
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

SNMP Management in a Distributed Software Router Architecture / Bianco, Andrea; Birke, ROBERT RENE' MARIA;
Debele, FIKRU GETACHEW; Giraudo, Luca. - STAMPA. - (2011). (Intervento presentato al convegno IEEE ICC 2010
(Next-Generation Networking and Internet Symposium) tenutosi a Kyoto, Japan nel June 2011)
[10.1109/icc.2011.5963221].

Original

SNMP Management in a Distributed Software Router Architecture

Publisher:

Published
DOI:10.1109/icc.2011.5963221

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2460860 since:

IEEE

SNMP Management in a Distributed
Software Router Architecture

Andrea Bianco, Robert Birke, Fikru Getachew Debele, Luca Giraudo
Dip. di Elettronica, Politecnico di Torino, Italy, Email: {last name}@tlc.polito.it

Abstract—Multi-stage software router architectures permit to
overcome several limitations of single-stage software routers,
allowing to expand the number of available interfaces and to
increase the overall throughput. However, a multi-stage software
router, despite being composed by several internal elements, must
externally appear as a single device. A control protocol called
DIST was defined to solve this problem from the control plane
point of view for a previously proposed multi-stage architecture.
In this paper, we tackle the same problem from the network
management point of view. We define a management architecture
and a manager-agent communication model to coordinate the
information residing on the single elements of the multi-stage
router to present a unified view to the external network manage-
ment station issuing SNMP requests. We analyze the different
variable types contained in the SNMP MIB-II and divide them
into different categories depending on how the response to a
SNMP request is compiled. The handling methods used to create
the proper response to SNMP request for the different types
of MIB variables are described. Analytical computations show
that the proposed management architecture does not affect the
multi-stage software router scalability.

I. INTRODUCTION

Networking equipments, and routers in particular, are char-
acterized by the development of proprietary architectures. This
situation yields to high cost in terms of both equipment
and training, because network administrators need to manage
different vendor devices or they are forced to a single vendor
scenario. This situation drove network researchers to identify
software routers (SRs) as an appealing alternative to propri-
etary devices. SRs are based on personal computers (PCs)
running open-source network application software like Linux,
Click modular router or XORP [1]–[3]. The main benefits
of SRs include: wide availability of multi-vendor hardware
and documentation on their architecture and operation, low
cost and continuous evolution driven by the PC market’s
economy of scale. Furthermore, open source SRs provide the
opportunity to easily modify the router operation, resulting in
flexible and configurable routers. Proprietary network devices
often lack programmability and flexibility.

Criticisms to single PC-based SRs are focused on limited
performance, software instability, lack of system support,
scalability issues, and lack of functionalities. Performance
limitations can be compensated by the natural evolution of the
performance of the PC architecture. Current PC-based routers
and switches can sustain traffic load in the range 1-5 Gbit/s
[4], [5], which is enough for a large number of applications.
However, high-end performance and large size devices cannot
be easily obtained on a single PC.

To overcome these single PC-based router limitations, a
multi-stage architecture (shown in Fig. 1) has been sug-
gested in [6]. The multi-stage architecture exploits classical
PCs as elementary switching elements to build large high-
performance SRs. The proposed architecture has three stages:
the layer 2 front-end load balancers (LBs), acting as interfaces
to the external networks, the layer 3 back-end routers (BRs)
providing the IP routing functionality and an interconnection
network to connect the two stages. In the current imple-
mentation, the interconnection network is simply an Ethernet
switch, the load balancers can be either hardware or software
based, and the back-end routers are PCs running the Linux
IP stack. The multi-stage architecture comprises a control
entity, named virtual Control Processor (CP), that manages,
controls and configures the whole architecture [7]. The virtual
CP hides the internal details of the multi-stage architecture
to external network devices and runs on a selected BR. The
key advantages of such architecture among others include
the ability to: scale the number of interfaces, recover from
faults and provide functional distribution which single PC-
based routers lacked.

