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S U M M A R Y
The analysis of surface wave propagation is often used to estimate the S-wave velocity profile
at a site. In this paper, we propose a stochastic approach for the inversion of surface waves,
which allows apparent dispersion curves to be inverted. The inversion method is based on
the integrated use of two-misfit functions. A misfit function based on the determinant of the
Haskell–Thomson matrix and a classical Euclidean distance between the dispersion curves.
The former allows all the modes of the dispersion curve to be taken into account with a very
limited computational cost because it avoids the explicit calculation of the dispersion curve
for each tentative model. It is used in a Monte Carlo inversion with a large population of
profiles. In a subsequent step, the selection of representative models is obtained by applying
a Fisher test based on the Euclidean distance between the experimental and the synthetic
dispersion curves to the best models of the Monte Carlo inversion. This procedure allows the
set of the selected models to be identified on the basis of the data quality. It also mitigates
the influence of local minima that can affect the Monte Carlo results. The effectiveness of the
procedure is shown for synthetic and real experimental data sets, where the advantages of the
two-stage procedure are highlighted. In particular, the determinant misfit allows the computa-
tion of large populations in stochastic algorithms with a limited computational cost.

Key words: Inverse theory; Probability distributions; Elasticity and anelasticity; Surface
waves and free oscillations; Site effects; Wave propagation.

1 I N T RO D U C T I O N

The knowledge of the shear wave velocity (V s) profile is valuable
information for geotechnical characterization, geo-hazard studies,
vibration propagation modelling and seismic site response studies
(Kramer 1996). It can also be used to design filters for ground roll
removal and for static calculation in seismic reflection processing
(Mari et al. 1984).

Dispersivity of surface waves is widely used to infer the V s

profile of a soil deposit. The velocity of high-frequency components
depends on the mechanical parameters of the shallow portion of the
subsoil, whereas low-frequency components travel with a velocity
that also depends on the properties of deeper layers.

Surface wave propagation is a multimodal phenomenon. For a
given subsoil model, each frequency can travel with several velocity
values. The curves in the frequency–velocity space representing the
propagation modes of the model are called modal dispersion curves
and they depend only on model parameters. Often the fundamental
mode (the slowest one) is the most energetic. In some cases, also
higher modes are relevant and they can be used in the inversion
process.

A variety of testing setup can be used to collect surface wave
data, and dispersion curves can be extracted from the records using
signal-processing tools (e.g. Dziewonski & Hales 1972; Nolet &
Panza 1976; McMechan & Yedlin 1981).

Notwithstanding the relevance of higher modes, in surface wave
analysis retrieving the V s profile from the fundamental mode of
the observed dispersion curve is still quite common. Although this
approach works fine in several cases, it does not allow all available
information to be exploited. When a sharp velocity contrast or a ve-
locity inversion are present, fundamental mode inversion can also
generate sound errors due to mode misidentification (Maraschini
et al. 2010). The apparent dispersion curve is given by the superpo-
sition of modal curves because of limitations in the array resolution
(Gucunski & Woods 1992; Tokimatsu 1997; Foti et al. 2000).

Several authors have highlighted the importance of higher modes
in the inversion process. They can be used to increase penetration
depth (Gabriels et al. 1987; Xia et al. 2003; Ernst 2008), to stabilize
the inversion process (Xu et al. 2006) and to enhance the resolution
in V s of the inverted model (Xia et al. 2006). They are more sensitive
than the fundamental mode on some model parameters (Socco &
Strobbia 2004).

Other authors have focused on practical problems arising from the
inclusion of higher modes in the inversion process. The first problem
to deal with is the mode separation during processing. Gabriels
et al. (1987) and Foti et al. (2000) highlighted the importance of
a large number of sensors and a long array to improve spectral
resolution while also retaining high-frequency information. When
a two-station method is used (or a limited number of receivers), only
an apparent dispersion curve can be retrieved (Tokimatsu et al. 1992;
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Tokimatsu 1997). The mode separation can further be improved by
means of signal-processing techniques. Park et al. (1999) and Luo
et al. (2008) proposed, respectively, a wavefield transformation and
a high-resolution linear Radon transform.

The major problem in multimodal dispersion curve inversion is
mode numbering. A branch of the apparent dispersion curve can
derive from the superposition of modes, or some modes may be
misidentified in the experimental data set. Zhang & Chan (2003)
remarked on the consequences of mode misidentification. If part of
the dispersion curve is associated with an incorrect mode number,
in particular in the low-frequency range, the consequent errors are
greater than errors due to inaccuracy. From these considerations,
we can derive the necessity for a multimodal inversion algorithm
that does not require mode numbering.

