

L According to the standard lattice Boltzmann method, all the physical quantities involved are dimensionless:
In the nomenclature, this is indicated by the notation [LB].
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kg, k? Thermal conductivity of the filler . ... .. ... ... .. [LB]

k, Thermal conductivity of the polymer. . . . . ... ... . ... . . . [LB]

kers;  Global thermal conductivity. . . ... ... ... ... .. ... .. ... . [LB]

T Temperature. . . . ... [LB]

Ty Temperature of filler. . . .. ... [LB]

T, Temperature of polymer matrix . . .. ... .. ... .. ... . .. .. [LB]

0y Partial derivative with respecttp. . . . . . . . . . ... ... ... . [—]

Py \Volume fraction of thefiller . . . . ... .. .. . ... . .. . . . [—]

Yy Mass fraction of the filler. . .. ... ... .. ... .. [—]

pf Mass density of the filler . ..~ .. . . . [¢-cm™3]
Pp Mass density of the polymer . . . .. . ... ... ... .. .. [g-cm™2]
D \Volume (Area) fraction . .. . . . ... ... [—]

De Percolation threshold . .~ . . .. ... ... ... ... ... . [—]

n Particle concentration per unit volume (area). . . . .. . .. .. . .. [m—3(m™2)]
N Critical particle concentration per unit volume (area). . . . . . = = . [m3(m~2?)]
L Boxedge . . . . . ... [ um]
a,b,c Semi-axes of ellipses and ellipsoids. . . .. ... ... ... ... . [ pm]

€ Aspectratio. . . ... [—]

n Cumulative volume of spheres in the unitbox . . . .. . . . . .. . . [—]

Ne Critical cumulative volume of spheres per unitvolume. . . . . . = . [—]

) Particlesize . . . . ... [ pm]
Omin  Smallest particle size . . . . ... [ um]

¢’ Shifted particle size . . . . .. [ pm]
Do, D5, Dgg  Diameters. . . . . . [ um]

f Distribution function of particle size . . ... . .. ... .. . . ... [ pm™!]

F Cumulative curve off . . . . .. [—]

Q@ Dimensionless parameter 6f . . . . . ... ... ... [—]



B Parameter of . . . .. . ... ... [ im~(1+) ]
fi Parameterof . . . ... ... [ pm]
o Parameterof . ... .. ... ... [ um]
R Rotationmatrix . . . .. ... ... [—]
R, Rotation matrix ofz-axis . . . ... . .. ... ... [—]
R, Rotation matrix ofy-axis . . . . ... . ... ... [—]
R, Rotation matrix ofz-axis . . . ... . .. ... ... [—]
V., 0,0, Rotationangles. . .. ... .. ... [rad]
J.,9, Meanrotationangles . . . . ... ... ... [rad]
o Variance. . . . .. . [rad]
N Number of lattice nodes along each Cartesian axis. . . . . . . . . . [—]
dx Spacial stepping alongraxis. . . ... .. ... ... [ pm]
dy Spacial stepping alongraxis. . . . .. ... ... [ um]
dz Spacial stepping alongaxis. . .. ... ... ... [ um]
V. Cumulative volume of particles in the unitbox . . .. .. ... . . .. [—]
M Mesharray . . .. ... [—]
A,B Boxfacets .. .. ... [—]
(T, —T.) Temperature difference betweghand3 . . . .. . ... .. ... [LB]
[ Line connectingd andB . . . ... . ... [—]
D3Q19 Lattice Boltzmann scheme. . . . ... ... ... . ... [—]
fi Lattice Boltzmann populations. . . ... . . ... ... ... [LB]
i Lattice Boltzmann equilibrium populations. . . . . ... .. ... .. . [LB]
¢ = (ciz, ciy, ciz)  Velocities of the lattice Boltzmann populations . . .. .. [LB]
w Relaxation frequency . . . . . . .. ... ... [LB]
Wy Relaxation frequency offiller . . .~ . ... .. ... .. ... . .. ... [LB]
Wy Relaxation frequency of polymer matrix . . . .. ... ... . . . [LB]
T Arbitrary point of the computational domain. . . . .. .. ... .. [LB]
t Time .. ] [LB]



dt Timestepping . . . . . . . [LB]

w; weight of thei-th population. . .. . .. .. ... ... .. .. .. [—]
j=(ju,j,,j.) Firstordermoment . . . [LB]
c? Parameter. . . . . ... ... [LB]
p Mass density. . . . ... [LB]
cp Specific heat capacity. . . . . ... [LB]
Q@ Thermal diffusivity . . . . ... ... ... [LB]
VT  Temperature gradient. .. . ... ... [LB]
VT; Temperature gradientoffiller. . . ... .. .. .. .. .. .. [LB]
VT, Temperature gradient of polymermatrix . . . ... .. ... .. ... . [LB]
n Unitnormal vector . .~ . . . ... [—]
S; Random configuration of a composite material sample . . . . . . . [—]
R% R* Coefficients of determination. ... ... ... .. . . [—]
0 Angle of the orientation of the extrusionaxis . . . . ... ... . . [rad]
i, B,y, T Indexes . .. [—]