However, these advantages come at the cost of control
and management complexity. This complexity problem has
partially been addressed from the control plane perspective [7].
Indeed, an internal control protocol named DIST has been
developed to: i) configure the architecture; ii) coordinate the
routing process among BRs and the load balancing function
among LBs; and iii) provide automatic fault recovery mech-
anisms. Furthermore, DIST dynamically maps the virtual CP
on one of the BRs.

�����

���	

�����

���	

�����

���	

�����

�

�����

���	

�����

�

�����

���	

�����

�

����������� �����������	���

Fig. 1. Multi-stage Software Router Architecture

In this paper we tackle the management plane issue (Sec. II)
in the considered multi-stage architecture. A SNMP dual-role
entity, named aggregator (Sec. III), is introduced to create
the multi-stage architecture management base information
(Sec. V- VI). Sec. IV describes the required communication
model, whereas Sec. VII discusses the scalability of the
approach. Finally, the paper is concluded in Sec. VIII.

II. PROBLEM DESCRIPTION

Networks require management procedures to be successfully
operated. To reach this goal, network devices keep track of
management information, such as cross-traffic, interface status
and general system statistics. This information is organized
into a management information base (MIB) [8] accessible
through different management protocols such as SNMP, Net-
Conf and NetFlow. We focus on SNMP, the most widely used
protocol. SNMP is based on a manager-agent model consisting
of an SNMP manager, an SNMP agent and a managed device
deploying a MIB. The SNMP manager provides the human
interface to the management system, while the SNMP agent
interfaces the manager and the device MIB.

Managers and agents use SNMP messages for information
exchange. SNMP messages comprise request, response and
trap messages. Requests can be either get or set a specific
MIB variable. The agent, upon a request reception, sends back
a response message with the result of the operation. Trap
messages allow the agent to automatically notify the SNMP
manager of important events.

Whereas in a single device MIB variables are directly
accessible, in a multi-stage architecture they are distributed
among different internal elements. This requires additional
complexity to collect and/or aggregate the information to
compile the response for the manager. Indeed, the manage-
ment of the multi-stage router requires the provisioning of a
unified single-entity management information view to external
devices. Therefore, it is necessary to address the problem of
mapping and combining the distributed information into an
aggregated view. This problem is twofold: i) definition of
a communication model to collect the distributed data and
ii) mapping the various data to create a single-entity view.
An agent residing in the multi-stage software router must
coordinate the internal elements and operate on the MIB
information distributed among the internal elements to create
such a single-entity view.

III. MANAGEMENT ARCHITECTURE

Fig. 2 depicts the proposed logical architecture. In this ar-
chitecture, one SNMP dual-role entity, named aggregator, co-
ordinates the internal independent SNMP agents, and interacts
with the external managers issuing SNMP requests. Although
the aggregator could run independently, it is integrated in the
software modules running on the virtual CP.

LBs redirect any external SNMP requests to this entity.
When an SNMP request is received, the aggregator queries the
internal SNMP agents to obtain the required MIB information
and aggregates the information representing the multi-stage

�

���������	
���

�

�

� �

���������	
���

��	���

����	������

�����	�

�

�

� �

Fig. 2. Management System Used in Multi-Stage Software Router: logical
architecture.

architecture. Thus, the aggregator is a dual-role entity that acts
as an agent for external managers and as a manager for internal
agents.

In our implementation, whereas the LBs and the switch
(may) run an SNMP agent, BRs host both the aggregator and
the agent functionalities. More precisely, each BR runs two
instances of an SNMP process: an aggregator (listening on the
standard SNMP port to be reachable from external managers)
and a standard agent listening on a different, configurable,
port, used for internal communication. Although all BRs are
listening on the standard SNMP port, only one aggregator
handles the external requests, because LBs explicitly forward
SNMP request to the active aggregator which resides on
the BR designated as the virtual CP by the DIST protocol.
This scheme provides fast fault recovery for the multi-stage
architecture in case the active aggregator fails. The take over
procedure is taken care by the DIST protocol. When a failure
is detected DIST elects a new Virtual-CP and reconfigures the
LBs to properly redirect SNMP traffic.