To solve this problem, some authors (e.g. Ganji et al. 1998; Lai &
Rix 1999; Forbriger 2003a,b) compared the experimental apparent
dispersion curve with a synthetic apparent dispersion curve or used
the full waveform inversion. These approaches are computationally
expensive because they require a more realistic simulation of the
wave propagation.

An approach for the inversion of multiple modes without the need
to number modes was proposed by Ernst (2007) and successively
implemented within a deterministic algorithm by Maraschini et al.
(2010). This approach uses a misfit function based on the properties
of the solution of the forward problem, allowing for a substantial
saving of computational costs. In this paper, we implement the same
misfit function within a stochastic algorithm.

The solution of an inverse problem is a probability density func-
tion on the model space, which can present several local minima
(Socco & Boiero 2008). To find the model associated with the maxi-
mum probability, deterministic or stochastic algorithms can be used.
The choice depends on the nature of the problem, the number of
unknowns and the available computational resources (Sambridge &
Mosegaard 2002). The main advantage of Monte Carlo inversion
is that the assumption of linearity between data and model is not
required (Sambridge & Mosegaard 2002; Socco & Boiero 2008).
For non-linear inverse problems, such as surface wave analysis, the
uniqueness of the solution is not guaranteed (Menke 1989) and
a deterministic algorithm can converge into a local minimum be-
cause the model parameter space is not entirely explored (Curtis &
Lomax 2001). Consequently, deterministic algorithms are suitable
when a priori information can be used to constrain the solution.
When the probability density function presents several local min-
ima, and no a priori information is available, Monte Carlo meth-
ods are more suitable because they allow the whole model space
to be investigated. Nevertheless deterministic inversion algorithms
are computationally efficient, whereas Monte Carlo algorithms are
computationally intensive because of the huge number of models
that should to be tested to provide a meaningful result. For this
reason, Monte Carlo algorithms require efficient forward models.

Several global search algorithms can be used, for example uni-
form sampling, Markov chain Monte Carlo, simulated annealing,
genetic algorithms and neighbourhood algorithm (Sen & Stoffa
1996; Sambridge 1999a,b; Sambridge & Mosegaard 2002).

In the case of surface wave analysis, the forward operator of the
dispersion curve calculation is a non-linear function. Consequently,
a Monte Carlo algorithm is more suitable than a deterministic one,
in particular when higher modes are considered, because the multi-
modal misfit function presents several local minima.

Song & Gu (2007) proposed a genetic algorithm for the character-
ization of a roadbed structure. A multimodal approach was required
for the inversion because of a low-velocity layer in the subsoil

model, which would have led a fundamental mode inversion to an
unrealistic result. The used misfit function was a weighted root mean
squares distance between the observed and the calculated dispersion
curves for each mode. This approach required mode numbering for
the inversion.

Lu & Zhang (2006) proposed a multimodal algorithm able to
avoid the problem of mode jumps for the inversion of dispersion
curves generated by soil profiles presenting low-velocity layers.
They compared the observed dispersion curve with a theoretical
dispersion curve calculated choosing for each frequency the mode
associated with the maximum displacement. A genetic algorithm,
which avoids the dependences on the initial model, was used for the
inversion. This method is slower but more accurate than root mean
squared multimodal inversion because modal misidentification is
avoided.

Ryden & Park (2006) studied surface waves on pavements, and
they remarked on the importance of multimodal analysis and the
problem of mode numbering. They proposed a fast simulated an-
nealing algorithm, which compares the observed and the modeled
phase-velocity spectra. This approach required the displacements
calculation, which is computationally expensive.

In this paper, a multimodal misfit function that avoids modal
misidentification and does not require displacements calculation is
presented. The proposed misfit function does not require the modal
dispersion curve calculation because it is based on the function
whose zeroes are dispersion curve for the calculation of the misfit;
consequently the forward code is very fast.

This misfit function is implemented within a uniform sampling
algorithm, which is less efficient than other methods, but it mitigates
the risk of falling into local minima. A second criterion to select a
set of equivalent profiles accounting for data uncertainty is applied
on the results of Monte Carlo inversion.

