
03 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Generalized association rule mining with constraints / Baralis, ELENA MARIA; Cagliero, Luca; Cerquitelli, Tania; Garza,
Paolo. - In: INFORMATION SCIENCES. - ISSN 0020-0255. - STAMPA. - 194:(2012), pp. 68-84.
[10.1016/j.ins.2011.05.016]

Original

Generalized association rule mining with constraints

Publisher:

Published
DOI:10.1016/j.ins.2011.05.016

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2460918 since:

ELSEVIER

Generalized association rule mining

with constraints

Elena Baralis, Luca Cagliero, Tania Cerquitelli

Dipartimento di Automatica e Informatica, Politecnico di Torino,

Corso Duca degli Abruzzi 24, 10129, Torino, Italy

Paolo Garza∗

Dipartimento di Elettronica e Informazione, Politecnico di Milano,

Piazza Leonardo da Vinci, 32, 20133, Milano, Italy

Abstract

Generalized association rule extraction is a powerful tool to discover a high

level view of the interesting patterns hidden in the analyzed data. However,

since the patterns are extracted at any level of abstraction, the mined rule set

may be too large to be effectively exploited in the decision making process.

Thus, to discover valuable and interesting knowledge a post-processing step

is usually required.

This paper presents the CoGAR framework to efficiently support con-

strained generalized association rule mining. The generalization process of

CoGAR exploits a (user-provided) multiple-taxonomy to drive an oppor-

tunistic itemset generalization process, which prevents discarding relevant

but infrequent knowledge by aggregating features at different granularity lev-

∗Corresponding author. Tel.: +39 02 2399 3507.
Email addresses: elena.baralis@polito.it (Elena Baralis),

luca.cagliero@polito.it (Luca Cagliero), tania.cerquitelli@polito.it (Tania
Cerquitelli), garza@elet.polimi.it (Paolo Garza)

Preprint submitted to

els. Besides the traditional support and confidence constraints, two further

constraints are enforced: (i) schema constraints and (ii) the opportunistic

confidence constraint. Schema constraints allow the analyst to specify the

structure of the patterns of interest and drive the itemset mining phase. The

opportunistic confidence constraint, a new constraint proposed in this paper,

allows us to discriminate between significant and redundant rules by analyz-

ing similar rules belonging to different abstraction levels. This constraint is

enforced during the rule generation step.

Experiments performed on real datasets collected in two different ap-

plication domains show the effectiveness and the efficiency of the proposed

framework in mining constrained generalized association rules.

Keywords: Generalized association rules, data mining algorithms,

knowledge discovery, context-aware mining, network traffic analysis, mining

with constraints.

1. Introduction

Generalized association rule extraction [2] is a widely used exploratory

technique that allows discovering hidden correlations among data. By eval-

uating a taxonomy (is-a hierarchy) over data items, items can be aggregated

according to different granularity levels. The aggregated concepts are called

generalized items. Consider, for example, the jacket, coat, mittens, and hat

items. Outerwear might be their corresponding generalized item. Thus, gen-

eralized items and itemsets provide a high level view of the patterns hidden in

the analyzed data. They have been profitably exploited in different applica-

tion domains (e.g., market-basket analysis [2, 18], network traffic domain [3])

2

Table 1: An example service invocation log dataset

user user location service request time date

Paolo Milano PhoneCall 9 a.m. 20/01/2010
Paolo Milano SMS 10 a.m. 13/01/2010
Paolo Torino WeatherForecast 18 p.m. 18/06/2010
Paolo Carmagnola WeatherForecast 21 p.m. 18/06/2010
Luca Cuneo SMS 20 p.m. 18/09/2010
Luca Fossano PhoneCall 14 p.m. 19/09/2010

to provide a high level abstraction of the mined knowledge.

The exhaustive evaluation of taxonomies may cause the extraction of a

huge amount of patterns. Thus, a post-processing step is usually performed

to select valuable patterns. Consider, for example, a customer care analyst

interested in profiling service requests to provide personalized services and

in analyzing system performance to guarantee high-quality services. To this

aim, generalized association rules can be profitably exploited to highlight

service usage (e.g., when services are mostly requested by a given set of

users). However, a large number of uninteresting or redundant patterns may

be discovered besides the interesting ones.

In this paper, we present the CoGAR framework to efficiently support

constrained generalized association rule mining. It enforces (application-

dependent) schema constraints and the new opportunistic confidence con-

straint during the generalized rule extraction process to improve both effi-

ciency and effectiveness of the mining activity.

Consider again the previous customer care analyst and the running exam-

ple dataset reported in Table 1. An association rule mining algorithm mines

all the frequent rules by considering all the possible items combinations.

However, the analyst is interested in analyzing exclusively the correlations

(i) between user and service and (ii) between service and service request

3

time, while he is not interested in other kinds of correlations (e.g., between

user and service request time, or other attribute combinations). To this aim,

the schema constraints (1) {user, service} and (2) {service, request time}
may drive the mining process to extract only the patterns of interest. For

example, the rule {(user, Paolo)} ⇒ {(service, SMS)} is mined, while the

rule {(user, Paolo)} ⇒ {(user location, Torino)} is not extracted. Instead

of specifying a complex set of item constraints by means of boolean expres-

sions (e.g., [18]), we compactly represent these kinds of item constraints at

the attribute level to make them more easy to use.

To further prune the set of generated patterns, we also investigate the rela-

tionships holding among similar patterns at different abstraction levels. Con-

sider again the generalized rule {(user, Paolo)} ⇒ {(service, SMS)} and a

taxonomy (i.e., is-a hierarchy) built over data items that aggregates services

such as SMS and PhoneCalls into the higher level category Communication.

Suppose that it is extracted as it satisfies schema, minimum support, and

confidence constraints. However, the higher level rule {(user, Paolo)} ⇒
{(service, Communication)} is extracted as well. It has the same rule body

of the former (i.e., (user, Paolo)) and its head (service, Communication) is

just a generalization of (service, SMS). Thus, its support and confidence

are definitely higher than the minimum support and confidence thresholds.

However, the latter rule may be deemed redundant for decision making be-

cause its support and confidence increase is only due to the generalization of

the rule head. The new opportunistic confidence constraint proposed in this

paper allows us to prune these kinds of redundant rules to reduce the set of

generated rules and facilitate the decision making process.

4

This paper presents the CoGAR (Constrained Generalized Association

Rules) framework to efficiently mine generalized association rules by en-

forcing interesting constraints. Given a minimum support and confidence

threshold, a set of schema constraints on the structure of interesting pat-

terns, and the opportunistic confidence constraint, the mining task follows

the traditional two-step approach [1]: (i) Extraction of the frequent general-

ized itemsets driven by support and schema constraints, and (ii) generation

of the corresponding generalized rules, driven by both confidence and oppor-

tunistic confidence constraints. To prevent discarding relevant but infrequent

knowledge, the itemset generalization process is driven by a (user-provided)

taxonomy composed of aggregation hierarchies. An opportunistic aggrega-

tion approach [5] is exploited to evaluate the taxonomy, i.e., an itemset is

generalized only if it is infrequent with respect to the minimum support

threshold. Unlike previous works [5, 6, 8], the itemset mining algorithm used

by CoGAR is also able to evaluate multiple hierarchies on the same attribute

to analyze at the same time different facets (i.e., aggregation hierarchies) of

the same feature. To effectively support end-users in exploring the extracted

knowledge, mined patterns and multiple-taxonomies are stored in XML files

that can be queried by means of XQuery [22].

Experimental results on real life datasets show the effectiveness ofCoGAR

in mining interesting patterns satisfying both user-specified schema con-

straints and the opportunistic confidence constraint, while experiments on

synthetic datasets show the scalability of the mining algorithm.

The paper is organized as follows. Section 2 introduces definitions and

notations exploited in the paper, while Section 3 presents an overview of the

5

Figure 1: An example of multiple-taxonomy

CoGAR framework and describes the main features of its building blocks.

Section 4 introduces the exploited mining algorithms. Section 5 discusses

the experiments performed to validate the proposed approach. Section 6 dis-

cusses related works, while Section 7 draws conclusions and discusses future

works.

