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Abstract

A reduced description of the three-dimensional effects of rough surfaces on the laminar liquid flow

in microchannels is sough. With this outlook a one-dimensional model is proposed, which is built

by splitting the channel in two regions: porous and fluid. The porous one is a layer fixed to the wall

and represents the roughness. Special attention is paid to three aspects not fully solved in previous

porous-layer approaches recently proposed. These are: (i) a complete and unified derivation of

the porous-layer model through spatial averaging; (ii) the development of a physically sound stress

model for the porous region only as a function of the geometrical characteristics of the roughness;

and (iii) the derivation of an appropriate treatment of the interface fluid-porous. The development

of this generalized porous-layer model has two objectives: to provide simple and accurate models

for lump simulation tools; and to get insight into the physic of the liquid flow at rough interfaces in

microchannels. The stress model in the porous layer, the slip boundary condition at the interface

and the porous-layer model are validated against numerical simulations and experimental data

from the bibliography. Additionally, further validation using numerical simulation of wavy, cube-

and pyramid-based rough channels is performed. Results show that the porous-layer model is valid

to approximate the three-dimensional solution of any connected rough surface with an error below

10% for the following conditions: relative roughness 𝑘/𝐻 < 0.5, relative width 𝐿/𝐻 < 30 and

porosity 𝜀 < 0.8. The validation is restricted to very low Reynolds number. It is expected that,

due to the fundamental derivation of the method, it can be extended to model advanced fluid flow

effects in microchannels.

∗Electronic address: salvador.izquierdo@polito.it
†Electronic address: jrvaldes@ita.es
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I. INTRODUCTION

The knowledge about the effect of roughness on laminar fluid flow in microchannels is

continuously increasing due to recent numerical results and also, and mainly, due to improved

experimental techniques which help us to obtain accurate description of the behavior of the

fluid flow at microscales [16, 44]. Thus, consistent simplified models can be formulated to

include these effects when performing multiscale simulations of complex industrial system

that include any kind of fluid flow through a rough microchannel, such as hydrodynamic

lubrication processes [13, 35], microhydraulic systems or MEMS [9]. Simple microfluidic

models of rough channels can be useful for lump modeling of industrial complex systems, for

simplified analysis of complicated 3D flows in microfluidics applications, or as an approach

to define equivalent slip boundary conditions to reproduce roughness effects.

A reduced order model developed to reproduce fluid flow in rough microchannels should

be physically sound, based on first principles and, ideally, analytical. Additionally, it should

be valid for any kind of fluid, for a wide range of Reynolds numbers, and for any roughness

height and any rough geometry (even anisotropic ones). Some further desirable properties

would include the ability for reproducing surface phenomena as hydrophobic and hydrophilic

effects, and the ability to provide information about force decomposition (as it can be

obtained from a 3D CFD simulation). If the method is not analytical it would be desirable

having a simple and computationally cheap one in order to reduce as much as possible the

complexity of the implementation.

A review is presented in Table I of available approaches to perform simplified or analytical

analysis of the influence of roughness in channels. The objective of this review is to identify

the approach that can better provide the above-mentioned characteristics when modeling

the laminar fluid flow in rough microchannels, which is mainly characterized by high rela-

tive roughness. The first approach in Table I is the classical hydraulic engineering approach,

which consider the roughness through a friction factor or a resistance coefficient obtained ex-

perimentally or numerically (using 2D/3D CFD simulations). The basic approach [6, 22, 25]

provides a general description of laminar and turbulent flows within rough conduits. It is

only valid for roughness up to 5%. Generalizations of the Moody chart [12, 15] provide

and improved description for high relative roughness in laminar and turbulent flows. Addi-

tionally to the friction factors, it is also possible to define resistance coefficients from CFD
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Approach Method Dim.

Friction factor Moody chart [6, 22, 25] 0D

Moody chart generalization [12, 15] 0D

Resistance coefficient [36, 37] 0D

Modified boundary conditions Modified slip [29, 32] 1D-2D

Perturbation methods [32, 41] 1D-2D

Stochastic slip [5, 5] 0D

Effective viscosity Roughness viscosity model [21] 1D-(2D)

Layer models Porous-media layer [19, 20] 1D-(2D)

Rough-layer model [2, 10] 1D-(2D)

Asymptotic analysis Stokeslet [11, 27] 2D-3D

Eigenfunction expansion [18, 31, 40] 2D-3D

TABLE I: Reduced-order approaches to evaluate or describe the influence of roughness in channels.

The last column is the dimension of the model.

simulations [36, 37]. A second possible approach is the definition of a modified boundary

condition. It is typically a Neumann or a Robin condition at the boundary that generates a

positive or negative slip equivalent to the particular effect studied at the wall [29, 32]. This

modified slip boundary condition is applied in a fictitious wall with a location depending on

the roughness. An equivalent extrapolated non-slip condition can be defined. Contributions

to this approach include: perturbation methods [32, 41], which have been derived for some

grooved surfaces and are limited to shallow elements; and the stochastic slip boundary con-

dition [5, 5], which take into account the formation of nano-bubbles at the wall. In the latter

approach, the actual slip length is based on the mean roughness, the spatial autocorrela-

tion and the fraction of bubbles at walls. Alternatively to boundary-condition modification,

a modified fluid flow behavior can be introduced through a change of the viscosity as a

function of the distance to the wall [21]. However, with these two approaches (modified

boundary condition and modified viscosity) we loss information about the velocity profile

within the microchannel, which can be of interest for some application (eg mixed lubrication

processes). A fourth approach is build by splitting the domain in two layers, one for the

laminar fluid flow and the other for taken into account the roughness effects. For this case,
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the resistance speed factor can be obtained from experimental correlations, and porous me-

dia parameters adjusted to fit experimental data [19, 20]. Alternatively, the needed input

information can came from numerical data by computing the drag in the rough layer from

2D and 3D CFD simulations [2, 10]. Finally, an available fifth approach joint those methods

based on computing asymptotic solutions for the Stokes flow. The Stokeslet fundamental

solution method [11, 27] provide arbitrary accurate solutions but usually based on numer-

ical approaches. The eigenfunction expansion method [18, 31, 40] has the advantage that

it can be extended for any kind of geometry, but for complex ones a numerical approach is

compulsory.