2 M E T H O D

2.1 The probabilistic approach to the inversion

The forward problem is the prediction of the motion parameters
when a complete physical description of the model is given. The
inversion problem is the inference of the model parameters given the
results of measurements. If the forward operator is not an injective
function from the model space to the data space, the inverse problem
is not a function from the data space to the model space, because
certain data can be generated by more than one model.

The general solution of an inverse problem is a probability distri-
bution on the model space. This probability distribution is a com-
bination of the experimental data, the a priori information about
parameters and the theoretical model (Tarantola & Valette 1982;
Mosegaard & Tarantola 1995; Tarantola 2005).

Let us call M the vectorial space containing all the possible
models m = [m1, . . . , mNm]T, where Nm is the dimension of the
space M and D the vectorial space containing all the possible data

D =
⎡
⎣ d1,1 · · · d1,Nd· · · · · · · · ·

dN ,1 · · · dN ,Nd

⎤
⎦ ,

where Nd is the number of parameters of a given data point and N
is the number of the data points.

The a posteriori probability σ (m) of a model m can be calculated
as (Mosegaard & Tarantola 1995):

σ (m) = k1ρ(m)L(m), (1)
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where ρ(m) is the a priori probability on the model space, k1

is a normalization constant and L(m) is the likelihood function,
that is a function that describes the goodness of fit between the
observed data and the theoretical data. As suggested by Mosegaard
& Tarantola (1995), the likelihood function can be calculated from
a misfit function S(m), which represents a distance between the
observed data and the synthetic data calculated from the model, as

L(m) = k2 exp(−S(m)), (2)

where k2 is a normalization constant.

2.2 The probabilistic approach applied to surface
wave inversion

For surface wave inversion, the model is typically a stack of homoge-
neous linear elastic layers. The vector m contains model parameters
of the layers (thickness, V s, V p or Poisson ratio, and density). In
the inversion, densities and Poisson ratio values are typically fixed
to realistic a priori values, whereas layer thicknesses and V s values
are the unknowns.

The matrix of the observed data contains the velocity–frequency
couples of the observed dispersion curve, that is

Dobs =

⎡
⎢⎣

vobs
1 f obs

1

· · · · · ·
vobs

N f obs
N

⎤
⎥⎦ . (3)

Figure 1. Absolute value of the Haskell–Thomson matrix determinant
for a single layer (thickness: 5 m, density: 1800 kg m−3, V s: 200 m s−1,
V p: 500 m s−1) over a half-space (density: 1800 kg m−3, V s: 400 m s−1,
V p: 800 m s−1).

In this work, the chosen a priori probability for the model space
ρ(m) is a uniform distribution of the parameters in a given range:
each parameter mi can vary between the given boundaries mtop

i and
mbot

i , that is the a priori probability is a uniform probability on a
hyperrectangle of dimension Nm (Curtis & Lomax 2001). Range for
the model parameters are selected on the basis of experimental data.

The function S(m) is calculated using a forward operator. For
the forward problem solution of Rayleigh and Scholte waves the
Haskell–Thomson transfer matrix method is adopted (Thomson
1950; Haskell 1953; Haskell 1964), with the modifications pro-
posed by Dunkin (1965); Gilbert & Bachus (1966); Herrmann &
Wang (1980) and Herrmann (2002). The same methodology can be
applied to other surface and interface waves, such as Love waves,
and to other propagator matrix methods, like the stiffness matrix
method (Kausel & Roesset 1981) and the Reflection-Transmission
method (Kennet 1974; Kennet & Kerry 1979).

A transfer matrix is evaluated for each layer of a given model
m∗. The product of these matrices, together with the matrices of
boundary conditions, is the Haskell–Thomson matrix T (Buchen &
Ben-Hador 1996). The determinant of this matrix is a function of
frequency and velocity, from the space MxD to real numbers:

F = |det(T(v, f , m))|. (4)

For a given model m∗, the function |det(T(v, f, m∗))| is a surface
in the velocity–frequency domain. This function presents several
local minima, corresponding to the modal dispersion curves of the
model m∗ (Fig. 1). For a given frequency f ∗, |det(T(v, f ∗, m∗))| is
a continuous function which is zero if and only if v belongs to a
mode of the dispersion curve of the model m∗ at the frequency f ∗.

2.3 The determinant misfit function

For a given model m∗ and a given observed data Dobs,, the misfit
S(m∗) can be defined as the norm (in the following the norm L1

is considered) of the values of the determinant of the T matrix
evaluated in correspondence of the points of the observed dispersion
curve (Ernst 2007; Maraschini et al. 2010) (see Fig. 2).