1. Introduction and motivation

A large variety of additives are nowadays available to engolymer compounds with en-
hanced physical properties, such as transport quantélest(ical and thermal conductivity)
and elastic moduli. Due to the recent development of nowddarabased particles with ex-
cellent properties, composite materials showing highgrardnces are expected. The present
work describes a general numerical tool aiming at charaatgrthe global thermal conductiv-
ity of percolating networks of highly conductive nano-filedispersed in a polymer matrix: In
particular, here we focus on extruded composite materidienod polypropylene and graphite
nano-particles. Starting from two-dimensional scannilegteon microscope (SEM) images,
the micro-topology of material samples is reconstructesirdtized by means of a regular
Cartesian mesh, and utilized for solving the unsteady headlwction problem. Numerical
simulations are based on a fully parallelized three-dinueras lattice Boltzmann (LB) solver,
the computational domain is represented by a cube with a texgberature difference be-
tween two opposite facets, while periodic condition is assd for the rest of the boundary.
Since the computational effort is already demanding (meshade of up-to 14 millions of
points are considered), periodic boundary conditionsaaioe to increase the statistical reli-
ability of the simulated sampld.{ = (15um)3, which is statistically significant for catching
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the main microscopic features of the considered heteragesm@aterials). Since it is difficult
to reconstruct topologies, made of randomly placed filltgch are exactly periodic, the pe-
riodicity will be numerically forced: the effects of the tdsng approximation can be included
in the stochastic noise due to the reconstruction processhay will be checked by properly
repeated numerical simulations.

General aspects on physical properties (such as thermalectdcal conductivity, mechanical
properties, etc.) of composite materials can be invegdjiatthe framework of the continuum
percolation theory [1], as testified by the extensive ltier@ in this field (see, e.g., [2, 3, 4,
5, 6, 7]). Notice that, the latter theory usually addreskesigsue of evaluating the minimal
fraction of filler that gives rise to a percolating networkder the assumption of randomly
oriented particles of the same shape and size: Toward tHistlea Monte Carlo Method is a
typical numerical tool for such investigations [8].

However, the study of realistic composite materials oftelves fillers with high aspect-ratio
(e.g., tubes and lamellae) and significant differenceszm $n addition, the hypothesis of fully
random orientation may break down, if particles show a tangéo align along preferential
lines or planes: This is, for example, the case of manufaxgy extrusion, where particles
preferably align along the extrusion axis. As a matter of,fperformances of realistic com-
posite materials, in terms of heat conduction, cannot besiiyated only on the basis of the
continuum percolation theory, and accurate numerical ksitimins become necessary (see also
[10]).

This manuscript is organized in sections as follows. Inieac?, the ideal upper limit of
thermal conductivity of composite materials is discussekile some basic notions on the
continuum percolation theory are reviewed in section 3.éectisn 4, a methodology for the
reconstruction of a composite material micro-topologyasked out. The mathematical model
adopted for the evaluation of the global thermal condugtief a composite material is dis-
cussed in section 5, while validation results are reponteskection 6 for thermal resistances
connected in series and parallel arrangements. Finadly|teeof numerical simulations of the
global thermal conductivity are presented in section 7,@iedussed in section 8.

2. ldeal limit

The most effective way to enhance thermal conductivity obsmer, by mixing it with a
highly conductive filler, is schematically represented ig.F1. In this ideal scenario, the
amount of filler is fully exploited for generating percoladi paths (with constant cross sec-
tional area) throughout the poorly conductive matrix. At fieady state, the heat flux through
a surfaceS with areaA, orthogonal to:— axis, is given by the Fourier’s law:

Q= Qs+ Qp = kprA0.T + k(1 = p) AT = [kyps + kp (1 —pp)] AT, (1)



where(; and ), denote the rate of conductive heat due to the filler and thegnpe, re-
spectively, whileo, T is the derivative of temperature with respect:toThe global thermal
conductivity of the composite material;; can be easily related to the thermal conductivity
of filler k£, and polymer, as follows:

Yy
pr = Yi(pr— pp

koss = )kf + (1 - Yy )pp) ko, )

pr—=Ys(py—pp

wherep, represents the density of the polymer, whileandY; are the density and the mass
fraction of the filler, respectively. Based on formula (2)g.F2 shows that, in the ideal case,
a small amount of filler is able to produce an increase in teenlal conductivity of the com-
posite materiak. ;s up to a few orders of magnitude comparedgo

Nevertheless, instead of segregating as above, fillercpesttypically tend to randomly dis-
perse within the polymer matrix. In this case, heat flow isedated to both the polymer
matrix and to highly non-regular percolating clusters atigkes, which are created if a criti-
cal amount of filler is used. Notice that, now part of the filenot exploited for conduction,
and the value (2) only represents an ideal upper limit of. To some extent, this phenomenon
can be investigated in the framework of the continuum petam theory (e.g. the minimal
amount of filler that gives rise to topologically connectedhs throughout a composite ma-
terial), however quantitative results require detailethetical simulations, as describes in the
sections below.