Looking for a reduced-order method in Table I and attending to the ideal properties de-

scribed above, we conclude that the layer method are those that can better reproduce the

fluid flow behavior without losing relevant information. This approach is a well-balanced

trade-off between simplicity (one-dimensional approach) and accuracy (it is derived by av-

eraging of the three-dimensional equations). Furthermore, the structure of the approach

would allow moving to a two-dimensional approach if more complex phenomena are needed

to be simulated.

An additional aspect to be discussed when analyzing the fluid flow over rough walls is the

appropriate characterization of these surfaces. For the study of the influence of roughness

in the flow, synthetic surfaces are preferred to real ones due to the possibility of controlling

geometrical parameters. Synthetic surfaces can be roughly classified as: (a) roughness

build with geometric elements (eg prisms, pyramids, wavy patterns or spheres) arranged in

several ways (aligned, staggered or random) and with fluid connectivity through the rough

area; (b) patterns with grooves or dimples without fluid connection between them; and

(c) self-affine fractal roughness to reproduce surfaces with natural growing mechanisms (eg

nucleation or fracture). In this work we only consider geometries falling into the first group.

The generalized transport equations, which are the basis for the porous layer model,

are introduced in Sec. II. In Sec. III a one-dimensional porous layer model is obtained

and analyzed under some restrictions and assumptions. The resulting model is based on a

previous model recently developed [10], which is here improved by rigorously derived the

average equations [26] and by computing, from a simple geometrical procedure, the stress

tensor in the porous layer [43], avoiding any input from numerical or experimental data. Once
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the equation of the model is set, two alternative strategies for solving it are described in

Secs. IV and V. The porous layer model introduced is validated in Sec. VI using experimental

and numerical data from the bibliography and with original CFD simulation of several kinds

of synthetic roughness. Finally, in Sec. VII conclusions are drawn and possible extensions

are discussed.

II. GENERALIZED TRANSPORT EQUATIONS

The averaged transport equations are here derived for the fluid flow of the 𝛼-phase in a

channel at the steady state (see Fig. 1).

n
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FIG. 1: Schematic description of the geometry considered for describing the generalized transport

equations.

The channel has a homogeneous fluid 𝜆–region and a homogenous porous 𝜋–region with a

fluid-porous 𝜆-𝜋–interface between regions. In the homogeneous regions the fluid is assumed

to be not affected by rapid variation of properties occurred in boundary regions. The

flow is considered incompressible and inertial effects are neglected. Therefore, we start

the description of the method with the three-dimensional incompressible Stokes system of

equations for the fluid 𝛼–phase at the steady state within the whole domain:

∇ ⋅ u𝛼 = 0; (1)

0 = −∇𝑝𝛼 + 𝜇𝛼∇2u𝛼 + f𝛼; (2)
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where u𝛼 is the velocity vector, 𝑝𝛼 is the pressure, 𝜇𝛼 is the viscosity and f𝛼 is a body

force. For solving this system of equations the no-slip boundary condition is set at the

𝛼–fluid-phase and 𝜎–solid-phase interface:

u𝛼
∣∣
𝛼𝜎

= 0; (3)

and also at upper and bottom walls:

u𝛼
∣∣
𝑦=0

= 0; (4)

u𝛼
∣∣
𝑦=𝐻

= 0. (5)

To account for the porous media description the superficial volume average of a quantity

𝜙𝛼 is defined in the 𝛼-phase as:

𝜙𝛼 =
1

𝒱
∫
𝑉𝛼

𝜙𝛼𝑑𝑉 ; (6)

and the intrinsic volume average:

𝜙𝛼,�̄� =
1

𝑉𝛼

∫
𝑉𝛼

𝜙𝛼𝑑𝑉. (7)

The relation between superficial an intrinsic volume average quantities is:

𝜙𝛼 = 𝜀𝛼𝜙𝛼,�̄�. (8)

being 𝜀𝛼 the porosity for the 𝛼-phase defined as:

𝜀𝛼 =
𝑉𝛼
𝒱 . (9)

Considering the geometry in Fig. 1(c), 𝐿 = 𝐿𝑥 = 𝐿𝑧 and 𝑙𝜎 = 𝑙𝜎𝑥 = 𝑙𝜎𝑧, and only one-phase

fluid flow, the porosity would be 𝜀𝛼 = 1 in the 𝜆-region and 𝜀𝛼 = 𝜀𝛼𝜋 in the 𝜋-region; where:

𝜀𝛼𝜋 = 1− 𝑙2𝜎
𝐿2

. (10)

In order to derive the averaging governing equations, the spatial average theorem of a

generic function Ψ𝛼 is applied [14]:

∇Ψ𝛼 = ∇Ψ𝛼 +
1

𝒱
∫
𝑆𝛼𝜎

n𝛼𝜎Ψ𝛼𝑑𝑆. (11)

When this theorem is applied to a constant 𝜓𝛼 we obtain:

∇𝜓𝛼 = − 1

𝒱
∫
𝑆𝛼𝜎

n𝛼𝜎𝑑𝑆. (12)
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A. Continuity equation

The superficial volume average of the continuity Eq. (1) in 𝒱

∇ ⋅ u𝛼 = 0 (13)

is obtained by applying Eq. (11):

∇ ⋅ ū𝛼 + 1

𝒱
∫
𝑆𝛼𝜎

n𝛼𝜎 ⋅ u𝛼𝑑𝑆 = 0; (14)

and by imposing the boundary condition Eq. (3) at the 𝛼-𝜎–interface:

∇ ⋅ ū𝛼 = 0 (15)

B. Momentum equation

The superficial volume average is applied to Eq. (2):

0 = −∇𝑝𝛼 + 𝜇𝛼∇2u𝛼 + f𝛼. (16)

Neglecting variations in 𝜌𝛼, 𝜇𝛼 and f𝛼, Eq. (16) reduces to:

0 = −∇𝑝𝛼 + 𝜇𝛼∇2u𝛼 + 𝜀𝛼f𝛼. (17)

Applying twice the superficial volume averaging Eq. (11) Eq. (17) we obtain:

0 = − ∇𝑝𝛼 + 𝜇𝛼∇2u𝛼 + 𝜀𝛼f𝛼 (18)

+
1

𝒱
∫
𝑆𝛼𝜎

n𝛼𝜎 ⋅ (−I𝑝𝛼 + 𝜇𝛼∇u𝛼)𝑑𝑆.

The superficial averaged velocity and the intrinsic averaged pressure are often preferred.