This misfit function presents two important advantages. First
of all, this approach is inherently multimodal: it allows all the
modes of the experimental dispersion curve to be considered, with-
out the need to establish a priori to which mode each data point
belongs to.

The second advantage is the computational cost, which is strongly
reduced with respect to inversion algorithms adopting the usual
misfit function based on the distance between the observed and the

Figure 2. Representation of the determinant misfit function—(a) experimental dispersion curve (red dots) compared to the determinant misfit surface of a
synthetic model m∗; (b) 3-D view of (a); (c) zoom of (b): the red dots are the experimental dispersion curve, and the surface represents the absolute value of
the determinant of a synthetic model m∗; the point indicated with X is the absolute value of the determinant of the synthetic model m∗ in correspondence of
an experimental point; this value is the misfit of m∗ for the single experimental point.
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numerical dispersion curves of the model m∗. Dispersion curve
calculation requires a cost expensive zero search: for each fre-
quency of the observed dispersion curve a zero search on veloc-
ity (or wavenumber) is required. The algorithm needs to be very
accurate, because modes can be very close to each other, in par-
ticular in presence of sound stiffness contrasts, but it should also
be efficient, because the forward problem is solved several times
in the inversion, in particular when stochastic algorithms are ap-
plied. The zero search procedure requires several evaluations of the
Haskell–Thomson matrix (the number depends on the complexity
of the soil model and on the required accuracy) for each frequency.
On the contrary, the proposed approach requires, for the evaluation
of the misfit S(m∗), a single evaluation of the Haskell–Thomson
matrix determinant for each frequency, and consequently the com-
putational cost is reduced.

2.4 Estimate of uncertainty due to non-uniqueness

The solution of a deterministic inversion process is the model with
the lowest misfit. One of the advantages of stochastic inversions
is that the ensemble of profiles showing low misfit can provide a
significant insight into the uncertainty associated with solution non-
uniqueness. Nevertheless, the selection of a representative number
of best-fitting profiles is not straightforward.

Figure 3. Case 1: (a) synthetic seismogram; (b) f–k spectrum.

Table 1. Characteristics of the synthetic models.

Layer Density Poisson S-wave Thickness
(kg m−3) ratio (–) velocity (m s−1) (m)

Model 1
1 1800 0.33 150 10
2 2100 0.27 450 390

Model 2
1 1800 0.33 150 10
2 2000 0.27 280 20
3 2100 0.27 450 770

A second misfit function based on the distance between the exper-
imental and the synthetic dispersion curves is used for the selection
of acceptable profiles. This misfit function allows a statistical test
to be applied.

It can be assumed that the experimental dispersion curve is af-
fected by a Gaussian error (Lai et al. 2005) with known standard
deviation (Socco & Boiero 2008). Under this assumption, we can
define the misfit as:

∧
S(m) =

N∑
i=0

[vexp( fi ) − vteor ( fi )]2W ( fi )(σexp( fi ))−2

N − (2n − 1)
, (5)

where vexp(fi) and vteor(fi) are, respectively, the experimental disper-
sion curve evaluated at the ith frequency and the closer mode of
the theoretical dispersion curve evaluated at the same frequency;
W (fi) and σ exp(fi) are, respectively, the weight and the uncertainty
associated with the ith point of the experimental dispersion curve.
Eq. (5) represents a misfit function based on the Euclidean distance
between the experimental and the synthetic dispersion curves. It has
the structure of a chi-square with N and 2n – 1 degrees of freedom,
where N is the number of data points in the dispersion curve and
n is the number of layers of the model (including the half-space).
As there are no reasons to assume that the determinant has a Gaus-
sian error, the determinant value could not be used instead of the
distance between curves to build a chi-square distribution.

The acceptance criterion is based on the Fisher test (Socco &
Boiero 2008). A generic model m is accepted if

Fα(N − (2n − 1), N − (2n − 1)) <

∧
S(mbest MC )

∧
S(m)

, (6)

where F is the Fisher distribution, and α is the level of confidence
of the test, which depends on data uncertainties.