2. Definitions and notations

In the following we introduce a set of notions and definitions preparatory

to the constrained rule mining problem statement.

Let T ={t1, . . . , tn} be a set of labels, called attributes, which describe

6

data features, and Ω={Ω1, . . . ,Ωn} be the corresponding attribute domains.

An item is a pair (ti, valuei) which assigns value valuei ∈ Ωi to attribute ti.

An itemset is a set of items.

A structured dataset D is a collection of records, where each record is a

set of items and contains at most one item for each attribute in T . When

itemsets are mined from structured datasets, each attribute ti may occur at

most once in each itemset. In the rest of this section, we will exploit the

running example dataset reported in Table 1 to facilitate the understanding

of the introduced definitions.

Since we are interested in generalized rules, we suppose that a taxonomy

(i.e., a is-a hierarchy) is defined on the items of the dataset. The taxonomy

is used to aggregate items at different levels. In the running example, the

taxonomy reported in Figure 1 will be considered. A set of aggregations over

items belonging to each attribute may be represented as an aggregation tree.

Definition 1. Aggregation tree. Let ti be an attribute and Ωi the corre-

sponding domain. The aggregation tree ATi is a tree whose leaves are values

in Ωi, while each non-leaf node in the tree is an aggregation of its children,

and may be further generalized by its father. Nodes are mutually exclusive

and collectively exhaustive. The root node of ATi aggregates all values for

attribute ti.

Each tree in Figure 1 is an aggregation tree defined over an attribute.

Note that many aggregation trees can be defined for each attribute. In

Figure 1 two aggregation trees, related to two different facets, are defined for

the date attribute.

A forest of aggregation trees is called taxonomy.

7

Definition 2. Taxonomy. Let T ={t1, . . . , tn} be a set of attributes and

ρ={AT1, . . . , ATm} a set of aggregation trees defined on T . A taxonomy

Γ ⊆ ρ, is a forest of aggregation trees. Γ contains at most one aggregation

tree ATi for each attribute ti in T .

We introduce the concept of multiple-taxonomy to allow different aggre-

gation trees over the same attribute.

Definition 3. Multiple-taxonomy. Let T ={t1, . . . , tn} be a set of at-

tributes. A multiple-taxonomy Θ = {⋃k AT1k, . . . ,
⋃

j ATnj} is a forest of

aggregation trees, where
⋃

j ATij is the set of aggregation trees defined on

attribute ti.

The taxonomy reported in Figure 1 is a multiple-taxonomy because the

date attribute is associated with two aggregation trees.

The multiple-taxonomy is exploited to aggregate items.

Definition 4. Generalized item. Let ti be an attribute, Ωi the correspond-

ing domain, and ATi an aggregation tree defined on ti. A generalized item is

a pair (ti, expressioni), where expressioni is a non-leaf node in ATi defining

an aggregation value over values in Ωi.

The item (date, ISemester2010) is a generalized item aggregating all the

values of date in the range [01/01/2010-30/06/2010].

Definition 5. Generalized itemset. Let I={(t1, value1), (t2, value2), . . .,
(tn, valuen)} be the enumeration of all the items in the structured dataset. Let

Θ be a multiple-taxonomy on T , and E={(t1, expression1), (t2, expression2),

8

. . ., (tm, expressionm)} be the set of generalized items derived by all aggrega-

tion trees in Θ. A generalized itemset Y is a subset of I⋃ E . Each attribute

ti ∈ T may occur at most once in Y .

{(location, Province of Torino), (date, ISemester2010)} is an example

generalized itemset of length 2.

To define generalized itemset support, we first introduce the concept of

generalized itemset matching.

Definition 6. Generalized itemset matching. Let D be a structured

dataset and Θ = {⋃k AT1k, . . . ,
⋃

j ATnj} a multiple-taxonomy on D. Let

leaves(expressioni) ⊆ Ωi be the set of leaf nodes descendants of expressioni

in ATik ∈ Θ. A generalized itemset X matches an arbitrary record r ∈ D if

and only if for all (possibly generalized) items x ∈ X

1. x ∈ I (i.e., x is an item) and x ∈ r, or

2. x ∈ E (i.e., x is a generalized item) and ∃ i ∈ leaves(x) such that i ∈ r

Definition 7. Generalized itemset support. Let D be a structured dataset

and Θ a multiple-taxonomy on D. The support of a generalized itemset X is

given by the number of records r ∈ D matching X divided by the cardinality

of D.

The support of the itemset {(location, Province of Torino), (date, ISemester2010)},
mined from the running example dataset, is equal to 2

6
because the number of

records containing simultaneously a descendant of (location, Province of Torino)

and a descendant of (date, ISemester2010) is equal to two.

The concept of generalized itemset descendant is introduced as it is ex-

ploited by one of the proposed constraints.

9

Definition 8. Generalized Itemset Descendant. A (generalized) item-

set X is a descendant of a generalized itemset Y with respect to a multiple-

taxonomy Θ if (i) X and Y have the same length and (ii) for each item y ∈ Y

there exists an item x ∈ X that is a descendant of y in Θ .

For instance, the itemset {(location, Torino), (date, ISemester2010)} is

a descendant of the itemset {(location, P iemonte), (date, Y ear2010)}. In the

following, we will denote as Desc[Y] the set of descendants of Y .

By combining frequent generalized itemsets, generalized rules can be

mined.

Definition 9. Generalized association rule. A generalized association

rule X ⇒ Y is an association rule in which X ∪ Y is a generalized itemset.

{(location, P iemonte) ⇒ (date, Y ear2010)} is an example of generalized

association rule.

Generalized rules are usually characterized by their support and con-

fidence values. Given a (generalized) rule X ⇒ Y , its support is equal

to the support of the itemset X ∪ Y , while its confidence is defined as

conf(X ⇒ Y) = sup(X∪Y)
sup(X)

.

Two different types of constraints are enforced by our framework on gen-

eralized rules: (i) schema constraints and (ii) the opportunistic confidence

constraint. In the following, their formal definitions are given.

Schema constraint. A schema constraint restricts the set of attributes

that may appear in an itemset.

10

Definition 10. Schema constraint. Let T ={t1, . . . , tn} be a set of at-

tributes. A schema constraint Sc ⊆ T of length k is a set of k distinct

attributes. A generalized itemset X satisfies constraint Sc iff attr(X) ⊆ Sc,

where attr(X) is the set of attributes in X.

An example of a schema constraint is {user, service}. The example

schema constraint specifies that the only itemsets of interest are those of

length 2 of type {user = valueuser, service = valueservice} or those of length

1 related to one of the two attributes of interest ({user = valueuser} and

{service = valueservice}).

Definition 11. Schema constraint satisfaction. Let X be a generalized

itemset, attr(X) the set of attributes in X, and S={Sc1, . . . , Scn} 6= ∅ a set

of schema constraints. X satisfies constraints in S iff attr(X) ⊆ Sci for at

least an i ∈ [1, n].

When S = ∅ no schema constraint is enforced. From the above definition,

it trivially follows that if itemset X satisfies a constraint Sc, then any itemset

Y ⊆ X also satisfies Sc. This property can be profitably exploited to apply

schema constraints during the itemset mining step.

For example the schema constraint {user, service} is satisfied by the item-

set {user = Paolo, service = SMS} and also by the itemsets {user =

Paolo} and {service = SMS}.

The opportunistic confidence constraint. We propose a new constraint,

called opportunistic confidence constraint, to prune a set of generalized rules

that are considered useless. The opportunistic confidence constraint is based

11

on the confidence measure and compares each generalized rule r with a sub-

set R(r)desc of its descendants. R(r)desc includes all the descendant rules of

r such that the body is the same body of r while the head is a descendant of

the head of r. Given a minimum confidence threshold, we consider a gener-

alized rule r useful if it satisfies the enforced minimum confidence threshold

while no rule in R(r)desc satisfies it.

Definition 12. Opportunistic confidence constraint. Given a mini-

mum confidence threshold minconf , an arbitrary generalized rule r : X ⇒ Y

satisfies the opportunistic confidence constraint iff (i) conf(r) ≥ minconf

and (ii) ∄ rd : X ⇒ Z, with Z ∈ Desc[Y], such that conf(rd) ≥ minconf .