The first because it is a hydrodynamic velocity directly related to the averaged volume and

the latter due to the fact that this is the pressure that can be measure directly. We therefore

recast Eq. (18) searching for preferred variables:

0 = − 𝜀𝛼∇𝑝𝛼,�̄� − 𝑝𝛼,�̄�∇𝜀𝛼 + 𝜇𝛼∇2u𝛼 + 𝜀𝛼f𝛼 (19)

+
1

𝒱
∫
𝑆𝛼𝜎

n𝛼𝜎 ⋅ (−I𝑝𝛼 + 𝜇∇u𝛼)𝑑𝑆.

8
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Using Eq. (12) in the right-hand side of Eq. (19) we interchange differentiation and integra-

tion for the second term:

𝑝𝛼,�̄�∇𝜀𝛼 = − 1

𝒱
∫
𝑆𝛼𝜎

n𝛼𝜎 ⋅ 𝑝𝛼,�̄�𝑑𝑆. (20)

Additionally, to get the fluctuating stress tensor in the integral term (𝜙𝛼 = 𝜙𝛼 − 𝜙𝛼,�̄� being

a fluctuating variable) we introduce the following terms by applying Eq. (12):

∇𝜀𝛼 ⋅ ∇ū𝛼,�̄� +
1

𝒱
∫
𝑆𝛼𝜎

n𝛼𝜎 ⋅ ∇ū𝛼,�̄�𝑑𝑆 = 0. (21)

Applying Eqs. (19), (20) and (21),and dividing by 𝜀𝛼 we obtain:

0 = −∇𝑝𝛼,�̄� +
𝜇𝛼
𝜀𝛼

∇2ū𝛼 + f𝛼 − 𝜇𝛼
𝜀𝛼

(∇𝜀𝛼 ⋅ ∇ū𝛼,�̄�) (22)

+
1

𝒱
∫
𝑆𝛼𝜎

n𝛼𝜎 ⋅ [−I(𝑝𝛼 − 𝑝𝛼,�̄�) + 𝜇𝛼(∇u𝛼 −∇ū𝛼,�̄�)]𝑑𝑆.

The last term is the fluctuating stress tensor

𝜇𝛼K
−1
𝛼 (x) ⋅ u𝛼 = (23)

− 1

𝒱
∫
𝑆𝛼𝜎

n𝛼𝜎 ⋅ (−I𝑝𝛼 + 𝜇𝛼∇û𝛼)𝑑𝑆;

and it is equal to zero in the 𝜆-region and equal to the permeability under some length

conditions [42] in the homogeneous 𝜋-region. These conditions are:

𝐿𝑥𝐿𝑧
𝐿𝜀𝐿∇𝑝

≪ 1; (24)

𝐿𝑥𝐿𝑧
𝐿𝜀𝐿∇2𝑢

≪ 1; (25)

𝐿𝑥 − 𝑙𝜎𝑥
𝐿𝑥

≪ 1; (26)

𝐿𝑧 − 𝑙𝜎𝑧
𝐿𝑧

≪ 1; (27)

where 𝐿𝜀, 𝐿∇𝑝 and 𝐿∇2𝑢 are characteristic lengths related to the spatial variation of the

porosity, the pressure gradient and the viscous term, respectively. On the other hand, the

fourth term in the right-hand side of Eq. (22) is the Brinkman correction.

III. POROUS LAYER MODEL

The averaged three-dimensional system of equations valid in the whole domain Eqs. (15)

and (22) is now simplified considering one-dimensional flow and length constrains. Addi-

tionally, only one phase is considered and subscript 𝛼 is neglected from here on. Therefore,

9
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we obtain the reduced-order approach to be used for modeling rough microchannels:

0 = −𝑑𝑝�̄�
𝑑𝑥

+
𝜇

𝜀(𝑦)

𝑑2�̄�(𝑦)

𝑑𝑦2
+ 𝑓𝑥 (28)

− 𝜇

𝜀(𝑦)

𝑑𝜀(𝑦)

𝑑𝑦

𝑑�̄��̄�(𝑦)

𝑑𝑦
− 𝜇𝐾−1(𝑦)�̄�(𝑦).

For expressing the previous equation in dimensionless form, and considering the charac-

teristic length equal to 𝐻 , the following non-dimensional variables are introduced:

�̃� =
𝑥

𝐻
, 𝑦 =

𝑦

𝐻
, �̃� =

�̄�

𝑢0
; (29)

where 𝑢0 = �̇�/(𝜌𝐻) is the average velocity, �̇� being the mass flow rate. Additionaly, the

following dimensionless numbers are defined using the hydraulic diameter of the channel

𝐷ℎ = 2𝐻 as characteristic length:

𝑓𝐷 =
𝜏𝑤

1
2
𝜌𝑢0

=
−𝑑𝑝�̄�
𝑑𝑥
𝜌𝑢20
4𝐻

; (30)

Re =
2𝜌𝑢0𝐻

𝜇
=

2�̇�

𝜇
; (31)

Po = 𝑓𝐷Re =
−𝑑𝑝�̄�
𝑑𝑥
𝜇𝑢0
8𝐻2

; (32)

Da =
𝐾

4𝐻2
=

1

4

𝐾

𝑙2𝜎

𝑙2𝜎
𝐻2

; (33)

�̃�𝑥 =
𝑓𝑥
𝜌𝑢20
4𝐻

; (34)

where 𝑓𝐷 is the friction factor (ratio between wall shear stress tensor and dynamic pres-

sure), Re is the Reynolds number (ratio between convective and viscous forces), Po is the

Poiseuille number (the product of the two previous numbers), Da is the Darcy number (or

the dimensionless permeability), and �̃�𝑥 is an additional friction factor in the 𝑥-direction to

account for other external body forces (eg gravity, which would lead to a term proportional

to the inverse square Froude number Fr−2). Notice that, due to the definition of different

characteristic lengths for dimensionless coordinates and dimensionless numbers, we call 𝑓𝐷

to the Darcy friction factor, which is actually four times the Fanning (or skin) friction factor

𝑓 [20]. Notice also, that the characteristic length for the Darcy number is 𝐻 in order to be

consistent with the Darcy friction factor definition. Other dimensionless numbers can appear

depending of the fluid flow considered. For instance, for the compressible Stokes equations,

10
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the Mach number (Ma) defines the flow; or if a biphasic fluid is taken into account in a

microchannel the capillary number (Ca) will be present in the equations.