Observe that not all the internal elements may be SNMP-
capable. Whereas BRs , being based on Linux PCs, can be
assumed to be SNMP-capable, LBs, especially if hardware
based, might not run an SNMP agent. Therefore, we assume
two classes of LBs: SNMP-capable and SNMP-incapable. This
assumption affects the way in which the aggregator collects
and computes MIB variables, as detailed in Sec. VI.

To ease information sharing among potential aggregators
(which is needed for a quick takeover in case of failure)
and communication with the DIST protocol entity, the archi-
tecture also comprises a database which stores configuration
information of the internal elements and most MIB counters.
If the LB is not SNMP-capable, a minimal set of interface
statistics, namely the received/transmitted bytes/packets and
the link speed information are also saved in the database.

The management architecture was implemented and verified
in a test-bed. The prototype is based on a customized version
of Net-SNMP [9] and MySQL DBMS in addition to the
software required to implement the multi-stage architecture.

IV. MANAGER-AGENT COMMUNICATION MODEL

The standard communication scenario used in SNMP [10]
is defined for a single device which has all the information in
the local MIB. However, since in the multi-stage architecture

the aggregator does not have the whole information locally
available, a modification to the standard SNMP manager-agent
communication model is required.

Fig. 3 shows the modified manager-agent communication
model. The dashed box includes the required extensions to
deal with the multi-stage architecture. Upon request reception,
the aggregator agent checks if the requested variable is locally
available. If yes, it responds with the current available value.
Otherwise, the aggregator manager sends SNMP requests to
the appropriate internal element(s), collects the response(s)
received within a given timeout (in our implementation set
to one second) and, if required, aggregates the data. Finally,
the aggregator agent answers to the original external SNMP
request with this value.

If multiple variables must be collected from the internal
elements, a response to the external manager’s request is sent
on the basis of the available information at a given time, even if
some responses from internal agents are not available yet. For
those elements which did not respond for whatever reason, the
aggregator uses, if available, the corresponding variable value
saved in the database at the previous successful request. For
counter type MIB variable, in the next request, if previously
dead agent comes back to service, the aggregator checks
the occurrence of any variable re-initialization: if found, the
old value contained in the database and the newly available
counter value are summed up to mask the discontinuity. This
compensation guarantees that counters are kept monotonically
increasing. Violating the monotonicity behavior of counters
would be disturbing for the external management software,
because these values are typically used to compute temporal
trends.

V. MULTI-STAGE ROUTER MIB
In the MIB definition of our distributed architecture, we

mainly consider, among all variables defined in the MIB-II
tree, the system, the interface (IF) and the IP group objects
for simplicity reason. These variables are grouped into two cat-
egories, based on how the aggregator computes the response:

a) Global Variables: E.g. the routing table
(ipRouteTable), the system up time (sysUpTime) or the
system name (sysName). Since they do not depend on a
specific internal element, they are stored in the database to
ease information sharing. A response to an external SNMP
request for these variables translates into a simple query to
the database, which might be populated by the aggregator
itself or by the DIST daemon depending on the specific
information. For example, the system name is provided by
the aggregator, while the routing information is updated by
DIST.

b) Collected Variables: This category comprises all the
variables requiring collection of data from one or more in-
ternal agents, e.g., interface information. A further division is
between specific and aggregated variables. Specific variables
can be fetched through a single request to a specific internal
element. This group comprises all the variables containing
specific properties of an internal element, e.g., the link status

�������

��	
������

���������

�	
������

��		���

�����		���

�����

��������

�����

������������

�����	������

�������

�����		��

��
������!������

�����������	
��	��

����		"��������	�

������"��������

��
���#��������	�

�������������	��	�

���������

�����	����

"��������$����	

������������

��	
��	������

"��������$����	

��
������!������

����		"��������	�

��������	
��	��

��
�����	
��	��	�

����������	
��	��	�

���������

��	
��	����

�������

Fig. 3. Modified incoming request scenario diagram for the multi-stage
software router

(ifOperStatus) or the link speed (ifSpeed). Aggregate variables
need instead multiple queries to different internal agents and
require some kind of data aggregation. For instance, the total
number of received packets at the IP layer (ipInReceives) or the
discarded packets at the interface (ifInDiscards) are computed
using counters from several internal elements.