Given a structured dataset D, a multiple-taxonomy Θ, a set of schema

constraints S, a minimum support threshold minsup, a minimum confi-

dence threshold minconf , and the opportunistic confidence constraint, the

CoGAR framework discovers generalized association rules satisfying all con-

straints.

3. The CoGAR Framework

The CoGAR (Constrained Generalized Association Rules) framework

mines generalized rules satisfying both user-provided schema constraints and

the opportunistic confidence constraint. It has been exploited to extract

valuable knowledge from different application domains (e.g., network traffic

analysis, mobile service analysis).

Figure 2 shows the building blocks of the CoGAR framework, which

mainly performs three activities. (i) Data integration and pre-processing.

12

Data to be analyzed is usually provided by different and heterogeneous

sources. Before performing the knowledge discovery process, data is cleaned

by removing irrelevant and redundant information and integrated into a

common data structure. (ii) Generalized association rule mining with con-

straints. The mining block is the core of CoGAR. It exploits a (user-

provided) multiple-taxonomy to drive the mining of generalized association

rules. To tailor the mining process to specific user targets, schema con-

straints are enforced during the itemset mining step. Moreover, the oppor-

tunistic confidence constraint is enforced to prune generalized rules that do

not provide new interesting knowledge with respect to similar rules at lower

abstraction levels. (iii) Rule querying and selection. To allow end-users to

easily exploit the mined knowledge, both the set of generalized rules and

the multiple-taxonomy are stored in an XML data repository, which can be

queried by means of the XQuery language [22].

A more detailed description of the functionalities of each CoGAR archi-

tectural block follows.

3.1. Data integration and preprocessing

This block collects data coming from different sources, integrates them,

and applies preprocessing tasks (e.g., data discretization) to transform data

into a common data structure. During the preprocessing phase, data cleaning

and redundant data pruning may be performed. Finally, preprocessed data

are stored in a common data repository. Independently of the domain, the

data integration step is based on a global as view (GAV) approach. A relation

global view is defined on the available sources by means of semantic mappings

between the schemata of the sources and the schema of the global view.

13

Figure 2: The CoGAR Framework Architecture

The global view provides an integrated view that is exploited by the mining

block. The semantic mappings, defined by a domain expert, depend on the

application domain.

Consider a context-aware mobile application with two data sources. The

first source stores the positions of users, while the second source stores user

requests. In the first data source the user position can be either a GPS co-

ordinate or a mobile phone cell, depending on the used device (e.g., laptops,

mobile phones). A proper data transformation is needed to obtain the same

value when the position of the user is semantically the same, independently

of the original format. To obtain a uniform representation, each position can

be, for example, mapped to the corresponding city. This semantic mapping

allows obtaining a uniform representation of user locations in the global view

defined on the original data sources. To obtain a global view integrating user

positions and service requests, the two data sources must be joined by ex-

ploiting the time information available in both sources. However, also in this

14

case a proper mapping must be defined to obtain a uniform representation

of the time information as data sources exploit different formats.

3.2. Generalized association rule mining with constraints

Given the common data repository generated by the first block ofCoGAR,

a multiple-taxonomy, schema constraints, and the opportunistic confidence

constraint this block performs the extraction of frequent generalized associ-

ation rules satisfying constraints. The extracted rules are stored in an XML

repository. The mining task follows the usual two-step approach [1]: (i)

Extraction of frequent generalized itemsets and (ii) generation of rules.

To improve the efficiency of the mining task, schema constraints should

be enforced as soon as possible. We propose an efficient itemset mining al-

gorithm (i.e., CI-Miner) that directly mines generalized itemsets by pushing

schema constraints into the itemset mining step. Generalized association

rules satisfying the same schema constraints may be mined by applying any

traditional rule mining algorithm on the extracted itemsets. We used our

implementation of the traditional rule mining procedure proposed in [1]. Fi-

nally, a post-processing step is applied to enforce the opportunistic confidence

constraint.

Section 4 reports more detailed information about the used mining algo-

rithms.

3.3. Rule querying and selection

The mining block exclusively extracts rules satisfying the enforced con-

straints. Further exploration may allow end-users to focus their attention

on specific subsets of rules depending on their goals. The rule querying and

15

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT ruleSet (rule*)>

<!ELEMENT rule (measure+, body, head)>

<!ELEMENT measure (#PCDATA)>

<!ATTLIST measure name CDATA #REQUIRED>

<!ELEMENT body (item+)>

<!ATTLIST body length CDATA #REQUIRED>

<!ELEMENT head (item+)>

<!ATTLIST head length CDATA #REQUIRED>

<!ELEMENT item EMPTY>

<!ATTLIST item attributeName CDATA #REQUIRED attributeValue CDATA #REQUIRED>

Figure 3: DTD of the XML document for association rule representation

selection block of CoGAR allows end-users to retrieve subsets of rules, or

ranking them, according to their actual analysis target. We use XML to

store both the extracted rules and the exploited multiple-taxonomy, while

XQuery [22] is adopted to query and retrieve the rules of interest.

The DTD reported in Figure 3 describes the schema of the XML docu-

ments used to represent the mined rule sets. The rule element is used to

represent rules, while the body and the head elements respectively repre-

sent the antecedent and the consequent of the rules. To store the value of

the measures of interest the measure element is used. An XML document

representing a rule set including two simple rules is reported in Figure 4.

The proposed XML rule representation is easily and efficiently queryable

by means of the XQuery language [22]. Figure 5 reports an example query,

which retrieves all the rules that include the item (user, Paolo) in their body

and sorts them by descending confidence. According to user interests, similar

queries may be easily written by the end-users of CoGAR.

Also the exploited taxonomy is represented by means of XML files. Fig-

ure 6 represents the DTD associated with the XML files used to store tax-

onomies, while Figure 7 represents a part of an example taxonomy. For each

16

<ruleSet>

<rule>

<measure name="support">5.8</measure> <measure name="confidence">50.5</measure>

<body length="1">

<item attributeName="user">Paolo</item>

</body>

<head length="2">

<item attributeName="date">2008-12-24</item>

<item attributeName="hour">13:24</item>

</head>

</rule>

<rule>

<measure name="support">7.5</measure> <measure name="confidence">30.0</measure>

<body length="2">

<item attributeName="user">Tania</item>

<item attributeName="date">2008-11-02</item>

</body>

<head length="1">

<item attributeName="service">Chat</attribute>

</head>

</rule>

</ruleSet>

Figure 4: An example of an XML document representing a rule set including two rules

<resultSet> { for $rule in doc("MinedRuleSet.xml")/ruleSet/rule

where exists($rule/body/item[@attributeName="user" and @attributeValue="Paolo"])

order by $rule/measure[@name="confidence"] descending

return $rule) } </resultSet>

Figure 5: Selection of the rules including the item (user, Paolo) in the rule body, sorted
by descending confidence

generalized item the listOfChildren element is used to represent its chil-

dren. Each child item can be either a generalized or not generalized item.

Figure 7 shows part of a taxonomy composed of two aggregation trees. The

first part of Figure 7 reports an aggregation tree defined on the date attribute

(dates are aggregate in months, semesters, and years) while the second part

defines an aggregation over the service attribute.

The XML representation of the used taxonomy allows performing more

complex queries by considering contemporaneously the XML file representing

the mined rules and the one representing the taxonomy. For example, by

17

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT taxonomy (item+)>

<!ELEMENT item (listOfChildren*)>

<!ATTLIST item attributeName CDATA #REQUIRED attributeValue CDATA #REQUIRED>

<!ELEMENT listOfChildren (item+)>

Figure 6: DTD of the XML document for taxonomy representation

<taxonomy>

<item attributeName="date" attributeValue="Year2010">

<listOfChildren>

<item attributeName="date" attributeValue="FirstSemester2010">

<listOfChildren>

<item attributeName="date" attributeValue="January2010"/>

<item attributeName="date" attributeValue="February2010"/>

.....

</listOfChildren>

</item>

<item attributeName="date" attributeValue="SecondSemester2010">

<listOfChildren>

<item attributeName="date" attributeValue="July2010"/>

.....