Recasting Eq. (28) in a dimensionless form we obtain for the porous 𝜋–region:

0 =
Po

8
+

1

𝜀

𝑑2�̃�

𝑑𝑦2
+

Re�̃�𝑥
8

− 1

𝜀

𝑑𝜀

𝑑𝑦

𝑑�̃��̄�
𝑑𝑦

− 1

4𝐷𝑎
�̃�; (35)

and for the 𝜆–region:

0 =
Po

8
+

𝑑2�̃�

𝑑𝑦2
+

Re�̃�𝑥
8

. (36)

Equation (35) is actually valid in all the domain, as Da−1 → 0 and 𝜀 → 1 and is constant

in the 𝜆–region.

A. Stress tensor in porous media

Previous one-dimensional layer approaches for describing the flow in rough microchan-

nels [2, 10, 19, 20] use experimental or numerical data for computing the drag related to the

fluctuating stress tensor, namely the permeability, assuming the length restrictions described

above. In this work we preserve these length restrictions and we adopt a discrete-element

approach [2, 10] initially proposed by Taylor et al. [34] for modeling rough walls in turbulent

flows. In this approach [34], the flow in the layer below the roughness top was approximated

by a series of two-dimensional wall-parallel slices, computing the drag in each of them using

a turbulence model. Using this approach they succeed in estimate ab initio the drag charac-

teristic of sparse roughness [30]. In this section, a 2D model for predicting the permeability

of laminar flow through 2D isotropic homogeneous porous media will be discussed shortly

in this section [43]. The pore-scale model, shown in Fig. 2(a), is based on a rectangular

geometry and is referred to as the RUC-pore model, meaning Representative Unit Cell at

the pore scale. The unit cell in the homogeneous porous region has a volume 𝒱ℎ𝜋 (see also

Fig. 1), and the solid fiber with volume 𝑉𝜎𝜋 represents the average solid geometry of the

porous medium. The porosity is defined as:

𝜀𝛼𝜋 =
𝑉𝛼𝜋
𝒱ℎ𝜋 , (37)

where 𝑉𝛼𝜋 denotes the total fluid volume of the pore-scale unit cell. For simplicity we will

use thereafter 𝜀 to refer to the porosity in the porous region 𝜀𝛼𝜋 and we consider that

11
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(a) Representative Unit Cell at the pore level (RUC-pore)

(b) Streamwise 1D reference domain

n

h
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V l z
l x

Lz

Lx

H

L

l
nll

FIG. 2: Representative Unit Cell for fibre beds.

𝑙𝜎𝑥 = 𝑙𝜎𝑧 = 𝑙𝜎 and 𝐿𝑥 = 𝐿𝑧 = 𝐿. The relation between the linear dimensions, Fig. 2(b), is

given by

𝑙𝜎 = 𝐿(1− 𝜀)1/2. (38)

A direct modeling procedure is followed in which piece-wise plane-Poiseuille flow is assumed

in all channel sections. The relation between the streamwise and transverse wall shear

stresses, denoted by 𝜏𝑤∥ and 𝜏𝑤⊥ , respectively, may thus be expressed as

𝜏𝑤∥ =
6𝜇�̄�∥�̄�
𝐿− 𝑙𝜎

=
1

𝛽𝜉
𝜏𝑤⊥ , (39)

where �̄�∥�̄� is the magnitude of the intrinsic streamwise average channel velocity. The coeffi-

cient 𝛽 is defined as the ratio of the streamwise average channel velocity over the transverse

average channel velocity. The coefficient 𝜉 was introduced to account for the reduction in

the tortuosity due to the splitting of the streamwise flux into two equal but directionally

opposite transverse parts in a staggered array. Two arrays are considered, as shown in Fig. 3.

In a regular array no staggering occurs and in a fully staggered array maximum possible

staggering occurs in the streamwise direction, denoted by �⃗�. For a regular array 𝛽 = 𝜉 = 0

and for a fully staggered array 𝛽 = 𝜉 = 1/2.

The total streamwise pressure drop over a unit cell of length 𝐿, denoted by 𝛿𝑝, may be

expressed as

𝛿𝑝 =
12(1 + 𝛽𝜉)𝜇�̄�∥�̄�𝑙𝜎

(𝐿− 𝑙𝜎)2
=

12(1 + 𝛽𝜉)𝜇�̄�∥𝑙𝜎𝐿
(𝐿− 𝑙𝜎)3

, (40)
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(a) Regular array (b) Fully staggered array

nn

FIG. 3: A schematic representation of a regular and fully staggered array

where �̄�∥ denotes the magnitude of the superficial velocity

�̄�∥ = 𝜀∥�̄�∥�̄� = [1− (1− 𝜀)1/2]�̄�∥�̄�. (41)

The permeability 𝐾 can there-upon be expressed as:

𝐾 =
𝜇�̄�∥
𝛿𝑝/𝐿

=
(𝐿− 𝑙𝜎)

3

12(1 + 𝛽𝜉)𝑙𝜎
. (42)

Using Eq. (38) we can write a dimensionless permeability based on the characteristic length

𝑙𝜎:
𝐾

𝑙2𝜎
=

(1−√
1− 𝜀)3

12(1 + 𝛽𝜉)(1− 𝜀)3/2
. (43)

A 2D isotropic homogeneous porous model is obtained by taking the average of the coeffi-

cients of a regular and a fully staggered array, thus yielding

𝐾

𝑙2𝜎
=

(1−√
1− 𝜀)3

(27/2)(1− 𝜀)3/2
. (44)

The advantage of the RUC-pore model is that it is based on sound physical principles and

therefore contains no empirical coefficients.

We compare now several numerical and experimental expression used to define the perme-

ability in porous media, see Table II, with the result obtained in Eq. (44). The comparison

is shown in Fig. 4.

IV. ONE-REGION POROUS-LAYER MODEL

Let us consider a channel like in Fig. 1(a), where 𝐻 represent half of the total height.