VI. SINGLE-ENTITY MANAGEMENT INFORMATION VIEW

Global and collected specific variables are easy to handle:
a simple request forwarding either to the database manager
or to an internal agent is needed. Thus, we focus on how to
compute the more complex aggregated variables (e.g. IF and
IP counters).

Fig. 4 shows the main counters involved during packet
forwarding, both in a single device router and in the multi-
stage software router. The challenge is to define a mapping
between the counters on the left, representing the single-entity
view, and the counters on the right distributed over the three
stages of the multi-stage architecture. Where ambiguity might
exist, we use an over-line to indicate the mapped computed
variables and the superscript LB and BR for counters at LB
or BR interface respectively. Furthermore, for simplicity, we
define ifInPkts as the sum of both unicast (ifInUcastPkts)
and non-unicast (ifInNUcastPkts) packets.

1) ifInOctets, ifInErrors and ifInUnknownProtos:
These variables count respectively the number of received
bytes, the number of discarded packets due to errors and
unknown/unsupported protocols. These counters are interface
specific and, therefore, simply treated as collected specific
variables.

���������	

����
����	

�����������

�����	

������	����	

�����

����	

����

�����
�����������	

����

�����
��	����	

����

����� ����
��	

������	

�������

�����

����	

����

�����
�����������	

����

�����
��	����	

����

����� ����
��	

�����

�����

����	

����

�����
�����������	

����

�����
��	����	

����

����� ����
��	

�����

�����������	

�������
����	

��������
����	

������	����	

�����������

�����	

�������

��������	

������ ����	

�� ���

������������	

��������
����	

���������
����	

�������	����	

������������

�����	

������� ����	

!�"��#$

!�"��#%

�����

����	

����

�����
�����������	

����

�����
��	����	

����

����� ����
��	

����� ���

����������	

�����
����	

������������

�����	

�������	����	

�������	

!���

&� �����
!���

&� �����

'����(&�����

������

'����(

�����������	

�������
����	

��������
����	

������	����	

�����������

�����	

�������

��������	

������ ����	

�� ���

������������	

��������
����	

���������
����	

�������	����	

������������

�����	

������� ����	

���������	

����
����	

�����������

�����	

������	����	

������	

��!�"��#$

!�"��#%

���

����������	

�����
����	

������������

�����	

�������	����	

�������	

'��� �#������#������)� ���	����#'�������#������

��*����#���(���*����#���(

Fig. 4. Main IF and IP counters involved in packet forwarding for a single-stage router (right) and the multi-stage software router (left). For simplicity,
ifInPkts represents both ifInUcastPkts and ifInNUcastPkts.

As introduced in Sec. III, the computation of MIB variables
may be difficult because some internal elements may be non
SNMP-capable. For this reason, we consider three different
cases for LBs:

• SNMP-capable LBs: SNMP messages are used;
• SNMP-incapable, DIST-capable LBs: The existing con-

trol plane is extended to transport minimal traffic statistics
(e.g. packet and byte counters);

• SNMP-incapable and DIST-incapable LBs: Data collect-
ing is not possible. Counters are approximated using the
information available at the BRs. Thus, some variables,
e.g., ifInErrors, are not available, because these events
occur at LBs’ interfaces only.

Similar considerations apply to the outgoing
counterpart variables: ifOutOctets, ifOutErrors and
ifOutUnknownProtos.