AZ
Filler

/ \/w Poly//mer

NI B

---Graphite
—CNT

X

<

: 20
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Figure 1. Left-hand side: Cross-section of an ideal contpasaterial, where highest global thermal conductivity
(along z—axis) ke is achieved with a fixed amount of filler. In principle, a smethount of filler is able to
significantly increase the value &f;;. Right-hand side: Here, we compare the benefit due to geykiB4)
and carbon nano-tubes (CNT), whéfgs, = 400(W/mK], kont = 3000(W/mK], prsa = 1.75[g/cm?] and
prss = 2.255[g/cm?] are assumed.

3. Continuum percolation theory

Below, we briefly review some basic notions of the continuwercplation theory, which will
prove useful for a better understanding of this work. Theriested reader can refer to classical
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Figure 2: (Color online) Two dimensional model of a binarytare: Identical ellipses with ared randomly
dispersed in a square box with arba L.

works on percolation for further details (see, e.g., [1]).

General phenomena, where at least one pathway spans the damain of a physical sys-
tem, can be described in the framework of percolation thetmyparticular, transport and
mechanical properties of multiphase compounds can beestinyi referring to the continuum
percolation theory [1, 2, 4]. Here, neglecting every dethillescription of the interface con-
tact among different phases, one is typically interestexvatuating the geometric percolation
thresholdp., namely the minimum amount of materials which gives risedmcplation. Per-
colation thresholds are indeed among the most importantsip design and optimization of
such materials. A two dimensional problem of continuum pkation theory is schematically
illustrated in Fig. 2, where identical elliptical partislare randomly placed in a square box.
Let p denote the fractional area of the white phase, namely tleedcdrdne box remaining after
placing all the ellipses, whereas their fractional area-sp. It often proves convenient to re-
late fractional areas to particle concentrations per ue#éa, because the latter only requires
counting, and no area evaluation is involved. Under therapsion of sufficient randomness
and identical particles, it is easy to find such a relatiorafoy dimension and particle shape. In
a configuration characterized by the concentratigand fractiorp), the area in the box free to
be occupied by particles ig.?. Hence, additional ellipses will remove the apd& Adn, while
the concentration increases up te + dn and A is the area of a single particle. Moreover, the
free area in the box is reduced according to:

pL? — (p+dp) L? = pL?Adn, (3)

which can be recast as follows:
dp/p = —Adn, (4)



p=e " (5)

Notice that, the generalization of (5) in three dimensianstraightforward, by replacing
with the particle volume. In the case of ellipse$:= wab, with « andb denoting major and
minor semiaxes, respectively. At percolation= n., and the threshold can be computed as
follows:

1 —p,=1— e mabne, (6)

For circlesa = b, it is know from the literature [4] that
1—p.=1—e ™" ~0.67. (7)

On the other hand, it has been observed that shape signicdigcts the value op., and
particles with higher aspect ratio percolate at lower foang [3]. For instance, in theeedle
limit where the ratid/a < 1, the percolation threshold is [4]

1 —p.~4.2b/a, (8)

meaning that the smalléy« the fewer needles cross the entire domain, and these have bas
cally no area given that. — 1.

In the following, we focus on binary mixtures of polypropyéeand graphite particles (see Fig.
3 below) that we assume can be modeled as disk-shaped piatese, for our purposes, here
we are particularly interested in three dimensional systemhere ellipsoids of revolution
are randomly placed in a matrix. Lef b andc be three semiaxes of an arbitrary ellipsoid.
Garboczi et al. [11] have investigated the influence of digbape on the percolation threshold
p. ranging from the extremprolate limit (¢ = b < ¢) of needle-like particles to the extreme
oblate limit(a = b > ¢) of plate-like particles. By means of asymptotic analysighe latter
case, it has been found that:

l—p.=1—€e"° n.=127, (9)
where the small parameters= c¢/a = ¢/b defines the aspect ratio, whiles the volume of a

sphere with radius = a = b, multiplied by the particle concentration

4
n=-man. (20)
3
Notice that, more recent results show remarkable deviafimm the result in (9) [8, 12]. For

instance, based on Monte Carlo simulations, Yi et al [8] Hawmd thaty. = 0.9614. The
origin of such a discrepancy is not yet clear.



4. Micro-topology reconstruction

Fill= 3.154 WD= 15mm Oper: Mag= 5.00KX Fill= 3154 A WD= 15mm
EHT=20.00 KV Signal A= SE1 |_| ag : EHT=20.00 KV Signal A= SE1

Figure 3: SEM micro-images of a sample with{% (mass fraction) of graphite lamellae dispersed in a polgpro
lene matrix. Due to extrusion manufacturing, particlesltenalign along a fixed axis (extrusion direction). The
orizontal dimension of the image on the left-hand side isaximately 18Qum. The orizontal dimension of the
image on the right-hand side is approximately:86 Kindly provided by Dr A. Fina (Department of Materials
Science and Chemical Engineering, Politecnico di Torino).