As the PLM Eq. (28) is valid for both 𝜋- and 𝜆-regions, we can solve this equation in the

whole domain to obtain the velocity profiles. In order this equation to be differentiable in

13
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Author Geometry 𝐾/𝑙2𝜎 Origin

Carman-Kozeny (1956) [4] 3D - isotropic 𝜀3

150(1−𝜀)2 Fitting experimental data

Kaviany (1999) [17] 3D - isotropic 0.002𝜀3

(1−𝜀)8/3 Fitting experimental data

Du Plessis (2008) [8] 3D - isotropic [1−(1−𝜀)1/3][1−(1−𝜀)2/3]2
25.4(1−𝜀)4/3 Simple pore model

Gamrat et al.(2008) [10] 2D - aligned 2(1−𝜀)−1

52.2(1−𝜀)0.27𝑒4.5(1−𝜀) 2D CFD simulations

Gamrat et al.(2008) [10] 2D - staggered 2(1−𝜀)−1

62.2(1−𝜀)0.28𝑒4.64(1−𝜀) 2D CFD simulations

Woudberg (2009) [43] 2D - isotropic (1−√
1−𝜀)3

(27/2)(1−𝜀)3/2 Simple pore model

TABLE II: Expressions for the dimensionless permeability 𝐾/𝑙𝜎 , where 𝐾 is the permeability and

𝑙𝜎 is the characteristic length of the unit solid obstacle.

FIG. 4: Dimensionless permeability 𝐾/𝑙𝜎 versus the porosity 𝜀 for expression in Table II.

the whole range of 𝑦, a function for the smooth variation of the porosity must be provided.

Considering the periodically distributed parallelepiped elements described in Fig 1(c), we

define the smooth spatial variation of 𝑙𝜎 = 𝑙𝜎𝑥 = 𝑙𝜎𝑧 according to the function:

𝑙𝜎(𝑦) = 𝜁(𝑦)𝑙𝜎0; (45)

where 𝜁(𝑦) is and smooth logistic function, which define the evolution of geometric properties

without discontinuities within the whole domain:

𝜁(𝑦) =
1 + 𝑦

𝑘
(𝜑− 1)

1 + exp(𝑦−𝑘
𝜖
)
; (46)

𝑙𝜎(0) = 𝑙𝜎0; (47)

𝜑 =
𝑙𝜎(𝑘)

𝑙𝜎(0)
; (48)

14
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FIG. 5: Porosity 𝜀, taken 𝑘 = 0.4 and 𝐻 = 1, as a function of 𝑦 for 𝜑 = 0 (pyramids), 𝜑 = 1/2

(truncated pyramids) and 𝜑 = 1 (cubes). For truncated pyramids three values of 𝜖 are showed

to illustrate its influence; otherwise 𝜖 = 1/400. In the inset, the smooth geometric function 𝜁(𝑦),

Eq. (46), is depicted.

and 𝜖 being a small parameter to control the slope of the transition. An expression for the

porosity is obtained using Eqs. (10) and (45):

𝜀(𝑦) = 1− 𝜁2(𝑦)
𝑙2𝜎0
𝐿2

. (49)

Plotting this expression for several values of 𝜑, Fig. 5 we recover the evolution of the porosity

along 𝑦 for different geometries of the rough structure. This plot also shows the spatial

evolution of 𝜁 .

The study of the existence of analytical solutions [1, 23, 28, 45] for Eq. (28) reveals that

it only exists if the porosity is constant through the domain (there exists another particular

analytical solution with no physical interest for the case when 𝐾−1(𝑦) = 𝜀−3(𝑦)[𝑑𝑦𝜀(𝑦)]
2).

Therefore, as we are not interested in the case of a channel with constant porosity, when the

one-region approach is selected we must use numerical approximations to find the solution.

For numerical convenience (lower computational cost), the logistic approach for defining the

variation of properties can be expressed alternatively by an algebraic expression:

𝜁(𝑦) =
1

2𝑘𝜅
[𝑘(𝑘 + 𝜅)

+ [Υ(𝜑− 1) + 𝑘(𝜑− 2)] 𝑦 + (1− 𝜑)𝑦2]; (50)
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where

𝜅 = 𝜖

[
1 +

(𝑘 − 𝑦)2

𝜖2

]1/2
. (51)

However, the low computational demand of the numerical approach should not be the lim-

iting step; unless the subroutine was extensively use in lump simulation of a more complex

system, where moving to Eq. (50) would have sense.

V. TWO-REGION POROUS-LAYER MODEL

An alternative approach, which should be completely equivalent, is to split the domain in

two numerical domains corresponding to the physical regions. For the porous 𝜋–region we

solve Eq. (35) and for the fluid one Eq. (36). These two domains are coupled through appro-

priate boundary conditions. In the following, we analyzed which are the proper boundary

conditions to couple these equations, and we also describe the existing analytical solutions.

A. Generalized inter-region boundary condition

The derivation of the boundary conditions sketched here follows previous works [26, 38]

about jump conditions between porous and fluid mediums. For deriving the boundary jump

condition, a integration volume 𝒱𝐼 as the one depicted in Fig. 1(c) is used. This volume can

be decomposed as:

𝒱𝐼 = 𝑉𝛼𝜆 + 𝑉𝛼𝜋 + 𝑉𝜎𝜋 = 𝒱𝜆 + 𝒱𝜋; (52)

and the area 𝑆𝐼 surrounding 𝒱𝐼 can be represented in terms of the bounding surfaces in the

𝜆- and 𝜋- regions according to

𝑆𝐼 = 𝑆𝜆 + 𝑆𝜋. (53)

The system of equations to be solved for the porous region 𝒱𝜋 within 𝒱𝐼 is:

∇ ⋅ ū𝜋(𝑦) = 0; (54)

0 = −∇𝑝𝜋,�̄� +
𝜇

𝜀
∇2ū𝜋

− 𝜇K−1
𝜋 ⋅ u𝜋; (55)
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and for the liquid region:

∇ ⋅ ū𝜆(𝑦) = 0; (56)

0 = −∇𝑝𝜆,�̄� +
𝜇

𝜀
∇2ū𝜆; (57)

where subcripts 𝜆 and 𝜋 are use to denote the pressure and velocity in the 𝛼–phase of the

liquid and porous region respectively.