</listOfChildren>

</item>

<listOfChildren>

</item>

<item attributeName="service" attributeValue="Communication">

<listOfChildren>

<item attributeName="service" attributeValue="PhoneCall"/>

<item attributeName="service" attributeValue="SMS"/>

<listOfChildren>

</item>

</taxonomy>

Figure 7: An example of an XML document representing a taxonomy

using the two XML files, it is possible to select all the rules containing a

descendant of the generalized item (service, Communication) in the rule

consequent. The corresponding XQuery is reported in Figure 8.

4. Mining algorithms

The mining block of CoGAR is based on three components: (i) a schema

constrained itemset mining algorithm (CI-Miner), (ii) a rule mining algo-

18

<resultSet> {
for $rule in doc("MinedRuleSet.xml")/ruleSet/rule

where $rule/head/@length="1"

and exists(for $item in doc("Taxonomy.xml")//item[@attributeName="service" and

@attributeValue="Communication"]//item

where $item/@attributeName=$rule/head/item/@attributeName

and $item/@attributeValue=$rule/head/item/@attributeValue

return $item)

return $rule } </resultSet>

Figure 8: Selection of the rules including a descendant of the item (service,
Communication) in the rule head

rithm (RuleGen), and (iii) a post-processing filtering algorithm (CR-Filter).

These three algorithms are sequentially invoked.

The first applied algorithm is CI-Miner. It extends the GenIO algo-

rithm [5] by pushing the schema constraint into the itemset mining process.

Given a structured dataset D, a multiple-taxonomy Θ, a minimum support

threshold minsup, and a set of schema constraints S, the CI-Miner algo-

rithm extracts frequent generalized itemsets satisfying constraints in S by

means of an opportunistic approach [5]. The opportunistic approach gener-

alizes an itemset only if it is infrequent with respect to the minimum support

threshold. It exploits a lazy taxonomy evaluation, which is triggered on in-

frequent itemsets only. Hence, an arbitrary frequent generalized itemset Y

is extracted by CI-Miner iff (i) there exists at least a constraint Sc ∈ S such

that attr(Y) ⊆ Sc and (ii) Y has at least an infrequent descendant.

CI-Miner iteratively generates generalized itemsets by means of a level-

wise approach (i.e., it is an Apriori-like approach). In an arbitrary iteration k,

CI-Miner performs two steps: (i) Support counting and selection of frequent

itemsets with length equal to k and (ii) generation of candidate itemsets

of length k + 1 by joining k-itemsets. However, differently from traditional

algorithms (e.g., [1]), at each iteration CI-Miner enforces a set of schema

19

constraints S to prune the set of candidate itemsets. Only the candidate

itemsets satisfying at least one of the enforced schema constraints are con-

sidered in the following iterations. This allows pruning useless candidates.

CI-Miner also exploits the maximum schema constraint length to break the

Apriori-like mining process earlier. In particular, itemsets longer than the

maximum enforced constraint length are not extracted as they do not satisfy

any constraint in S.
The set of generalized itemsets mined by CI-Miner is exploited by our

implementation of the traditional rule mining procedure proposed in [1] (de-

noted as RuleGen in the following). Given the set of frequent generalized

itemsets and a minimum confidence threshold (minconf), the rule mining

procedure generates the set of generalized association rules with a confi-

dence value at least equal to minconf . The mined set will be denoted as R

throughout the section.

Finally, the opportunistic confidence constraint is enforced on R by a

post-processing algorithm, called CR-Filter. Algorithm 1 reports the pseudo-

code of CR-Filter. To check if an arbitrary rule r satisfies the opportunistic

confidence constraint, r must be exclusively compared with the set of rules

having its own antecedent. This property is exploited by CR-Filter to enforce

the opportunistic confidence constraint. Hence, rules are initially partitioned

by considering their antecedent (lines 1-3). Then, the algorithm considers one

rule set RX at a time (lines 4-9) and checks which rules in RX satisfy the

opportunistic confidence constraint (lines 5-7). The initial partitioning of the

rule set significantly reduces the number of comparisons.

20

Algorithm 1 CR-Filter: Constrained Rule Filtering
Input: set of rules R,multiple-taxonomy Θ
Output: Rselected, set of generalized rules satisfying the opportunistic confidence constraint

/*Rule partitioning by considering their antecedent*/
1: for all itemset X in {X|r : X ⇒ Y ∈ R} do

2: RX = {r|r ∈ R and r.antecedent = X} /*RX is the set of rules with the itemset X as antecedent*/
3: end for

/*Enforcement of the opportunistic confidence constraint*/
4: for all rule set RX do

5: for all rule r in RX do

6: delete r from RX if ∃rl ∈ RX such that rl.consequent is a descendant of r.consequent
7: end for

8: Rselected=Rselected ∪ RX

9: end for

10: return Rselected

5. Experimental results

We evaluated the CoGAR framework by means of a large set of exper-

iments addressing the following issues: (i) The effectiveness of the proposed

approach in mining valuable knowledge from different application domains

(Section 5.2), (ii) the effect of the enforced constraints on the set of mined

generalization rules (Section 5.3), and (iii) the scalability of the proposed

generalized rule miner, in terms of execution time on synthetic datasets,

with respect to (a) the number of records, and (b) the taxonomy height

(Section 5.4).

5.1. Experimental settings

Experiments were performed on both real and synthetic datasets. Two

real datasets collected from the context-aware domain and the network traffic

domain were used. In Sections 5.1.1 and 5.1.2 the main characteristics of

these datasets and the set of enforced schema constraints are reported. The

characteristics of the synthetic datasets, used to analyze the scalability of

the proposed approach, are described in Section 5.4.

21

All the experiments were performed on a 2.66 GHz Pentium IV system

with 8 GB RAM, running Ubuntu Release 9.10. The CoGAR framework

was implemented in the Python programming language [17].

5.1.1. Context-aware dataset

Telecom Italia Lab1 provided us the Recs dataset containing a set of re-

quests submitted to a real context-aware service provider system (the Recs

system). The Recs system provides recommendations to mobile device users

on restaurants, museums, movies, and other entertainment activities. Each

user can request a recommendation (GET REC service), enter a score (VOTE

service), or update a score (UPDATE VOTE service) for an entertainment

activity. The analyzed dataset was obtained by logging the requests of 20

users and their locations over a time period of three months. The dataset

contains 5814 records (i.e., requests). Each record is characterized by the

request type, the parameters of the request, the user and its context infor-

mation (user location, date, and time). To perform generalized rules mining,

a single taxonomy including the following aggregation trees has been initially

defined.

• date → month → trimester → year

• timestamp → hour → timeslot (two hours timeslots)→ day period

(AM/PM)

• latitude:longitude → city → country

The usage of a multiple-taxonomy is discussed in Section 5.2.3.

1TILab is the Telecom Italia Group research hub

22

Table 2: Recs dataset: enforced schema constraints
Constraint Rule Example

{user, date, time} {(user, John)} ⇒ {(date, June), (time,morning)}
{user, time, place} {(user, John)} ⇒ {(time,morning), (place, office)}
{user, time, param} {(user, John), (time,morning)} ⇒ {(param, OUT)}
{user, date, param} {(user, John), (date, winter)} ⇒ {(param, OUT)}
{user, date, place} {(user, John)} ⇒ {(date, winter), (place, office)}

{user, place, param} {(user, John), (place, office)} ⇒ {(param, OUT)}
{user, service, time} {(user, John), (service, CALL)} ⇒ {(time, 2− 6p.m.)}
{user, service, date} {(user, John), (service, CALL)} ⇒ {(date, December)}
{user, service, place} {(user, John), (service, CALL)} ⇒ {(place, office)}
{user, service, param} {(user, John), (service, CALL)} ⇒ {(param, OUT)}
{service, date, time} {(service, CALL), (date, winter), (time, afternoon)}
{service, place, time} {(service,WEATHER)} ⇒ {(place, home), (time, evening)}
{service, place, date} {(service,WEATHER), (place, home)} ⇒ {(date, summer)}
{service, param, date} {(service, CALL)} ⇒ {(param, OUT), (date, week− end)}
{service, param, time} {(service, CALL)} ⇒ {(param, OUT), (time, afternoon)}
{service, place, param} {(service,WEATHER), (place, home)} ⇒ {(param, TODAY)}

Enforced schema constraints. A domain expert in charge of service provi-

sioning provided us the schema constraints reported in Table 2, together

with examples of compliant rules. He was interested in profiling users and

services. Thus, constraints include the user and/or the service attribute.