The scanning electron microscope (SEM) is the essentibfdoperforming micro-topology
reconstruction. In organic polymers, which consist exgklg of light atoms such as carbon,
hydrogen, oxygen, and nitrogen, the scattering is weak la@efore produces poor contrast.
To meet these conditions needed for successful electrammsaiopy, polymers require special
sample preparation. These obstacles can be combated amdmecby proper cleaning and
drying, etching and staining of low contrast samples, lighbating to prevent charging and
protect from beam damage, making a pathway to ground witklwctive paint or tape, and
sectioning with an ultramicrotome for ultrathin sectiof8]

Our modeling activity starts from SEM images of a compositterial, obtained mixing
polypropylene (PP) with the powder of a commercial grapfite4). Fig. 3 depicts the mate-
rial sample along a fracture surface: Here, the one phasgi®&hter particles) is dispersed
in the form of lamellae in a more abundant PP phase (darké). paue to their significant
anisotropy, during manufacturing, graphite particlesdtém align along the extrusion axis,
whose projection onto the image plane can be clearly distafigd in the micrographs of Fig.
3. As illustrated in the image on the left-hand side of Figgeaphite particles will be rep-
resented by means of oblate ellipsoids, whose majoraxis 2b, in the following, will be
referred to aparticle sizep.

Powders consist of a collection of particles, that can beadtarized by a size distribution
function. However, from product data-sheets, three vatwegypically assignedD,, D5,
Dy, representing diameters at whith%, 50% and90% of powder particles have smaller size,
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Figure 4. (Color online) Left-hand side: Graphite particdee modeled as oblate ellipsoids. Right-hand side: The
ellipsoid sizep follows a distribution function (dashed line) reconstedbn the basis of cumulative experimental
data (squares). The corresponding cumulative curve isrefsmrted with a continuous line.

respectively. Therefore, the particle size distributiondtion f (¢) posses a cumulative curve

¢
F(¢) = f(p)de (11)
d)min
matching those three points. The functigrcan be explicitly computed, as soon as more
specific assumptions on its shape are made. In our simusatwe@ consider the following
Poisson-like distribution function (which is suitable fdvaracterizing small occurrences):

F(¢) = Bgee @ -m/oT (12)

where the shift/ = ¢ — ¢,,;, imposes that no particle, with a size smaller thgp, = 0.4um,

is present. Other parametefs @, i and& are free to choose under the condition that the
corresponding cumulative curve is in agreement with thegrpental dataD o, Dsq, Dgg. On

the right-hand side of Fig. 4, we show both the particle sig&ibution functionf (computed
according to (12)) and the cumulative curve correspondiriige KS4 graphite powder utilized
in the material sample under study. Here, a good matchinghseed with the following
choice of parameters:

B=051, a=087, fp=-19, &=3.6. (13)

The complete geometric characterization of the ellipsni&ig. 4 is accomplished as soon
as it is known the minor axi8c, representing the thickness of the graphite platelets.hiko t
respect, no experimental data were found, hence we mustpely SEM micrographs such
as the one reported in Fig. 3: Based on this kind of infornmatvee can assume that platelet
thickness is ranging fromd¢ ~ 0.1um up to2¢ ~ 0.3um. Below, in order to reduce the
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computational cost, all simulations are performed with adithicknes&c = 0.3um.

In the same spirit of the continuum percolation theory, theroatopology of composite ma-
terial samples is reconstructed by placing several obléfeseids in a cube with the edge
L = 15um, following the methodology described below. We first geteian ellipsoidf
centered at the origifiy = 0,y = 0, 2o = 0), and described by the equation:

2 2 2
T+ z +y (14)

where2a = ¢ is a random value chosen from the distribution function ig. M. Second, a
linear transformation, describing a rigid rotation anchsiation, is imposed as follows:

x x Te
yl _ R—l y + Ye , (15)
2 z Ze

where the matrixt = R.R,R,, with

1 0 0 cosdy, 0 —sind, cost, —sind, 0
R,=10 cos¥, —sind, |,R,= 0 1 0 R, = 1| sind, cos?d, O
0 sinv, cost, sind, 0 cosd, 0 0 1

(16)

Here, (x.,y., z.) represent random coordinates of the center, while, and ¢, are the
rotation angles around the y and z axes, respectively. In order to mimic the alignment
of particles along a fixed extrusion axi$, is chosen fully random, whilg, and, follow

a Gaussian distribution around their mean vahﬁgs@y with a variances. Let us consider
aN x N x N regular Cartesian mesh where the edge of the dube (N — 1)dz, with

dr = dy = dz denoting the spatial stepping. The mesh can be stored irea thmensional
array. M, where the presence of polymer matrix is denotedMyi, v, 7) = 0, while the filler
by M (i,~,7) = 1. In the latter case, mesh nodes posses coordirﬁa}r‘eg}, z}) that satisfy

the following inequality:
I‘Q + 22 N y2

CL2 ? S ]-7 (17)
with
:1:} — T, T
R y} — Ye = Yy . (18)
z} — 2 z

Notice that, according to the formula (5), an arbitrary matesample with a prescribed vol-
ume fractionp; is obtained by iterating the above construction subjediédollowing condi-
tion