1. Continuity equation

Integrating Eq. (1) we obtain:

∫
𝒱𝐼

∇ ⋅ ū𝑑𝑉 = 0; (58)

and applying the divergence theorem

0 =

∫
𝑆𝐼

n ⋅ ū𝑑𝑆 =

∫
𝑆𝜆

n𝜆 ⋅ ū𝑑𝑆 +

∫
𝑆𝜋

n𝜋 ⋅ ū𝑑𝑆. (59)

In the same way, performing this integration on Eq. (54) and (56) leads to

∫
𝑆𝜋

n𝜋 ⋅ ū𝜋𝑑𝑆 +

∫
𝑆𝜋𝜆

n𝜋𝜆 ⋅ ū𝜋𝑑𝑆 = 0; (60)

∫
𝑆𝜆

n𝜆 ⋅ ū𝜆𝑑𝑆 +

∫
𝑆𝜆𝜋

n𝜆𝜋 ⋅ ū𝜆𝑑𝑆 = 0; (61)

where 𝑆𝜋𝜆 = 𝑆𝜆𝜋 represent the area of the interface contained in 𝒱𝐼 , and n𝜆𝜋 = −n𝜋𝜆 the

normal vector. Subtracting Eq. (60) and (61) from Eq. (59) and rearranging the result we

have

∫
𝑆𝜋𝜆

n𝜋𝜆 ⋅
(
ū𝜋 − ū𝜆

)
𝑑𝑆 =

∫
𝑆𝜋

n𝜋 ⋅
(
ū− ū𝜋

)
𝑑𝑆 (62)

+

∫
𝑆𝜆

n𝜆 ⋅
(
ū− ū𝜆

)
𝑑𝑆.

The excess surface velocity is defined as [26]

∮
𝐶

n𝑠 ⋅
(
𝛿ū𝑠

)
𝑑𝜎 =

∫
𝑆𝜋

n𝜋 ⋅
(
ū− ū𝜋

)
(63)

+

∫
𝑆𝜆

n𝜆 ⋅
(
ū− ū𝜆

)
;
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where C is a closed curved lying on the dividing surface. Using Eq. (63)with Eq. (62) and

applying the Stokes theorem leads to

n𝜋𝜆 ⋅
(
ū𝜋 − ū𝜆

)
= ∇𝑠 ⋅

(
𝛿ū𝑠

)
. (64)

Usually, the effect of the excess surface velocity can be neglected in a homogeneous porous-

fluid interface, leading to the boundary conditions for velocities

n𝜋𝜆 ⋅
(
ū𝜋 − ū𝜆

)
= 0. (65)

2. Momentum equation

To derive the momentum jump condition, is convenient to first rewrite Eq. (28) in the

form

0 = −∇𝑝�̄� + 𝜇∇ ⋅
(
𝜀−1∇ū

)
(66)

− 𝜇𝜀−3(∇𝜀 ⋅ ∇𝜀)ū− 𝜇K−1 ⋅ ū.

Integrating Eqs. (66), (55) and (57) as for the continuity equation, we obtain:

∫
𝑆𝜋𝜆

n𝜋𝜆 ⋅ [−I(𝑝𝜋,�̄� − 𝑝𝜆,�̄�) + 𝜇(𝜀−1
𝜋 ∇ū𝜋 −∇ū𝜆)]𝑑𝑆

= −
∫
𝑆𝜋

n𝜋 ⋅
(
𝑝�̄� − 𝑝𝜋,�̄�

)
𝑑𝑆

−
∫
𝑆𝜆

n𝜆 ⋅
(
𝑝�̄� − 𝑝𝜆,�̄�

)
𝑑𝑆

+

∫
𝑆𝜋

𝜇n𝜋 ⋅
(
𝜀−1∇ū− 𝜀−1

𝜋 ∇ū𝜋

)
𝑑𝑆

+

∫
𝑆𝜆

𝜇n𝜆 ⋅
(
𝜀−1∇ū−∇ū𝜆

)
𝑑𝑆

+

∫
𝒱𝐼

𝜇𝜀−3(∇𝜀 ⋅ ∇𝜀)ū𝑑𝑉

−
∫
𝒱𝐼

𝜇K−1 ⋅ ū𝑑𝑉

+

∫
𝒱𝜋

𝜇K−1
𝜋 ⋅ ū𝜋𝑑𝑉 ; (67)
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where 𝜀𝜋 is a constant value describing the homogeneous porosity in the porous media close

to the interface. The following terms are defined [26]: (i) the excess surface stress∮
𝐶

n𝑠 ⋅ (𝛿T̄𝑠)𝑑𝜎 =

∫
𝑆𝜋

n𝜋 ⋅ [−I(𝑝�̄� − 𝑝𝜋,�̄�)

+ 𝜇(𝜀−1∇ū− 𝜀−1
𝜋 ∇ū𝜋)]𝑑𝑆

+

∫
𝑆𝜆

n𝜆 ⋅ [−I(𝑝�̄� − 𝑝𝜆,�̄�)

+ 𝜇(𝜀−1∇ū−∇ū𝜆)]𝑑𝑆; (68)

(ii) the excess Brinkman stress∫
𝑆𝜋𝜆

n𝜋𝜆 ⋅ B̄𝑠𝑑𝑆 =

∫
𝒱𝐼

𝜇𝛼𝜀
−3(∇𝜀 ⋅ ∇𝜀)ū𝑑𝑉. (69)

and (iii) the excess bulk stress∫
𝑆𝜋𝜆

n𝜋𝜆 ⋅ T̄𝑠𝑑𝑆 =

∫
𝒱𝐼

𝜇K−1 ⋅ ū𝑑𝑉 −
∫
𝒱𝜋

𝜇K−1
𝜋 ⋅ ū𝜋𝑑𝑉 ; (70)

Additionally, the following equivalences are considered [38]:∫
𝑆𝜋𝜆

n𝜋𝜆 ⋅ B̄𝑠𝑑𝑆 =

[
𝜇

𝑎𝑣𝑠
𝜀−3(∇𝜀 ⋅ ∇𝜀)ū

]
𝜋𝜆

; (71)

∫
𝑆𝜋𝜆

n𝜋𝜆 ⋅ T̄𝑠𝑑𝑆 = −
[
𝜇

𝑎𝑣𝑠
K−1 ⋅ ū

]
𝜋𝜆

; (72)

where 𝑎𝑣𝑠 is ratio between the fluid-solid 𝛼𝜎–interphase 𝑆𝜋𝜆 and the total volume 𝒱𝜋.
Introducing Eqs. (68-72) in Eq. (67) we obtain:

−n𝜋𝜆 ⋅ (𝑝𝜋,�̄� − 𝑝𝜆,�̄�) + 𝜇n𝜋𝜆 ⋅ (𝜀−1
𝜋 ∇ū𝜋 −∇ū𝜆)