2) ifInDiscards: As defined in the RFC 1213 [8], the
variable ifInDiscards counts the packets which, even if
correct at reception time, are discarded by the device for any
reason. We use this definition to compute all packets lost while
traversing the internal network of the multi-stage architecture.
However, it is not possible to track the exact path (and thereof
the exact counters involved) of each packet within the multi-
stage architecture, due to the unpredictable decision of the
load balancing scheduler. Hence, we define Di as the share of
packets internally discarded for interface i.

Di is computed as the difference of the correctly received
packets at the input interface of the LB (ifInPktsLB

i) and the
sum of correctly received packets at all BRs interfaces RBR,
weighted by wi, the percentage of traffic received at interface

i. RBR and wi are computed as:

RBR =

M∑

j=1

(ifInPktsBR
j) (1)

wi =
ifInOctetsLB

i∑N

k=1
ifInOctetsLB

k

(2)

where M is the total number of BRs interfaces, and N the
total number of external LBs interfaces. Thus,

Di = ifInPktsLB
i − wiR

BR (3)
ifInDiscardsi = ifInDiscardsLB

i + Di (4)

The above formulas make the implicit assumption that the
loss probability is the same on all internal paths, but it has the
nice property of being completely independent of the internal
load balancing scheme adopted. Thanks to this property, the
same procedure can also be applied on the reverse path to
compute ifOutDiscardi without knowing the result of the
routing operation.

In case of SNMP-incapable and DIST-incapable LB,
ifInDiscardsi is directly approximated by Di, replacing
ifInOctets and ifInPkts in Eq. (1)-(4) with the received
bytes rxBytes and received packets rxPkts statistics stored
in the database by DIST.

3) ifInPkts: ifInPkts is the sum of all the correspond-
ing counters at the BRs weighted by wi.

ifInPktsLB
i = wi(

M∑

j=1

ifInPktsBR
j) (5)

For SNMP-incapable and DIST-incapable LB the same sub-
stitution as for ifInDiscards apply.

4) IP counters: The IP counters are located only at the BRs.
The mapping consists of the sum of all the corresponding IP
counters at the BRs. For instance, ipInReceives is computed
as:

ipInReceives =

M∑

j=1

ipInReceivesBR
j (6)

5) sysUpT ime: A special mention is needed for the
sysUpT ime variable, because this information is used as a
time reference for the other variables by the external man-
agement software, to plot temporal graphs. sysUpT ime, is
a global variable used to store the elapsed time since the
management system was running. Given that the aggregator
can run on different BRs at different time, it is important
that the sysUpT ime is not related to a specific instance of
the aggregator, but rather tied to the up time of the whole
architecture. To achieve this, the first aggregator stores the
reference startup time into the database. When an aggregator
fails and another takes over, the start up information remains
the same. The sysUpT ime is re-initialized only if all the BRs
fail, i.e., when the multi-stage router fails.

VII. SCALABILITY ANALYSIS

The use of a centralized aggregator has the advantage of
reduced management complexity. However, scalability issue
might arise due to the concentration of SNMP traffic. There-
fore, we try to estimate the amount of SNMP traffic internally
generated to process an external SNMP request. The worst
case scenario is a request for IfInDiscards, because it
implies the collection of the largest number of variables from
the multi-stage architecture (see Eq. (1)-(4)).

As reported in Sec. VI, M is the total number of BR inter-
faces, whereas N is the total number of external LB interfaces.
Eq. (1) requires to collect 2M variables, because IfInPkts

is the sum of two variables and Eq. (2) requires N variables.
Furthermore, three more variables are needed for Eq. (3) and
(4). In the worst case, for each variable two SNMP messages
(request and response) are required. Typically, the management
station repeats the requests periodically to plot temporal graphs
and keep device history. Therefore, the amount of management
traffic can be computed as:

total traffic =
2(2M + N + 3)S

T
≈

2(2M + N)S

T
(7)

where S is the SNMP message size, typically about 100 bytes
for SNMP responses [11], and T is the update period, typically
set to about 5 minutes.