For the application of the Fisher test to the Monte Carlo results,
the following strategy is adopted. First, the profiles are ordered
for increasing values of the determinant misfit S(m). Then, the chi-

square misfit
∧
S(m) is evaluated for the best-fitting profile [according

to S(m)]. This value (
∧
S(mbest MC )) is used as a reference value for

the statistical test on the misfit
∧
S(m) for the evaluation of the other

profiles. The procedure is applied to Monte Carlo results ordered
by misfit until the test fails on 10 profiles in a row.

The obtained set of solutions is the set of profiles that can be con-
sidered equivalent in term of fitting of the experimental dispersion
curve, accounting for data uncertainty.

The choice of a statistical test based on a different misfit function
with respect to the Monte Carlo one, exploits the advantages of
both misfits. The determinant misfit allows a multimodal stochas-
tic inversion, which could not be performed using the distance
between curves because of the computational cost. Moreover, the
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Table 2. Modelling parameters.

Model Receiver Source Time Sampling Number of Element
Model length (m) spacing (m) depth (m) window (s) rate (s) elements shape Geometry

1 2000 5 0 9 0.001 127 111 Triangular 2-D axial-symmetric
2 2000 5 30 4 0.001 22 208 Triangular 2-D axial-symmetric

determinant misfit allows to take into account the regions with low
determinant where mode jumps occur. The Fisher test on the chi-
square misfit allows a rational selection of equivalent solutions to
be obtained. It will be shown that this selection is also useful to
exclude solution corresponding to incorrect data interpretation (see
Sestri Levante case history in Section 4.2).

Figure 4. Case 1: (a) best-fitting profiles; (b) dispersion curves for best
models compared with the synthetic apparent dispersion curve; (c) absolute
value of the Haskell–Thomson matrix determinant for the best-fitting model
(white dots represent the synthetic experimental dispersion curve).

3 S Y N T H E T I C E X A M P L E S

The multimodal Monte Carlo algorithm has been tested first using
synthetic data generated with a finite-element code. The disper-
sion curves were extracted from the synthetic seismograms using
frequency–wavenumber analysis (Maraschini et al. 2010).

3.1 Case 1

The first example is a synthetic data set generated with a subsoil
model composed by a soft layer over a stiffer half-space (Fig. 3).
Soil parameters are summarized in Table 1, whereas the parameters
of the FEM model are summarized in Table 2. The presence of a
strong velocity contrast between adjacent layers typically causes
a predominance of the first higher mode in the Rayleigh waves
propagation. In such situations, the apparent dispersion curve shifts
towards the first higher mode in the low-frequency range (Foti 2002).

The apparent dispersion curve is constituted by a single branch,
with velocity included between 100 and 500 m s−1. For the Monte
Carlo inversion 2 × 106 profiles were generated between the bound-
aries represented in Fig. 4(a). The boundaries are selected on the
basis of the velocity of propagation at low- and high-frequencies.

The algorithm finds as global minimum a model whose modal
dispersion curves fit the synthetic data with the fundamental mode
in the high-frequency band and with the first higher mode in the
low-frequency band (Fig. 4c).

In Fig. 4(a) the best profiles are plotted using a color scale based
on the fitting: blue represents the best fitting, a transition towards
yellow is used to represent lower and lower misfit. The same color
scale will be used consistently in the rest of the paper. The best-
fitting profile is close to the theoretical profile, which is represented
in red in Fig. 4(a). The other profiles selected on the basis of the sta-
tistical test represent the uncertainty associated with solution non-
uniqueness. As expected, soil parameters of the first layer are better
resolved than the half-space parameter. The comparison between the
synthetic dispersion curve and the experimental dispersion curve,
and the comparison between the synthetic dispersion curve and the
absolute value of the Haskell–Thomson matrix determinant of the
best-fitting model are shown in Figs 4(b) and (c), respectively.

In the real world, a soft layer overlaying a stiffer half-space is
a quite common situation, for example when a shallow bedrock is
present. This situation is important for seismic amplification studies.
The continuity of the apparent dispersion curve also in correspon-
dence of the mode shift makes the inversion of this kind of data
challenging. An algorithm that allows all the modes to be consid-
ered without specifying to which mode each point belongs to is
required for avoiding mode misidentification errors. A fundamental
mode inversion would have produced sound errors in the evalua-
tion of the V s of the half-space and on the thickness of the cover
material.

3.2 Case 2

This data set (Fig. 5) was generated using a soil model composed
by two layers over a half-space. Soil parameters are summarized in
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Figure 5. Case 2: (a) synthetic seismogram; (b) f–k spectrum.