The user attribute is exploited to characterize the user behavior, while the

service attribute is exploited to profile service usage. Additional informa-

tion deemed relevant was the user/service context information (e.g., service

invocation date and time, user location).

5.1.2. Network traffic dataset

NetCapture is a network traffic dataset obtained by performing differ-

ent capture sessions with the open-source Network Analyzer tool [13] on a

backbone link of our campus network. Captured traffic has been aggregated

in traffic flows (i.e., records summarizing a group of similar and temporally

contiguous packets). Each flow is characterized by six attributes: Source IP

address, destination IP address, source port, destination port, flow size (i.e.,

23

the size of the flow expressed in byte), and number of IP packets aggregated

in that flow. The NetCapture dataset is characterized by 16, 783 records.

The taxonomy used in the experiments aggregates infrequent items ac-

cording to the following aggregation trees. (1) Source and destination ports

are aggregated by exploiting the aggregation tree shown in Figure 9(a), which

introduces three aggregation values (i.e., well known, registered, dynamic).

(2) Source and destination IP addresses are aggregated by exploiting the

aggregation tree shown in Figure 9(b)2. IP addresses are aggregated in sub-

net if they are local to our campus network. IP addresses not belonging

to the campus network are aggregated in a more general external address

node. Furthermore, both the flow size (bytes) and the number of IP packets

attributes are uniformly discretized in 4 bins, whose intervals are [1,1000),

[1000, 2000), [2000, 3000), and equal or greater than 3000.

Enforced schema constraints. A network analyst was interested in identifying

pairs of network devices (each device is identified by its IP) that frequently

communicated together and the characteristics of the generated traffic (e.g.,

used ports, number of transmitted packets). He was also interested in identi-

fying single network devices (IPs) with a huge amount of incoming/outgoing

data on specific ports. He provided us the schema constraints reported in

Table 3 to drive the network traffic analysis.

5.2. Effectiveness of the CoGAR framework

The effectiveness of the proposed approach in mining valuable generalized

association rules in different application domains is discussed in Sections 5.2.1

2For privacy reasons, the first 16 bits of the IP addresses are hidden.

24

(a) Aggregation tree
ATport for the source
and destination port at-
tributes

(b) Aggregation tree ATIP−address

for the source and destination IP ad-
dress attributes

Figure 9: Aggregation trees for the port and IP attributes

(context-aware data) and 5.2.2 (network traffic data). Section 5.2.3 intro-

duces the enforcement of a multiple-taxonomy to enrich the knowledge dis-

covery process.

5.2.1. Knowledge discovery from context-aware data

The habits of specific users (or user categories) may be characterized by

some kind of recurrence. By selecting from Table 2 only the schema con-

Table 3: NetCapture dataset: enforced schema constraints
Constraint Rule example

{IPsource, IPdest, Portsource} {(IPsource,X.Y/16), (Portsource,184)} ⇒ {(IPdest,Extern)}
{IPsource, IPdest, Portdest} {(IPsource,X.Y/16)} ⇒ {(IPdest, Extern), (Portdest, 184)}

{IPsource,Portsource,F lowsize} {(IPsource,X.Y/16), (Portsource,50)} ⇒ {(F lowsize,10)}
{IPdest, Portdest, F lowsize} {(IPdest, X.Y/16), (Portdest, 50)} ⇒ {(F lowsize,10)}

{IPsource,Portsource,PacketsNr} {IPsource,X.Y/16), (Portsource,50)} ⇒ {(PacketsNr, 10)}
{IPdest, Portdest, PacketsNr} {(IPdest,X.Y/16), (Portdest, 50)} ⇒ {(PacketsNr, 10)}
{IPsource, IPdest, PacketsNr} {(IPsource,X.Y/16), (IPdest, Extern)} ⇒ {(PacketsNr, 10)}
{IPsource, IPdest, F lowSize} {(IPsource,X.Y/16), (IPdest,Extern)} ⇒ {(F lowsize,10)}

{Portsource, Portdest, F lowSize} {(Portsource, 1024), (Portdest, 184)} ⇒ {(F lowsize,10)}
{Portsource,Portdest, PacketsNr} {(Portsource, 1024), (Portdest, 184)} ⇒ {(PacketsNr, 10)}

25

straints involving the user attribute (i.e., the first ten schema constraints),

generalized rule mining is tailored to user profiling. For example, the fol-

lowing generalized rule allows the discovery of valuable knowledge about a

generic user of the Recs application, named Rossi3.

{ (user, Rossi)} ⇒ { (date, II Trimester 2009) (service, GET REC)

} (sup = 9.8%, conf = 95%)

This rule has been mined by enforcing a support threshold equal to 1%

(i.e., absolute threshold=58) and by exploiting the user-provided taxonomy

reported in Section 5.1.1.

The rule highlights that user Rossi is interested in getting recommendations

in the second trimester of year 2009, with rule confidence 95%. Thus, it

provides relevant knowledge on this user attitudes. In particular, for specific

users (user categories), rules satisfying the above constraints may highlight

the service type users are mainly interested in, the context in which requests

are commonly submitted, and the parameters which are frequently used.

Consider now the following rule:

{ (user, Rossi)} ⇒ { (date, Year 2009) (service, GET REC) } (sup =

10.4%, conf = 98%)

It highlights a higher level recurrence that does not provide additional

knowledge with respect to the former one, as the confidence increase from the

former to the latter one is exclusively due to the rule head generalization on

the date attribute (i.e., from trimester to year). The opportunistic confidence

3Actual individual names are not provided for privacy reasons.

26

constraint allows sharply pruning this kind of rules which are considered

rendudant and, thus, not useful for analyst decision making.

By enforcing all the constraints reported in Table 2, the following gener-

alized rule is also extracted.

{ (place, Italy) (date, II Trimester 2009)} ⇒ {(service, GET REC)}
(sup = 17%, conf = 97%)

This rule shows a different application-oriented recurrence. In particular,

it emphasizes that the GET REC service is frequently requested when the

location is Italy and the date is in the second semester of year 2009.

5.2.2. Knowledge discovery from network traffic dataset

To discover interesting correlations hidden in the network traffic trace,

the itemset mining process might be initially driven by the whole schema

constraint set reported in Table 3 and by a minimum support threshold

equal to minsup=1.5%, while the rule generation should be driven by a min-

imum confidence threshold minconf=10% and the opportunistic confidence

constraint. Among others, the following generalized rule is extracted.

(i) { (IP source, Extern), (Flow Size, > 3000)}⇒ {(IP destination,

X.Y.85/24) } (sup = 1.7%, conf = 15%)

The above rule highlights significant incoming external traffic flows to subnet

X.Y.85/24. Indeed, the network domain expert should consider to monitor

the most significant incoming flows involving subnetX.Y.85/24 to understand

problems coming from network traffic overloading.

Beyond the former rule, a traditional generalized rule miner, driven by

support and confidence constraints only, would extract the following higher

27

level rule as well:

(ii) { (IP source, Extern), (Flow Size, > 3000)}⇒ {(IP destination,

X.Y/16) } (sup = 2.8%, conf = 32%)

Its extraction may mislead the expert in decision making, as it could lead

him to carry out a monitoring campaign on a larger set of IP addresses

(X.Y/16) even if the contemporaneous extraction of (i) suggests to restrict

the monitoring space to the 24-bit subnet X.Y.85/24. The enforcement of the

opportunistic confidence allows avoiding redundant and possibly misleading

knowledge extraction, thus, easing the knowledge discovery process.