1—e " < py, (19)
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Figure 5: (Color online) Left-hand side: Reconstructionshoee dimensional mixture of polypropylen&d{:
mass fraction) and graphite lamellagf{% mass fraction), where the extrusion axis is assumed phtalle
J, = ¥, = 9, = 0. Right-hand side: Reconstructions of three dimensionaturé of polypropylene§0%
mass fraction) and graphite lamella20% mass fraction), where the extrusion axis is trasversal:td, =
U. = 0,9, = 7/4. Valuesppp = 0.8903 [g/cm?| andpxss = 2.255 [g/cm?] are adopted for the density of
polypropylene and graphite, respectively.

whereV, represents the cumulative volume of the particles locatimthe unit box of Fig.
5.

In the latter figure, we show two examples of micro-topologganstruction, where)% mass
fraction of graphite withj, = 9, = 9. = 0 ando = 0.15 (left-hand side) are imposed. On the
right-hand side of Fig. 5, we us®9% mass fraction of graphite with, = v, = 0, J, = 7/4
ando = 0.15.

5. Mathematical model

By referring to the Fig. 5, at the steady state, we define tbbajlthermal conductivity.
of a cubic sample of composite material by means of the fofig#rourier-like expression:

T, — T.
Q = —keps LL= 7= —kes L (Ty — To), (20)

where the rate of conductive he@fflows along the:-axis under a fixed temperature difference
(T, — T.) maintained between the uppermost facet (in the followiagefA at 7},) and the
lowermost one (facef at7.). Let the above domain be discretized by\ax N x N) regular
lattice withdz = dy = dz, such thatL = (N — 1) dz with dz, dy anddz being the spacing
along thez-, y- andz-axis respectively. The rate of he@tthrough an arbitrary cross-section
S (orthogonal to the-axis), evaluated according to the Fourier’s law, can be@pmated as

12



follows:

(N-1)? 72 (N-1)?
Q= / —kO.TdS = | > (<k0.T);dz*| = ——=| > (=kd.T),| , (21
S i=1 (N—1) i=1
S S
whereT ando, T denote the local temperature and the component of the tetupegradient
alongz, respectively, whereas the Fourier heat flext0.T), is averaged over the four corners
of thei-th computational cell. Moreover, the temperature diffieeebetween the facet$ and

B can be evaluated as follows:

(T}, — T,) = / 0,Tdl,
l

wherel is any continuous line connecting two arbitrary pointsdofnd 3, respectively. In the
following, for the sake of simplicity, we assumearallel to thez-axis, hence:

N-1

L

(Th = To) = 57—

(22)

=1 1

where the derivativéo.T'), is averaged over the extreme values of tite computational
segment ofl. Upon substitution of (22) and (21) in the above expressifl),(the global
conductivity reads:

]z N k0.1, |

N-1) ]zN L aT)

kepr = (23)

In our computations, according to other works [9, 10], we enake of a lattice Boltzmann
(LB) method for solving the energy transport equation tigftbmon-homogeneous materials,
where the multiphase conjugate heat transfer effect isnaatioally taken into account. In
the LB method, each conservation law is related to a micgsauantity which is conserved
exactly by the collision operator of an evolution equatidescribing the dynamics of distri-
bution functions moving with discretized velocities beanehe nodes of the computational
grid [14]. The LB models for convection-diffusion [15, 16/]lare constructed similarly to
hydrodynamic models: They are based on a hydrodynamicisgisopic equilibrium func-
tion but discard momentum conservation. A similarity of éiQquum functions enables to
build the tracer transport directly with the populationigmns obtained for flow equation. In
the following three dimensional computations, 19 diseestivelocities are used: hence, the
adopted lattice is the so-calléeB(19. Essentially, the numerical code is based on 19 distribu-
tion functions (or populations}j;, which move on the above regular lattice with the following

13



velocitiesc; = (cix, Ciy, Ciz):

(0,0,0) i=0
(£1,0,0) i=1,2
(0,£1,0) =34
(0,0,4£1) i=5,6
(£1,+1,0) i=7,..,10
(0,41, +1) i=11,...,14
(£1,0,41) i=15,...,18.

According to the LB algorithm [16], population dynamics istdted by the following equa-
tions at any pointc of the spacial domain and any time instant

8tfi (Q’J, t) -+ cw(%fi (33, t) = w (fieq (T) — fz (1’, t)) s 1= 0, cees 18, (24)

whered, andds represent the partial derivatives with respect to time gatisl directionsd
respectively, while Einstein summation convention is dddgdor the repeated index The
equilibrium distribution functions are assumé¢d (7)) = w,T, wherew; represents a fixed
weight associated with theth populationf;:

w;=1/18 i=1,...6 (25)
w;=1/36 i=1,..,18.