= ∇𝑠 ⋅ 𝛿𝑇𝑠 +
[
𝜇

𝑎𝑣𝑠
K−1 ⋅ ū

]
𝜋𝜆

+

[
𝜇

𝑎𝑣𝑠
𝜀−3(∇𝜀 ⋅ ∇𝜀)ū

]
𝜋𝜆

; (73)

where the first term in the right-hand-side is the surface stress, the sencond one is the

global stress and the third term is the Brinkman stress. The surface stress can be assumed

to be negligible for a porous-fluid interface [26] and the contribution of Brinkman stress

is negligible [38]. Therefore, from Eq. (73) we can extract the following two boundary

conditions at the interface, one for the pressure:

−n𝜋𝜆(𝑝𝜋,�̄� − 𝑝𝜆,�̄�) = 0; (74)

and other for the jump of the stress:

n𝜋𝜆 ⋅ (𝜀−1
𝛼𝜋∇ū𝜋 −∇ū𝜆) = −K−1

𝛼

𝑎𝑣𝑠
⋅ ū𝜋. (75)
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B. Analytical solutions

As for the one-region approach, there only exists analytical solutions [1, 23, 28, 45] for

the case of constant porosity 𝜀. However, due to the splitting in two numerical domains, the

two-regions approach has analytical solution for some case of interest. Specifically, a rough

channel with the following boundary conditions is solved:

�̃�𝜋(0) = 0;

�̃�𝜆(𝑘) = 𝑢𝜋(𝑘);

𝑑�̃�𝜆
𝑑𝑦

(1) = 0;

𝜀−1𝑑�̃�𝜋(𝑘)

𝑑𝑦
− 𝑑�̃�𝜆(𝑘)

𝑑𝑦
= −𝐽�̃�𝜋(𝑘); (76)

where:

𝐽 = (𝐻𝐾−1
𝑠 )/(𝑎vs) (77)

is the dimensionless stress jump coefficient.

The analytical solution obtained is:

𝑢𝜋 =
[
4
(
2
√
Da𝐽

√
𝜀 sinh (𝐴𝑘) + cosh (𝐴𝑘)

) ]−1

×
[
4DaPo sinh (𝐴𝑦)

(
2
√
Da𝐽

√
𝜀 cosh (𝐴𝑘 − 𝐴𝑦) + sinh (𝐴𝑘 −𝐴𝑦)

)

−
√
DaPo

√
𝜀(4Da𝐽 + �̃� − 1) sinh (2𝐴𝑦)

]
; (78)

�̃�𝜆 = Po
[
16

((
2
√
Da𝐽

√
𝜀+ 1

)
exp(2𝐴𝑘)− 2

√
Da𝐽

√
𝜀+ 1

)]−1

(80)

×
[
2
√
Da

√
𝜀 (exp(2𝐴𝑘)− 1)

(
𝐽𝑘2 − 2(𝐽 + 1)𝑘 − 𝐽(𝑦 − 2)𝑦 + 2

)

+ (𝑘 − 𝑦)(𝑘 + 𝑦 − 2) (exp(2𝐴𝑘) + 1) + 8Da (exp(𝐴𝑘)− 1)2
]
; (81)

where 𝐴𝑦 = (𝑦
√
𝜀)/(4

√
Da) and 𝐴𝑘 = (𝑘

√
𝜀)/(2

√
Da).
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FIG. 6: Isocontours of log(𝐽) as a function of the relative length 𝐿/𝐻 and the porosity 𝜀

The Po can be computed as a function of �̇� by integrating the velocity profile:

Po =
[
24�̇�

((
2
√
Da𝐽

√
𝜀+ 1

)
exp((2𝐴𝑘)− 2

√
Da𝐽

√
𝜀+ 1

) ]

× 𝜌−1
[24Da3/2 (exp((2𝐴𝑘)− 1) (𝐽𝑘𝜀− 1)√

𝜀
− 96Da2𝐽 (exp(𝐴𝑘)− 1)2

− 2
√
Da(𝑘 − 1)2

√
𝜀(𝐽(𝑘 − 1)− 3) (exp(2𝐴𝑘)− 1) + (𝑘 − 1)3 (− (exp(2𝐴𝑘) + 1))

+ 12Da
(
(2− 𝑘)exp(2𝐴𝑘) + 4(𝑘 − 1)exp(𝐴𝑘)− 𝑘 + 2

) ]−1

(82)

Using the analytical solution for this rough channel we can study the influence of the

roughness geometry in the jump coefficient, Fig. 6. It can be seen that the stress jump is

greater for smaller porosities 𝜀 and relative lengths 𝐿/𝐻 of the domain.

VI. RESULTS

The Porous Layer Model presented is validated against CFD results of three geometries:

(i) a rough channel with homogeneous parallelepiped roughness; (ii) a semi-rough channel

with heterogeneous pyramid distribution; and (iii) a semi-rough channel with wavy surface.

For all CFD simulations the geometry has been meshed in Gambit and solved with Fluent

6.3.26 using a SIMPLE algorithm. Convergence and grid independence of the solution

was carefully verified. For those geometries with non-constant porosity within the porous

region, data were extracted from the CFD models and interpolated via cubic polynomials

to obtain the porosity across the whole domain; and a first order derivative scheme is used
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FIG. 7: Dimensionless velocity profile.

to obtain the porosity variation with height.

A numerical one-region approach (PLM-I) is applied to study a rough microchannel with

periodically distributed parallelepiped elements, as the ones analyzed in Gamrat et al. [10],

the porosity being constant through the rough layer. To avoid discontinuities across the

domain, the porosity is defined by means of Eqs. (45) and (46). To compare the results,

symmetry condition has been set at the top of the channel and dimensionless lengths have

been used . Figures 7 and 8 show the good agreement between the CFD results and the

PLM-I. Additional PLM results by Gamrat et al. [10] and an analytical two-region approach

(PLM-II) are also plotted. Velocity profiles with a stress jump coefficient 𝐽 = 0 show the

solution behavior when no stress jump is considered. The latter remarks the importance of

the jump stress in modeling rough microchannels.

The PLM-I was also applied to pyramidal semi-rough channels, as the ones in Valdés

et al. [37]. In these channels one wall is assumed to be smooth while pyramidal elements

are randomly distributed on the other one. The height of the peaks in not uniform and

therefore the relative roughness is defined in terms of the maximum roughness height. The

fluid area at different heights is extracted from the CFD models and interpolated via cubic

polynomials. Table III shows the relevant geometric parameters of the models selected to

validate the PLM-I. The original nomenclature [37] has been kept for clarity. The PML-

I predictions, Figs. 9 and 10, compare well with the CFD results for relative roughness
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FIG. 8: Dimensionless pressure gradient Po versus the relative roughness 𝑘/𝐻.

values well below unity. For high relative roughness channels the model underestimates the

Poiseuille number.