Table 1, whereas the parameters of the FEM model are summarized
in Table 2. The source is placed at the first interface. In this data
set the apparent dispersion curve is composed by several branches,
and, consequently, a multimodal inversion is important to exploit
all available information.

Also in this case, the Monte Carlo algorithm was applied, testing
2 × 106 models. The best profiles are plotted in Fig. 6(a), while
the fitting between the synthetic dispersion curve and the dispersion
curves of the best profiles, and the fitting between the synthetic
dispersion curve and the absolute value of the Haskell–Thomson
matrix determinant of the best model, are shown, respectively, in
Figs 6(b) and (c).

The best-fitting models are very close to the real model, and the
distance between the real and the trial models increases when the
misfit increases.

4 E X P E R I M E N TA L E X A M P L E S

4.1 Site 1

This data set (Fig. 7) was collected at Castelnuovo Garfagnana, in
central Italy. The soil deposit is composed by layers of sands, silts
and well-graded gravels; the bedrock is composed by aged stiff

Figure 6. Case 2: (a) best-fitting profiles; (b) dispersion curves for best
models compared with the synthetic apparent dispersion curve; (c) absolute
value of the Haskell–Thomson matrix determinant for the best-fitting model
(white dots represent the synthetic experimental dispersion curve).

clayey sands. A downhole test and a S-wave refraction surveys were
performed at the same site by other surveyors.

Surface wave data were collected using a linear array; acquisition
parameters are summarized in Table 3. More details on the data set
and on the site are reported in Calosi et al. (2001).

The Monte Carlo inversion is applied generating 5 × 106 profiles
within the boundaries reported in Fig. 8(a). The boundaries were
selected on the basis of a preliminary and approximate inversion.
In Fig. 8(a) the best profiles, according to the Fisher test, are com-
pared to the results of the downhole and refraction tests. In Figs 8(b)
and (c) the fitting between the real dispersion curve and the disper-
sion curves of the best profiles, and the fitting between the real

C© 2010 The Authors, GJI, 182, 1557–1566
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Figure 7. Site 1—Castelnuovo Garfagnana: (a) real data; (b) f–k spectrum.

dispersion curve and the absolute value of the Haskell–Thomson
matrix determinant of the best model are, respectively, shown.

Observing Figs 8(b) and (c) a good agreement between the real
data and the synthetic dispersion curve can be noted; in particular,
according to the inversion, the experimental dispersion curve cor-
responds to the fundamental mode in the high-frequency band, and
it jumps to the first higher mode in the low-frequency band.

The first interface identified by the surface wave inversion is in
good agreement with downhole and refraction result; below this
interface the inverted profiles show a gradual stiffness increase.
The experimental dispersion curve does not show any feature that
allows sound interfaces to be identified (data fitting of the inverted
model is good), whereas the other methods identify a second sharp
interface. This can be due to the non-uniqueness of the solution of
surface wave inversion. Apparently for this situation, shear wave
refraction provides more reliable information for the identification
of the bedrock.

Figure 8. Site 1—Castelnuovo Garfagnana: (a) best-fitting profiles com-
pared to V s profiles from a downhole test and from a refraction test; (b) dis-
persion curves for best models compared with the experimental dispersion
curve; (c) absolute value of the Haskell–Thomson matrix determinant for
best-fitting model (white dots represent the experimental dispersion curve).

4.2 Site 2

This data set (Fig. 9) was collected in Liguria (Italy) at the site
of one of the stations of the Italian Accelerometric Network. The
superficial layer is an artificially compacted layer of gravels and

Table 3. Field data acquisition parameters.

Array length Receiver Acquisition Sampling Number of
Dataset (m) Receiver type spacing (m) Source type window (s) rate (ms) receivers

Site 1 48 Vertical 4.5 Hz 2 130 kg drop weight 4.096 8 24
Site 2 16.4 Vertical 4.5 Hz 0.7 5 kg sledge hammer 0.512 2 24
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Figure 9. Site 2—Sestri Levante: (a) real data; (b) f–k spectrum.

pebbles used for the passage of lorries. The bedrock is expected to
be close to the ground surface.

A velocity increase with frequency can be observed in the exper-
imental dispersion curve (Fig. 10b), suggesting the presence of a
velocity inversion in the subsoil model. In this condition the appar-
ent dispersion curve follows the higher modes in the high-frequency
band (Tokimatsu 1997; Foti et al. 2000).