The zeroth- and first-order moments of populatignare related to the dimensionless temper-
atureT and its gradien¥/ 7', respectively, as follows:

18 18 D)
- L N Cy
T = me J = (]xajyvjz) - Zfzcz - _;VT7 (26)
=0 i=0

with ¢2 = 1/3. In the macroscopic limit, the LB equations (24) mimic thédwing partial
differential equation (PDE) [16]:

2

AT +V -] = —C2—SV2T. (27)

Upon substitution of the expressions (26) in the equatidi) (@nder the assumptions of ho-
mogeneous and isotropic materials with constant physroglgsties), the latter PDE takes the
form of the unsteady equation for heat conduction:

T =V - (aVT) = aV*T, (28)
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if the thermal diffusivitya = k/pc, is linked to the relaxation frequencyas follows:

a=c (é—%), (29)

with &, p andc, denoting constant thermal conductivity, density and djmebeat capacity,
respectively. Letv; andw, be the relaxation frequencies corresponding to the fill&§4Kand

the matrix (PP), respectively. In our computations, we made of the following discretized
form of equations (24):

fi(x + &dt, t + dt) = fi (x,dt) +w, (ff(T) — fi (z,t)), i=0,..,18, ~=f,p, (30)

wheredt is the discrete time step, andis locally adjusted in order to take into account of
spatial inhomogeneity (different phases). The previogsladaic updating rule together with

some numerical boundary conditions frdefine the LB algorithm. In this work, we use the
so-called anti-bounce-back (ABB) rule [18] for imposing tiemperature at both ends of the
simulated sample

[ (@t + db) — [T, (@) = [ (T(@n) — Jos (@t). v =fp, (3D)

wherex z; means a generic point at the ends of the computational domais the temper-
ature prescribed by the boundary conditiomngentifies a generic incoming directiaf with
regards to the computational domain and find®jg(:) identifies the corresponding bounce-
back direction, namel¥zp;) = —¢;.

Notice that, rigorously speaking, the equations (24) cdp ba applied to homogeneous and
isotropic materials with constant physical properties.nétg although the above equations
(30) remain valid within each of the two phases of the contpasiterial in Fig. 5 (under the
assumptions of homogeneous and isotropic phases), inaleéhey do not hold globally due
to an inaccurate treatment of the interface between PP add KSother words, the model
(30) automatically imposes both the continuity of the terapee field at the boundary points
between two different phases:
Ty =1, (32)

and the continuity of the flux of vectarVT (it can be proven by applying the Gauss-Green
theorem to Eq. (28)):
(ayVTy-n) [ (VT -n) =1, (33)

where the unity vectoi is locally normal to the interface, while the subscriptandp denote
guantities which are evaluated within the filler and the matespectively.

On the other hand, using (26) and (29), the Fourier heat floxbearecast as

§=—kVT = pc, (1 . %) 7 (34)
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whereas the continuity of its normal component, at any fater, requires

(qr-7) /(g -n) =1, (35)
or equivalently
(afVTy-n) [ (VT - 1) = (pcp)p / (pcp)f : (36)
Hence, we note that the correct condition at the interfa¢eden two different phases (36)
can be approximated by (33) only in the case:

(Pcp)p = (Pcp)f : (37)

Nevertheless, it is worth stressing that, at the steadg,stla¢ equation for heat conduction
(28) takes the simpler form:
kV2T =0, (38)

where, according to (29), a constanis linked to the relaxation frequency

,(1 1
k:CS (;—5), (39)

and can be interpreted as thermal conductivity. We stregsdhl values below are computed
at the steady state, hence we do not need to resort to thexappatan (37) and further make
use of the relationship (39). Accordingly, at the steadyestine global thermal conductivity
k.r; can be formulated by recasting the formula (23) as follows:

)ZN U (ko.T),|

2 . .
’ZN D7 (= + dwag),

-2 (<5) |

> = fp (40)

keff—
N 1) ]zN L aT)

where, in evaluating the numerator of the latter expressimnrelation given by Eq. (34) has
been used. In all the simulations belaw,; is computed by means of the expression (40),
where the summation at the numerator is replaced with itsageel value over th& surfaces
S,with0 < z,y < L, z = 7dzand7 = 0,..., N — 1. Similarly, the summation at the de-
nominator of (40) is replaced by its averaged value overtheertical line segments ., with
0<z<L,x=1idr,y=rydyandi,v=0,..., N — 1. We stress that, all the quantities in (40)
can be explicitly computed, and thus the suggested modetsnad use of empirical factors.
Egs. (28) (written for both the filler and the polymer matrigd2) and (36) describe a classical
example of multiphase conjugate heat transfer problemhisnréspect, the lattice Boltzmann
method proves particularly efficient compared to convergimumerical methods (such as fi-
nite difference and finite element methods), where a tremendomputational effort is spent
imposing the interface constraints [9].

Finally, all computations below are carried out by the LAB®&bde. The LABORA (LAttice
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kg/k, w1 wy | Deviation
19 0.1 1 13.9%
81 0.2 |18] 13.2%
199 001 | 1 56.9%

1800 | 0.0011| 1 65.4%

Table 1: Thermal resistances in parallel with = 0.111 are simulated at different ratids; /k,. Results are
compared to the corresponding theoretical values: Thecehof the relaxation frequencies, significantly
affects the accuracy of numerical predictions.