A more insightful analysis tailored to traffic volume monitoring may focus

on how hosts belonging to subnet X.Y.85/24 are contacted on specific well-

known ports (e.g., port 1000). By focusing on recurrences involving couples

source/destination IP addresses and ports only (i.e., enforcing just the first

two mining constraints in Table 3) and by lowering the support thresholds

(minsup=0.1%), the following rule is mined.

(iii) { (IP destination, X.Y.85.189) } ⇒ {(Destination Port, 1000)}
(sup = 1.2%, conf = 88.8%)

It highlights relevant incoming connections through well-known port 1000

of internal an IP address belonging to subnet X.Y.85/24. The analyst may

deem this knowledge relevant as he monitors service usage on specific ports

to prevent and manage network overloading situations.

5.2.3. Multiple-taxonomy evaluation to enhance the knowledge discovery

For several application domains the analysis on different facets of the same

feature is desiderable. Multiple-taxonomy evaluation provides the capability

28

to explore at the same time different aggregation trees on the same attribute.

For example, suppose to enrich the taxonomy proposed in Section 5.1.1 by

extending the date attribute taxonomy with the week day, week, and bimester

information as follows.

• date → month → trimester → year

• date → bimester

• date → week day → week

• timestamp → hour → timeslot (two hours timeslots)→ day period

(AM/PM)

• latitude:longitude → city → country

The usage of different aggregation trees for the date attribute could be

semantically interpreted as a faceted knowledge classification, in which facets

are different axes along which items are aggregated.

By enforcing a minimum support threshold equal to 2% and the same

constraints proposed in Section 5.1.1, the following generalized association

rules are mined (among others).

{ (user, Rossi) } ⇒ { (date, Tuesday), (service, GET REC) } (sup =

3.4%, conf = 33%)

{ (user, Rossi) } ⇒ { (date, May-June 2009), (service, GET REC) }

(sup = 7.5%, conf = 73%)

These rules provide a more detailed knowledge on user Rossi habits. They

emphasize a different facet of the date attribute (the day of the week) that

29

may better support domain experts in user profiling (e.g., to personalize

daily promotions depending upon the yearly time period). They also allow

the specialization of previously mined knowledge by highlighting a smaller

time slice (i.e., May-June vs. May-July). When a single aggregation tree per

attribute is allowed, multiple extraction sessions are needed to obtain the

same information.

5.3. Effect of the enforced constraints

The value of the minimum support and confidence thresholds significantly

affect the number of mined rules. To avoid the extraction of uninteresting

correlations, we propose to enforce analyst-provided schema constraints and

the new opportunistic confidence constraint as well. In this section, we an-

alyze the effect of the enforced constraints in terms of both the number of

extracted generalized rules and execution time. To this aim, we separately

analyze the effect of schema and opportunistic confidence constraints.

5.3.1. Effect of the schema constraints

The CoGAR framework exploits the CI-Miner algorithm to perform gen-

eralized itemset mining. Then, RuleGen is exploited to perform the rule

mining procedure. Itemset mining is commonly constrained by a minimum

support threshold. The CI-Miner algorithm also enforces schema constraints

to further reduce the amount of uninteresting extracted itemsets and, con-

sequently, the number of rules. Figures 10(a) and 11(a) report for the Recs

and NetCapture datasets (i) the number of mined rules and (ii) the cor-

responding extraction time when varying the minimum support threshold

and enforcing no confidence threshold (i.e., minconf=0). We compared the

30

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 1 2 3 4 5 6

N
um

be
r

of
 r

ul
es

Minimum support threshold (%)

Cumulate + RuleGen (Rules with length <= 3)
GenIO + RuleGen (Rules with length <= 3)

CI-Miner + RuleGen

(a) Number of extracted rules

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 1 2 3 4 5 6

E
xt

ra
ct

io
n

tim
e

(s
)

Minimum support threshold (%)

Cumulate + RuleGen (Rules with length <= 3)
GenIO + RuleGen (Rules with length <= 3)

CI-Miner + RuleGen

(b) Extraction time

Figure 10: Recs dataset: Effect of the minimum support threshold on the number of mined
rules and corresponding execution time.

number of rules mined by the mining block based on the CI-Miner itemset

mining algorithm followed by RuleGen (i.e., the rules satisfying the enforced

constraints and the minimum thresholds) with the number of rules mined

by exploiting both Cumulate [2] and GenIO [5] in the initial itemset set

mining phase. Unlike CI-Miner, Cumulate and GenIO do not enforce any

schema constraints, indeed a post-processing step is required to extract the

same knowledge of interest. To perform a fair comparison between the three

extraction processes, we limited the maximum length of the mined itemsets

(and rules) to the maximum constraint length (i.e., max len=3 for schema

constraints in Tables 2 and 3) also when the Cumulate and GenIO algo-

rithms are executed. The enforcement of schema constraints into the mining

process significantly reduces the amount of extracted irrelevant knowledge,

thus improving the efficiency of the knowledge discovery process.

Rule mining based on GenIO slightly outperforms the one based on

Cumulate, at small and medium support thresholds (e.g., minsup=1%), in

31

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 0.1 0.2 0.3 0.4 0.5 0.6

N
um

be
r

of
 r

ul
es

Minimum support threshold (%)

Cumulate + RuleGen (Rules with length <= 3)
GenIO + RuleGen (Rules with length <= 3)

CI-Miner + RuleGen

(a) Number of extracted rules

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 0.1 0.2 0.3 0.4 0.5 0.6

E
xt

ra
ct

io
n

tim
e

(s
)

Minimum support threshold (%)

Cumulate + RuleGen (Rules with length <= 3)
GenIO + RuleGen (Rules with length <= 3)

CI-Miner + RuleGen

(b) Extraction time

Figure 11: NetCapture dataset: Effect of the minimum support threshold on the number
of mined rules and corresponding execution time.

terms of rule pruning selectivity due to the support-driven approach to pat-

tern generalization [5]. For the Recs dataset (see Figures 10(a)) and 10(b)),

schema constraint enforcement yields a reduction larger than 90% of the rule

cardinality for low support threshold (i.e., minsup=0.3%). The time reduc-

tion is significant also for medium support thresholds (e.g., minsup=3%),

while it becomes more and more relevant (i.e., even larger than 95%) when

further decreasing the minimum support threshold.

Similar considerations hold for the NetCapture dataset (see Figure 11(a))

and 11(b)). Mined rule set cardinality reduction and time reduction are less

significant for the NetCapture dataset, with respect to the ones obtained

on Recs, because NetCapture is characterized by fewer attributes than Recs.

Thus, the number of extracted rules is lower and the corresponding time

reduction is less significant.

32

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 e

xt
ra

ct
ed

 r
ul

es

Minimum support threshold (%)

minconf=0 minconf=10% minconf=30%

(a) Number of extracted rules

 0

 20

 40

 60

 80

 100

 120

 140

 0 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 p

ru
ne

d
ru

le
s

Minimum support threshold (%)

minconf=0 minconf=10% minconf=30%

(b) Pruning selectivity

Figure 12: Recs dataset: Effect of the opportunistic confidence constraint.

5.3.2. Effect of the opportunistic confidence constraint

To perform rule generation from the set of extracted frequent itemsets, the

CoGAR framework exploits RuleGen followed by the CR-Filter postpruning

algorithm. The rule mining step is constrained by a minimum confidence

threshold. Besides, we enforced the opportunistic confidence constraint to

further prune the set of extracted generalized rules.

Figure 12(a) reports the impact of the support and confidence thresholds

on the number of rules mined from the Recs dataset when the opportunistic

confidence constraint is enforced.

As expected, the pruning selectivity is more relevant when higher sup-

port and confidence thresholds are enforced. The opportunistic confidence

constraint prunes a subset of the mined rule set that (i) includes at least

a generalized item in the rule consequent, and (ii) may be considered as

redundant (Cf. Definition 12). To evaluate the pruning selectivity of the

new constraint, we consider the Recs dataset, as a representative example,

33

since the extracted pattern sets include around 65%-80% of rules containing

at least a generalized item in the rule head. Figure 12(b) reports the num-

ber of rules pruned by enforcing the opportunistic confidence constraint and

by varying the support and confidence thresholds. The percentage of rules

pruned by the new constraint assumes values in the range [6%-12%] for every

combination of support and confidence values.