Data were inverted generating 107 random profiles; the best pro-
files selected by the Fisher test are plotted in Fig. 10(a). The solu-
tions present a velocity inversion in the shallow portion of the soil
profile. The stiff top layer is coherent with available information on
the site. The fitting between the observed dispersion curve and the
dispersion curve of the best profiles is very good (Figs 10b and c).

This data set is particularly challenging for a surface wave inver-
sion algorithm because the apparent dispersion curve, composed by
a single branch, follows higher modes both in the low-frequency
band (because of the stiff bedrock) and in the high-frequency band
(because of the stiff top layer), with a smooth transition, and con-
sequently the mode numbering identification of the data points is
impossible. Higher mode inversion increases penetration depth, be-
cause low-frequency points belong to a higher mode, and avoids
sound mistakes due to mode misidentification.

In this example the use of the determinant misfit is important
for the inversion of the experimental dispersion curve, and a mis-

Figure 10. Site 2—Sestri Levante: (a) best-fitting profiles; (b) dispersion
curves for best models compared with the experimental dispersion curve; (c)
absolute value of the Haskell–Thomson matrix determinant for best-fitting
model (white dots represent the experimental dispersion curve).

fit based on the distance between the experimental and the modal
dispersion curve can create some problems in the inversion. The ex-
perimental dispersion curve is composed by the fundamental mode
and the higher modes, as it can be observed in Figs 10(b) and (c),
but some points of the experimental dispersion curve do not belong
to any mode. They belong to transition zones because of the spatial
resolution of the acquisition. A misfit function based on the distance
between curves cannot handle these points correctly, because they
are distant from the modes and they increase the misfit associated
with a given model. On the contrary, the determinant misfit function
allows to consider transition zones. The regions where the experi-
mental dispersion curve passes from a mode to the following one
are associated with low-misfit values (Fig. 10c).
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Figure 11. Site 2—Sestri Levante: (a) best-fitting profiles with the re-
jected profiles; (b) dispersion curves of soil profiles reported in (a) com-
pared with the experimental dispersion curve; (c) absolute value of the
Haskell–Thomson matrix determinant for the red profile reported in (a) as-
sociated with the low value of the determinant misfit (white dots represent
the experimental dispersion curve).

On the other hand, the use of the determinant misfit function
alone can lead to incorrect local minima. In Fig. 11(a) all the mod-

els whose chi-square misfit
∧
S(m) were evaluated are plotted. Blue

models are the ones accepted by the Fisher test. Cyan models are
models rejected by the test because their dispersion curve is too far
from the experimental one, but they are anyway compatible with
the selected models because they belong to the same class of local
minima. Red models are models with a low value of the determinant
misfit but they are associated to a different class of local minima.
The corresponding dispersion curves are shown in Fig. 11(b). In
Fig. 11(c) the absolute value of the determinant of the red profile of

Fig. 11(a) with the lowest determinant misfit is shown. The exper-
imental dispersion curve passes in the minima of the determinant,
even if it is far from all the modes of the synthetic dispersion curve;
consequently the determinant misfit for this profile is low, whereas
the chi-square misfit value is high.

The integrated use of the two-misfit distance allows to mitigate
the problems of local minima and of mode jumps of the two-misfit
functions considered independently.

5 C O N C LU S I O N S

In this work, we propose a Monte Carlo algorithm for surface wave
inversion based on a multimodal misfit function.

The chosen determinant misfit function presents two main advan-
tages. The main one is that it allows all the experimental modes to be
considered in the inversion, without the need to number the modes
before the inversion. The second advantage is that the computation
of the misfit is faster than the usual misfit functions that require the
evaluation of dispersion curves. The expensive zero search used for
the computation of modal dispersion curve is avoided. The reduced
computational cost of the forward problem makes it suitable for a
stochastic algorithm that requires the evaluation of a large number
of models.

The effectiveness of the proposed algorithm is shown by means
of real and synthetic examples, where the algorithm is tested by
inverting dispersion curves that present difficulties, such as passages
of the apparent dispersion curve to higher modes both in the low-
and high-frequency bands.

The population of profiles is used to select equivalent solutions
on the basis of a statistical test, and it provides an insight into un-
certainties associated with solution non-uniqueness. The integrated
use of the two-misfit distances mitigates the risk of falling into local
minima.

A further development could be the implementation of the same
misfit function within a more efficient stochastic algorithm with a
further reduction of computational costs.
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