BOIltzmann for Raster Applications) project started bacR@®5 and it originally aimed at
developing a 3D parallel code for simulating fluid flow of reae mixtures through complex
geometries [19]. In particular, the LABORA code was develbm C++ by extensive use of
the object programming. In the first release, the free conication library MPICH 1.3 was

adopted, while nowadays OPENMPI is used, both based on MRhtdogy [20].

Concerning the hardware, the reported numerical results al#ained by the EnerGRID com-
putational facility, available at Politecnico di Torinagly). The EnerGRID computational
facility consists of a Transtec(R) HPC cluster, made of 72ltartual cores, with 144 GB of
total RAM, 5.5 TB total disk capacity (3.0 TB failure free)cha double networking system
(Infiniband for processing data and GBit for monitoring).eTtested peak performance (ac-
cording to the TOP500 standard [21]) is 376.09 GFlop/s wittapnch2/IB (which is roughly
60 of the theoretical peak performance 596.48 GFlop/s).

6. Code validation

The numerical model described in the above section 5 hasdadidated in the case of thermal
resistances connected in series and in parallel arrangem®pecifically, by referring to the
picture on the left-hand side of Fig. 1, the global thermaldiactivity of such an ideal com-
posite material can be computed along both tkexis (parallel arrangement) and thexis
(series arrangement), in order to compare the simulatisutewith the corresponding exact
values:

kepr = prky + (1 —pg) Ky, (41)
1 1771
kepr = iy + (1 —py) ol (42)
f D

valid for resistances in parallel and in series, respégtivéalidation results are reported in
Fig. 6 in terms of the dimensionless rafig;;/k,. Here, usings0? lattice nodes, deviations
can be bounded up to a few percent by restricting the choidbeofelaxation frequencies
within the following range:0.5 < wy,w, < 2. On the contrary, as summarized in Table 1,
remarkably larger deviations have been observed as sobe &saer limit ofw,, is decreased
further down:w, < 0.2. Notice that, the latter result is not surprising, since ivell known
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Figure 6: (Color online) Comparison between the simulatEsults (circles) and the exact values (continuous
lines) of k.s¢/k, for thermal resistances placed in series and in parallahgements. a) Thermal resistances
arranged in parallel with a fixed ratiby /k, = 2.33 evaluated at several volume fractions The maximal
deviation is0.45%. b) Thermal resistances arranged in series with a fixed kgtig, = 2.33 evaluated at
several volume frations;: The maximal deviation i$.7%. c) Thermal resistances arranged in parallel with a
fixed volume fractiorp; = 0.3 at several ratiog /k,: The maximal deviation i8.5%. d) Thermal resistances
arranged in series with a fixed volume fractipn= 0.3 at several ratios; /k,: The maximal deviation i8.6%.
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Yr | kesr/k, alongz-axis | k.s/k, alongz-axis | Lattice nodes

Sh 0.298 3.21 2.24 120°
So 0.295 3.20 2.17 120°
Ss 0.297 3.24 2.40 1203
Sy 0.303 3.35 2.28 1203
Ss 0.302 3.16 2.24 120°
Se 0.297 3.22 2.18 1208
S7 0.299 3.23 2.20 1208
Ss 0.295 3.20 2.29 1203
Sy 0.300 3.36 2.33 1203
S1o 0.302 3.32 2.26 120°
Mean value| - 3.25 2.26 -

Variance - 0.00505 0.00503 -

St 0.296 3.36 2.27 240°

Table 2: Ten composite material samples have been geneviked; = 0.3 £ 0.005: Ratiosk. s /k, have been
computed along both the-axis andz-axis for any of the-th sampleS; with a fixed ratioky/k, = 36.5 using
120 lattice nodes.

that the accuracy of LBM in the parameter rarige w., < 1 is much smaller than that in the
the upper rangé < w., < 2 (see Fig. 5 in Ref. [22]).

7. Numerical results

In the following, we investigate the dependence of the dlttermal conductivityk. s on the
valuesk, k, and orientation of the extrusion axis, in composite makeaaples with a fixed
amount of filler. First of all, toward the end of verifying thepeatability of the reconstruction
strategy described in section 4, ten different random sesisl, . ,, are generated by setting
Yy = 0.3 £0.005, L = 15um, ks/k, = 36.5, and imposing the extrusion axis parallel to
zi J, =¥, =9, = 0with o = 0.15. Any of the latter micro-topology is discretized by
means of a regular lattice witt20* nodes, whereas the ratto;;/k, is computed along both
the z- andx-axis: As reported in Table 2, results fluctuate around a mralre with variance