The balancing between the confidence threshold and the new oppor-

tunistic confidence constraint could be highlighted by comparing the curves

reported in Figure 12(b). When no minimum confidence is enforced (i.e.,

minconf=0), the generation of a (lower level) rule, satisfying the minimum

support threshold, prevents the generation of all the frequent rules charac-

terized by (i) the same body, and (ii) an ancestor (i.e., higher level itemset)

of its rule head. Indeed, the opportunistic confidence constraint pruning ef-

fectiveness is maximum. When, instead, the minimum confidence threshold

increases, some of the lower level rules are discarded due to the minimum

confidence constraint and, thus, the pruning effectiveness of the opportunistic

confidence constraint decreases.

We also separately analyzed the execution time of the steps of the mining

activity (i.e., itemset mining constrained by the minimum support thresh-

old and schema constraints and rule mining constrained by both confidence

threshold and the new opportunistic confidence constraint). On average, the

execution time of the itemset mining step typically accounts for more than

90% of the total execution time, while the remaining time is devoted to the

rule mining and post-processing steps.

34

5.4. Scalability of the mining process

We analyzed the scalability of the rule mining process with respect to

(i) the number of dataset records and (ii) the taxonomy height. To perform

the scalability analysis we exploited a synthetic data generator based on the

IBM data generator [11].

To allow generating taxonomies of different heights, we properly extended

the original code of the synthetic generator. The taxonomy is generated by

means of the following procedure. For each attribute, all values are considered

as leaves (i.e., level 1) of the corresponding aggregation tree. Next, attribute

values are sorted in a lexicographical order and grouped together based on

a constant aggregation factor f . Finally, each group of items is collapsed

in a newly generated upper level item. The above procedure is iterated

until a unique root is available. For all attributes, we set the factor f to

⌈ (h - 1)√n⌉, where n is the attribute domain cardinality. This leads to the

creation of an aggregation tree, composed of h aggregation levels, such that

the ratio between the number of items at level l and the number of items at

level l − 1 keeps constant.

Since some attributes are continuous, we performed a discretization step

based on an equi-width technique by setting the number of bins to 10.

5.4.1. Scalability with respect to the dataset cardinality

To analyze the scalability of our approach with respect to the cardinality

of the dataset, we generated datasets of size ranging from 5,000 to 200,000

records with 12 categorical attributes and corresponding taxonomies having

height equal to 5. A minimum support threshold equal to 1% was enforced

during the itemset mining step, while no minimum confidence threshold (i.e.,

35

 0

 5000

 10000

 15000

 20000

 25000

 0 50000 100000 150000 200000

E
xt

ra
ct

io
n

tim
e

(s
)

Number of records

constraint length=3
Constraint length=8

No constraint

(a) Scalability on the number of
records. Taxonomy height=5.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 1 2 3 4 5

E
xt

ra
ct

io
n

tim
e

(s
)

Taxonomy height

No constraints Constraint length 8

(b) Scalability on the taxonomy
height. Number of records=70, 000.

Figure 13: Scalability of the IBM datasets (minsup=1%, minconf=0).

minconf=0) was enforced during the rule generation step. Three different

schema constraint configurations are evaluated: (i) All the possible combi-

nations of the first three attributes, (ii) all the possible combinations of the

first eight attributes, and (iii) no schema constraints.

Figure 13(a) plots the overall extraction time (i.e., comprehensive of item-

set and rule mining time and rule post-processing time) for the different con-

straint settings by varying the number of records. It shows that the proposed

algorithm scales almost linearly with respect to the number of records. The

overall CPU time is still acceptable also when dealing with larger datasets,

and even when no constraint is enforced. Obviously, the number and type of

schema constraints significantly impact on the execution time.

5.4.2. Scalability with respect to the taxonomy height

To evaluate the impact of the taxonomy height, we generated different

taxonomies with height ranging from 1 to 5. For each attribute, a 5-level ag-

36

gregation tree is synthetically generated by means of the procedure described

in Section 5.4. Next, the top level is pruned and a 4-level aggregation tree

is generated. By iteratively applying this procedure on each aggregation

tree, the taxonomy height is reduced by one at each iteration. At the end

of the generation process, five different taxonomies of decreasing height are

available for testing.

We set the number of records to 70, 000. A minimum support threshold

equal to 1% and a minimum confidence equal to 0% are enforced during the

mining process. Two different schema constraint configurations have been

evaluated: (i) All the combinations of the first eight attributes, and (ii) no

schema constraint. Figure 13(b) plots the extraction time by varying the

taxonomy height. Since each increase of the taxonomy height corresponds

to an increase of the total number of items, when increasing the taxonomy

height also the number of extracted rules and the execution time increase.

However, the increase does not scale linearly with respect to the taxonomy

height. The difference between the number of items of the l -th taxonomy

level and the number of items of the (l-1)-th taxonomy level depends on the

value of l. According to the taxonomy generation process, the higher is the

value of l, the lower is the difference between the number of items of the two

considered taxonomies. As expected, the execution time increase is higher

when moving from height 1 to 2, while it is lower for higher height values.

The taxonomy height also affects the computational cost of the post-

processing steps. The time spent in rule post-processing scales roughly lin-

early with the taxonomy height. However, its impact on the overall execution

time is negligible.

37

6. Related work

The generalized association rule mining problem was firstly introduced

in [2]. The algorithm proposed in [2] is based on the Apriori principle and

generates generalized itemsets by considering, for each item, all its parents

in the hierarchy. Hence, generalized itemsets are exhaustively generated.

One step further towards a more efficient extraction process for generalized

association rule mining was based on new optimization strategies [9, 10].

In [10] a faster support counting is provided by exploiting the TID inter-

section computation, which is common in rule mining algorithms designed

for the vertical data format. Differently, in [9] an optimization based on a

top-down hierarchy traversal and multiple-support thresholds is proposed. It

aims at identifying in advance generalized itemsets that cannot be frequent

by means of an Apriori-like principle and uses different support for each item

depending on its level in the taxonomy to prune redundant generalized item-

sets. To further increase the efficiency of generalized rule mining algorithms,

in [16] a FP-tree based algorithm is proposed, while in [19] both subset-

superset and parent-child relationships in the lattice of generalized itemsets

are exploited to avoid generating meaningless patterns.

The generalization process of all the state-of-the-art algorithms is driven

by a taxonomy composed of at most one aggregation hierarchy for each given

attribute. Hence, to analyze data characterized by different levels of ab-

straction on the same feature, many mining sessions are needed. CoGAR

overcomes the above issue by means of the CI-Miner algorithm that allows

exploiting multiple-taxonomies enabling generalized knowledge extraction by

considering simultaneously different facets of the same attribute.

38

Typically, the analyst is not interested in all the frequent (generalized)

itemsets or rules. Hence, many previous works [4, 7, 18, 21] has been devoted

to enforcing constraints to extract only a subset of the patterns of interest.

Some of them are based on the items of interest according to the analyst

preferences (e.g., [4, 18]) while others are based on statistical and objective

measures (e.g., [7, 21]). Since the analyst commonly knows the items or the

type of patterns he/she is mainly interested in, this knowledge can be used

to prune the search space. The first algorithm that allows the user to specify

a set of constraints on the patterns of interest is proposed in [18]. It allows

specifying a set of item constraints, which are used to specify the items of

interest and how they could be combined, by means of boolean expressions.

Unlike [18], in our work we exploit schema constraints to focus on a subset

of itemsets of interest. Schema constraints are similar to item constraints.

However, they work at a higher level (at the attribute level). Each schema

constraint could be expressed by means of a set of item constraints. How-

ever, the usage of item constraints requires to explicate all the items that

can appear together and those that cannot. Hence, schema constraints are

definitely more compact and easy to use. In [4] an ad-hoc language to en-

force constraints on the characteristics of the rule body and head has been

proposed. Other approaches (e.g., [21]) exploit objective measures and sta-

tistical tests to perform pattern selection, instead of analyst preferences. For

example, in [21] a set of statistical tests have been used to select significant

patterns. The proposed approach is orthogonal with respect to the afore-

mentioned ones [4, 18] as it could be applied to select the most statistically

significant patterns among those of analyst’s interest.