Let us now consider two scenarios: i) a medium range edge
router with 360 interfaces at 1Gbps (i.e. a mid-range 7600
series Cisco router [12]) and ii) a core router with 16 interfaces
at 10Gbps (i.e. a high-end Juniper T series router [13]).
Assuming PCs with 1Gbps routing capability and one LB
per interface (worst case in terms of generated messages),
then for i) M = 360, N = 360 and for ii) M = 160, N = 16.
Even assuming a very aggressive update period of 1s, the
management traffic would be equal to 216 KBytes/s and 67

Kbytes/s respectively for one MIB variable. Even considering
tens of MIB variables traced by the management station,
the management traffic is negligible with respect to the total
forwarding routing capacity, posing no threat to the overall
architecture. Furthermore, the above formula overestimates the
real internal management traffic, because an SNMP request
is smaller than a SNMP response message and, more im-
portantly, it does not consider the possibility of aggregating
more variables into the same SNMP message, which would
permit to further reduce the number of messages and increase
transmission efficiency.

VIII. CONCLUSIONS

The multi-stage software router, being a distributed router
architecture, requires a coordinated information management
to mask the internal structure and to present the architecture
to external SNMP managers as a single device.

We defined a management system based on three elements
(managers, aggregators and agents) as an extension of the
standard SNMP model. The new system consists of a multi-
stage distributed MIB and an extended communication model,
which define the mechanisms to collect data from distributed
elements in a reliable way and to aggregate the data in an
unified view. The net-SNMP 5.4.2.1 [9] implementation has
been modified and tested in a small scale test-bed and its
scalability was assessed through simple load computations for
two classical high-end router configuration.

REFERENCES

[1] “Linux,” http://www.kernel.org/.
[2] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The

Click Modular Router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp.
263–297, 2000.

[3] M. Handley, O. Hodson, and E. Kohler, “XORP: an Open Platform for
Network Research,” SIGCOMM Comput. Commun. Rev., vol. 33, no. 1,
pp. 53–57, 2003.

[4] M. Dobrescu, N. Egi, K. Argyraki, B. G. Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy, “RouteBricks: Exploiting
Parallelism to Scale Software Routers,” in In Proceedings of the 22nd
ACM Symposium on Operating Systems Principles, 2009.

[5] A. Bianco, R. Birke, D. Bolognesi, J. M. Finochietto, G. Galante, and
M. Mellia, “Click vs. Linux: Two Efficient Open-Source IP Network
Stacks for Software Routers,” in IEEE Workshop on High Performance
Switching and Routing, 2005, pp. 18–23.

[6] A. Bianco, J. M. Finochietto, M. Mellia, F. Neri, and G. Galante, “Multi-
Stage Switching Architectures for Software Routers,” IEEE Network,
Issue on Advances in Network Systems, vol. 33, no. 1, pp. 15 – 21,
2003.

[7] A. Bianco, R. Birke, J. Finochietto, L. Giraudo, F. Marenco, M. Mellia,
A. Khan, and D. Manjunath, “Control and Management Plane in a Multi-
Stage Software Router Architecture,” In Proc. HPSR, pp. 235–240, 2008.

[8] K. McCloghrie and M. Rose, “RFC 1213 Management Information Base
for Network Management of TCP/IP-based internets: MIB-II,” 1991,
http://www.rfc-editor.org/rfc/rfc1213.txt.

[9] “Net-SNMP,” http://net-snmp.sourceforge.net/.
[10] D. Harrington, R. Presuhn, and B. Wijnen, “RFC 3411 An Architecture

for Describing Simple Network Management Protocol (SNMP) Man-
agement Frameworks,” 2002, http://tools.ietf.org/html/rfc3411.

[11] C. Pattinson, “A Study of the Behaviour of the Simple Network
Management Protocol,” In Proc. of 12th International Workshop on
Distributed Systems, Nancy, France, 2001.

[12] “Cisco 7600 Series Routers,” http://www.cisco.com/en/US/products/hw/
routers/ps368/index.html.

[13] “T Series Core Routers,” www.juniper.net/us/en/local/pdf/datasheets/
1000051-en.pdf.