~ 0.005. Notice that, grid-independence of the above numericaliptiens is demonstrated
by consistent simulation results of one more sanfjlediscretized by means @fi0? lattice
nodes. Furthermore, various computations have been @amieadopting the reconstruction
S1 (Yy = 0.298) in correspondence of different valukes/k,: Results are illustrated in Fig. 7
along with the corresponding theoretical solutions forrin resistances in parallel and series
arrangements, as dictated by formula (41) and (42), respctNumerical evidences suggest
a remarkable linear dependenceipf;/k, starting fromk;/k, ~ 45 — 50. In particular, the
tendency lines in the picture on the left-hand side of Figrefevaluated by the least squares
method, on the basis of data with/k, > 40, and the following coefficients of determination
are found:R? = 0.997, R? = 0.975 for the results along the-axis andz-axis, respectively.
Notice that, the latter feature proves particularly comeenin the case of phases with large
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Figure 7: (Color online) Left-hand side: Simulation reswf a material sample with’; = 0.298 at different
ratiosks/k,. Ratiosk.ss/k, have been evaluated along both theaxis (diamonds) and the—axis (circles).
Starting fromk;/k, ~ 50 a linear dependence can be observed. Right-hand side: dagmam of the ratio
keys/kp. Several material samples are reconstructed under fixes fragionY; = 0.3 4+ 0.005 and different
orientations of the extrusion axis (thick arrow). Simuwatiresults (symbols), under fixed conductivity ratio
k¢/k, = 36.5, tend to be located along atlipse of thermal conductivitidashed line), typically observed in
anisotropic materials.

conductivity ratios (e.g.ks/k, > 100) where, in order to avoid both significant numerical
errors (v, < 0.2) and prohibitively long computations.{ ~ 2), the valuek.;¢/k, can be
linearly extrapolated from results obtained at lower ={®@.9.,60 < k;/k, < 80). Finally, in
order to investigate the dependencetgf;/k, on the orientation of the extrusion axis, com-

posite material samples have been reconstructed imposjng: 0.3 + 0.005, ¥, = ¥, = 0,

¥, = 0, andks/k, = 36.5. Results are shown by means of a polar diagram on the right-
hand side of Fig. 7 for different values 6f and a typicakllipse of thermal conductivitgf
highly anisotropic materials is shown. Notice that, amgoy of thermal conductivity typi-
cally arises from experiments on composite materials, hactltipse of thermal conductivity
can be observed by using, for instance, photoreflectancesaiopy (see, e.g., [23]). Each
configurationS;—; 1o reported in Table 2 and in Fig. 7, was computed by using 64gsroc
sors on the EnerGRID computational facility, where 100080skeps require=z 6 hours to be

completed.

8. Discussion and outlook

In this paper, we illustrate a general methodology for battuaately reconstructing the micro-
topology of composite materials, and predicting the glabarmal conductivityk. s, by
means of the lattice Boltzmann method, which has revealgdide for handling such com-
plex geometries [16]. More specifically, here the dependesfck.;, on the thermal con-
ductivity £, of a polymer matrix (polypropylene) and the thermal conthitgt k£, of a filler
compound (graphite particles) is investigated at a fixedeztrof graphite. In this respect, a
remarkable linear dependencekof,/k, on the ratiok,/k,, starting fromk/k, ~ 45 — 50,
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Figure 8: (Color online}y = 0.298, k¢/k, = 36.5. Left-hand side: Streamlines of the heat flux along perco-
lating paths, where the extrusion axis is aligned with:thexis. Right-hand side: Streamlines of the heat flux
along percolating paths, where the extrusion axis is atigni¢h thez—axis. Colors provide an indication of the
heat flux intensity.

is observed. Such an evidence suggests an indirect methambrigputing the global ther-
mal conductivity corresponding to phases with large cotiditg ratios (e.g.,k;/k, > 100),
where it becomes desirable to avoid both significant nurakgorors ¢, < 0.2) and long
computationsy., ~ 2). Moreover, the anisotropy of the s, in such a composite material is
demonstrated by computing the ellipse of thermal conditgtigonsistently also with exper-
imental evidences [23]. Finally, it is worth stressing ttieg numerical tool described in this
work may be utilized, in combination with experimental ddta characterizing the contact
between filler particles in a percolating path. Here, angglating cluster of filler particles
is considered homogeneous and isotropic, so that thermaductivity can be described by a
constant valué:;. However, more rigorously, at the interface between filrtiples, the ef-
fects due to interfacial thermal resistances and weak cbata to be considered since they do
play an important role in heat conduction (see, e.qg., [24285. Hencef; is to be interpreted
as aneffective thermal conductivif the filler within percolating paths, rather than thermal
conductivity of pure fillei;.. In other words, comparing the numerical predictionigy; with
the corresponding experimental data, it is possible tonegé a deviation of the effective ther-
mal conductivityk; from k? which globally quantifies the above effects. However, ittho
noticing that investigations on the mechanism behind heat lhenomena at the interface
filler-particle and particle-particle have revealed qaiallenging so far, and many issues are
still open [24, 27]. Hence, there is a demand for more detatadies on heat transfer across
different phases, and the presented modeling activitypadteed further along that direction
in the near future: In this respect, we note that lattice Bo#inn schemes for modeling contact
resistances have been recently suggested in the lite(geeee.qg., [28]).
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