39

All the approaches mentioned above analyze each rule as itself. Dif-

ferently, the opportunistic confidence constraint compares each generalized

rule with a set of similar rules. In particular, only generalized rules whose

knowledge has not been already described by any other pattern at a lower

abstraction level are included in the mined rule set. A previous approach

that does not analyze each rule as itself is proposed in [7]. The authors

of [7] propose to select a rule depending also on the characteristics of its

simplifications. Given a rule r : X → Y , another rule rs : Xs → Y is a

simplification of r if Xs ⊂ X . The selection criterion proposed in [7] selects a

rule if and only if the difference between its confidence and the confidence of

any of its simplifications is positive. Hence, a rule r is considered of interest

if and only of it provides an improvement, in term of confidence, with respect

to its simplifications. Also the opportunistic confidence constraint proposed

in our work compares each rule with a set of similar rules and exploits the

confidence measure. However, our constraint aims at pruning generalized

rules instead of not generalized rules.

Finally, the idea of exploiting generalized association rules for context-

aware user and service profiling and for network traffic analysis was firstly

introduced in [6] and [3] respectively. The focus in [6] is on profiling users and

services in a mobile context-aware application, while in [3] is on the charac-

terization of stream network data. Both in [6] and [3], the mining activity is

performed by exploiting the GenIO algorithm [5], while the CoGAR frame-

work exploits a different mining algorithm and enforce different constraints

(schema constraints and the opportunistic confidence constraint) to remove

uninteresting or redundant patterns. Many other approaches have been pro-

40

posed to analyze network data (e.g., [14, 15]). However, they usually focus

on identifying devices with anomaly behaviors or on clustering of devices.

Differently, generalized rules aim at giving a high level representation of the

characteristics of the analyzed network.

7. Conclusion and Future Works

In this paper we presented the CoGAR framework to discover interest-

ing generalized association rules. The generalization process is driven by

a multiple taxonomy that allows the opportunistic extraction of knowledge

at different aggregation levels. Besides the minimum support threshold, a

set of constraints on the structure of interesting patterns drives the item-

set mining process to extract only those patterns that satisfy user-provided

schema constraints. Furthermore, we propose the new opportunistic confi-

dence constraint, which is enforced during rule generation step to further

prune from the rule set a subset of patterns deemed redundant for decision

making. Experimental results, on both real and synthetic datasets, show the

effectiveness of CoGAR in mining interesting generalized association rules,

as well as its good scalability.

Future extensions of the CoGAR framework will address (i) the auto-

matic inference of taxonomies from datasets, and (ii) the exploitation of more

efficient rule extraction algorithms (e.g., LCM [20]) or closed itemset mining

algorithms (e.g., TD-Close [12]) to mine generalized rules with constraints.

41

References

[1] R. Agrawal, R. Srikant, Fast algorithms for mining association rules in

large databases, in: J.B. Bocca, M. Jarke, C. Zaniolo (Eds.), Interna-

tional Conference on Very Large Data Bases, Morgan Kaufmann, San

Francisco, CA, 1994, pp. 487–499.

[2] R. Agrawal, R. Srikant, Mining generalized association rules, in:

U. Dayal, P.M.D. Gray, S. Nishio (Eds.), International Conference on

Very Large Data Bases, Morgan Kaufmann, San Francisco, CA, 1995,

pp. 407–419.

[3] D. Apiletti, E. Baralis, T. Cerquitelli, V. D’Elia, Characterizing net-

work traffic by means of the netmine framework, Computer Networks

53 (2009) 774–789.

[4] A. Appice, M. Berardi, M. Ceci, D. Malerba, Mining and filtering multi-

level spatial association rules with ares, in: M.S. Hacid, N.V. Murray,

Z.W. Ras, S. Tsumoto (Eds.), Foundations of Intelligent Systems, 15th

International Symposium, Springer, Berlin/Heidelberg, Germany, 2005,

pp. 342–353.

[5] E. Baralis, L. Cagliero, T. Cerquitelli, V. D’Elia, P. Garza, Support

driven opportunistic aggregation for generalized itemset extraction, in:

5th IEEE International Conference on Intelligent Systems, IEEE, Pis-

cataway, NJ, 2010, pp. 102–107.

[6] E. Baralis, L. Cagliero, T. Cerquitelli, P. Garza, M. Marchetti, Context-

aware user and service profiling by means of generalized association

42

rules, in: J.D. Velasquez, S.A. Rios, R.J. Howlett, L.C. Jain (Eds.), In-

ternational Conference on Knowledge-Based and Intelligent Information

& Engineering Systems, Springer, Berlin/Heidelberg, Germany, 2009,

pp. 50–57.

[7] R.J. Bayardo, R. Agrawal, D. Gunopulos, Constraint-based rule mining

in large, dense databases, Data Min. Knowl. Discov. 4 (2000) 217–240.

[8] J. Han, Y. Fu, Discovery of multiple-level association rules from large

databases, in: U. Dayal, P.M.D. Gray, S. Nishio (Eds.), Proceedings

of 21th International Conference on Very Large Data Bases, Morgan

Kaufmann, San Francisco, CA, 1995, pp. 420–431.

[9] J. Han, Y. Fu, Mining multiple-level association rules in large databases,

IEEE Transactions on knowledge and data engireering 11 (1999) 798–

805.

[10] J. Hipp, A. Myka, R. Wirth, U. Güntzer, A new algorithm for faster

mining of generalized association rules, in: J.M. Zytkow, M. Quafafou

(Eds.), Proceedings of the 2nd European Symposium on Principles of

Data Mining and Knowledge Discovery, Springer-Verlag, London, UK,

1998, pp. 74–82.

[11] IBM, IBM Quest Synthetic Data Generation Code,

http://www.almaden.ibm.com/cs/disciplines/iis/, 2009.

[12] H. Liu, X. Wang, J. He, J. Han, D. Xin, Z. Shao, Top-down mining of

frequent closed patterns from very high dimensional data, Information

Sciences 179 (2009) 899–924.

43

[13] NetGroup, Analyzer 3.0, http://analyzer.polito.it, 2009.

[14] N.H. Park, S.H. Oh, W.S. Lee, Anomaly intrusion detection by cluster-

ing transactional audit streams in a host computer, Information Sciences

180 (2010) 2375 – 2389.

[15] S.T. Powers, J. He, A hybrid artificial immune system and self organising

map for network intrusion detection, Information Sciences 178 (2008)

3024 – 3042.

[16] I. Pramudiono, M. Kitsuregawa, Fp-tax: tree structure based general-

ized association rule mining, in: G. Das, B. Liu, P.S. Yu (Eds.), Pro-

ceedings of the 9th ACM SIGMOD Workshop on Research Issues in

Data Mining and Knowledge Discovery, ACM, New York, NY, 2004,

pp. 60–63.

[17] Python, Python website, http://www.python.org, 2009.

[18] R. Srikant, Q. Vu, R. Agrawal, Mining association rules with item con-

straints, in: D. Heckerman, H. Mannila, D. Pregibon (Eds.), Proceed-

ings of the Third International Conference on Knowledge Discovery and

Data Mining, AAAI Press, Menlo Park, CA, 1997, pp. 67–73.

[19] K. Sriphaew, T. Theeramunkong, A new method for finding generalized

frequent itemsets in generalized association rule mining, in: A. Corradi,

M. Daneshmand (Eds.), Proceedings of the Seventh IEEE Symposium

on Computers and Communications, IEEE Computer Society, Washing-

ton, DC, 2002, pp. 1040–1045.

44

[20] T. Uno, M. Kiyomi, H. Arimura, LCM ver. 2: Efficient min-

ing algorithms for frequent/closed/maximal itemsets, in: R.J.B. Jr.,

B. Goethals, M.J. Zaki (Eds.), Proceedings of the IEEE ICDM Work-

shop on Frequent Itemset Mining Implementations, CEUR-WS.org,

2004.

[21] G.I. Webb, Discovering significant patterns, Machine Learning 71 (2008)

131.

[22] XQuery, Xquery w3c website, www.w3.org/tr/xquery/, 2009.

45