Model Averaged 𝜀 #pyramids/𝑚2

M3 0.98 3.3 ⋅ 1010

M4 0.96 6.0 ⋅ 1010

M5 0.92 1.2 ⋅ 1011

M6 0.86 6.0 ⋅ 1010

TABLE III: Characteristics of the semi-rough channels with pyramidal rough elements.

Finally the PLM is used to predict the flow through channel with self-affine-like roughness.

This roughness is generated by means of a 2D extension of the Weierstrass-Mandelbrot

function:

ℎ(𝑥, 𝑦) = 𝐺𝐷−1
𝑛∑
𝑚=0

𝛾(𝐷−2)𝑚
[
cos(2𝜋𝛾𝑚𝑥) + cos(2𝜋𝛾𝑚𝑦)

]
;

where 𝐺 is a scaling factor, 𝐷 is the fractal parameter, 𝛾 is the fractal exponent, and 𝑛

is the number of term in the series. This function is used only with 𝑛 = 0 and 𝑛 = 1,

so modeled surfaces are wavy ones with no relevant self-affine property. Thus, the effect

of self-affine variables is not studied. Results for the dimensionless pressure gradient are

plotted in Fig. 11.
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FIG. 9: Dimensionless pressure gradient Po versus the relative roughness 𝑘/𝐻.

FIG. 10: Velocity profiles for M3 (𝑘/𝐻 = 0.3), M4 (𝑘/𝐻 = 1), M5 (𝑘/𝐻 = 0.6), and M6 (𝑘/𝐻 =

0.6), see Table III. Results are from averaged CFD (squares) and PLM-I (solid lines).

To summarize the results obtained we plot in Fig. 12 the relative error of Po for the three

geometries. The linear fitting help us to approximate the applicability limits of the PLM

(error below 10%): relative roughness 𝑘/𝐻 < 0.5, relative width 𝐿/𝐻 < 30 and porosity

𝜀 < 0.8.

24



draft 23-Dec-2009

FIG. 11: Dimensionless pressure gradient Po versus the relative roughness k/H for three wavy

surfaces defined by Eq. 83.

FIG. 12: Relative error Abs[Po(CFD)-Po(PLM)]/Po(CFD) versus relative roughness 𝑘/𝐻 (left);

relative width 𝐿/𝐻 (center); and porosity 𝜀 (right). A linear fitting to the data is shown to guide

the eye.

VII. CONCLUSIONS

A rigorous derivation of a Porous Layer Model (PLM) has been introduced as a

reduced-order method to represent the fluid flow in rough microchannels. The novel results

presented with regard to previous layer models are: the use of superficial average theorems

to derive the one-dimensional average equations in rough microchannels; the derivation

of the 2D permeability tensor from a simple porous unit cell model; the description of
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one-region and two-region approaches for solving PLM, including the analysis of available

analytical solutions; the compilation of assumption considered for developing the model

(see the discussion below); and the derivation, using superficial average theorems, of the

inter-region boundary condition for the two-region model. The most relevant consequence

of this approach is that the model only uses the geometric characteristic of the surface

as input parameters. Thus, it is not necessary additional experimental or numerical

information about, for example, the structure of the stress tensor in the porous media as a

function of the porosity. Velocity profiles and Pouseuille numbers has been compared for

channels with different rough structures using solutions from CFD simulations and the one-

and the two-region approaches. Results suggest that the model can be used for any kind

of fluid-connected roughness structure for relative roughness 𝑘/𝐻 < 0.5, relative width

𝐿/𝐻 < 30 and porosity 𝜀 < 0.8 (if errors < 10% are assumed).

For the derivation of the PLM Eq. (28) several assumptions have been considered. These

are: steady state; incompressibility (Ma→0); single-component and single-phase with con-

stant values for 𝜌𝛼, 𝜈𝛼 and 𝑓𝛼; continuous fluids (Kn→0) in the very low Reynolds number

limit (Re→0) or Stokes regime, and without any special surface treatment; length several

length assumptions have been considered, Eqs. (24–27) for obtaining an stress tensor equal

to Darcy’s permeability. Additionally, the discrete element approach by Taylor has been ap-

plied to simplify the treatment of the rough layer; thus, only fluid-connected rough surfaces

can be modeled (see Sec. I). However, possible alternatives are available for the correction

of these departures from the ideal properties discussed in Sec. I.

For example, Stokes equations are considered as the starting point. However, the inertial

terms (𝜌u ⋅ ∇u) cannot be negligible in boundary regions and should be introduced [3]. For

departures from (𝐿 − 𝑙𝜎)/𝐿 ≪ 1 the effects in momentum loss due to recirculations should

be taken into account [24]. For including surface effects the non-slip boundary condition

at the interface 𝛼-𝜎 can be applied [39]. If non-isotropic porous media are needed to be

considered the approach proposed can be also applied [3]. Other aspect not considered in

PLM is a possible mass source term [3]. This could be useful, for example, for modeling the

wear of the surface due to mechanical or chemical mechanisms.

The method proposed is valid in the continuous limit. For low pressure gas flows the

Stokes equations are no longer valid. Alternatively, two groups of approaches can be used,
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after surface averaging of its corresponding macroscopic equation, to simulate rarified gases

in rough channels. The first approach is based on modified Navier-Stokes equations, as, for

example, the addition of terms for molecular diffusivity [7]; on the other hand, we could use

de some moment system of equations with an appropriate closure, as the Grad’s one [33].

Notice that this second approach could be used also for modeling polydispersive flows, such

as granular or biphasic (bubbly) ones.

Summarizing the discussion, the averaging surface in conjunction with the simplified

pore description, although it simplicity, leads to simple PLM with only geometric input

parameters. Additionally, this approach can be further extended by including more physical

phenomena without losing the simplicity. Thus, there exists a great potential in developing

and using PLM’s for its use in lump simulations of microfluidic applications.

The on-going work is devoted to the application of PLM for hydrodynamic-lubrication

lump simulations by including into the model the effects of temporal and convective terms.

The most challenging aspect is that for hydrodynamic-lubrication configurations we need to

provide a solution for the permeability stress tensor without considering length restrictions

Eqs. (24–27).
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