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Abstract

We analyze the capacity scaling laws of wireless networks where the spatial distribution of nodes over the

network area exhibits a high degree of clustering. In particular we consider the presence of heterogeneous

clusters, both in size and in population, which are common in many realsystems. We completely characterize

the scaling exponent of the resulting network capacity by providingupper and lower bounds which differ at

most by a poly-logarithmic factor in the number of nodes.

I. I NTRODUCTION AND RELATED WORK

The fundamental problem of determining the asymptotic capacity of large ad hoc wireless networks has received

significant interest in the past several years, starting from the seminal work of Gupta and Kumar [1]. A variety of

results are currently available under different system assumptions related to the interference model (i.e., protocol

or physical model), channel fading, scaling of the network area, constraints on the power/transmission range, and

shape of the power attenuation function (see [2] for a surveyof results).

One critical aspect that can affect the applicability of existing results to real network scenarios is the way in

which nodes are assumed to be distributed over the area, since network topology can strongly affect the overall

system performance.

In [1] Gupta and Kumar have shown that the per-node throughput is upper bounded by1/
√
n under arbitrary

nodes placement. Later on, Franceschetti et al. [3] have proven, using percolation theory results, that the above

upper bound is actually achievable (under the physical interference model) when nodes are distributed according to

a Homogeneous Poisson Point (HPP) process over the network area. Hence the case in which nodes are distributed

according to a HPP process is optimal in terms of capacity.

The natural question, which has received little attention so far, is whether1/
√
n is actually achievable in

more general network topologies which cannot be adequatelyrepresented by a HPP process. Indeed, most of

the topologies generated by natural growing processes (such as urban or sub-urban settlements) are characterized

by large inhomogeneities in the nodes spatial distribution, since preferential attachment phenomena produce high

degree of clustering [4].
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(a) Example of topology with homogeneous

clusters,δ = 2.6.
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(b) Example of topology withζ = 2.3, θ =

0.7, δ = 3.0.
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(c) Example of topology withζ = 2.1, θ =

0.3, δ = 2.4.

Fig. 1. Examples of topologies withn = 100, 000 nodes belonging to 100 different clusters (ν = 0.4), distributed over the square100 × 100

(α = 0.4).

In our previous work [5], [6], we have derived both lower and upper bounds to the capacity of wireless networks

with inhomogeneous node density. In particular, we have considered the case of several identical clusters, in which

the node density decays from the cluster centre with a power law of exponentδ (one example is reported in Figure

1(a)). For this class of topologies the per-node throughputcan be significantly smaller than1/
√
n, and turns out

to be intrinsically related to the node density of the least populated areas.

In this paper we move one step forward toward the capacity analysis of realistic inhomogeneous networks, by

considering a much richer class of point processes generating heterogeneous clusters (both in size and population),

which are usually found in real networks. In particular we consider power laws for both the cluster size and the

cluster population, which naturally appear in many growingsystems [7]. To this extent we generalize the approach

of [5], [6], developing a methodology that permits to characterize the capacity of rather complex and heterogeneous

topologies such as those shown in Figures 1(b) and 1(c).

Prior to our work, only a few papers have considered the scaling behavior of network in which nodes are

not uniformly distributed. In [8] the authors considern nodes distributed over
√
n lines, or clustered around

√
n

neighborhoods. However, both cases lead to topologies which do not contain significant inhomogeneities in the

node density, thus the resulting capacity is similar to thatderived by Gupta and Kumar.

In [9] the authors consider a system which contains many circular clusters with uniform node density within

them, surrounded by a sea of nodes with much lower node density. The only quantity that scales withn is the

network size. Below a critical network size, the per-node throughput is limited by the amount of data that a cluster

can exchange with the sea of nodes, whereas above the critical size the per-node throughput is limited by the

capacity of the sea of nodes. In contrast to [9], we consider amuch more general class of clustered topologies,

which requires also different techniques to compute the resulting network capacity.



3

II. SYSTEM ASSUMPTIONS ANDNOTATION

A. Network Topology

We consider networks composed of a random numberN of nodes (beingE[N ] = n) distributed over a square

regionO of edgeL. To avoid border effects, we consider wrap-around conditions at the network edges (i.e., the

network area is assumed to be the surface of a two-dimensional Torus). The network physical extensionL is allowed

to scale with the average number of nodes, since this is expected to occur in many growing systems. Throughout

this work we will assume that1 L = Θ(nα), with α ∈ [0, 1/2], which permits to model all intermediate systems in

between the two extreme cases usually referred to in the literature asdense network(α = 0) andextended network

(α = 1/2).

Nodes are grouped into a random numberM of clusters, withE[M ] = m. Each cluster has a centre denoted

by cj , for j = 1 . . .M . Cluster centres are placed onO according to a HPP process of intensityφc = m/L2. We

allow the average number of clustersm to scale withn as well, according to the lawm = Θ(nν), with ν ∈ (0, 1].

Each cluster generates an Inhomogeneous Poisson Point (IPP) process of nodes around the cluster centrecj ,

whose local intensity at pointξ is denoted byψj(ξ). Hence the number of nodes belonging to clusterj is itself a

random variable, whose meanqj is given by the integral overO of the local intensityψj(ξ), which is assumed to

be rotationally invariant around the cluster centre. Therefore we can expressψj(ξ) in the form

ψj(ξ) = qjkj(ξ, cj) = qjkj(‖ξ − cj‖)

where‖ξ−cj‖ denotes the distance2 of point ξ from cluster centercj , andkj(·) is a kernel function whose integral

overO is equal to 1.

We remark that our model for heterogeneous clusters can be regarded as a special case of generalized shot-

noise Cox processes [10]. The overall node process over the network domainO is a random field obtained by the

superposition of the individual point processes generatedby the clusters. Given the positions of clusters’s centres

c = {cj}M
j=1 and the mean clusters populationsq = {qj}M

j=1, the conditional local intensity atξ of the overall

point process is

Φ
(

ξ|c,q
)

=
∑

j

qjkj(ξ, cj)

Notice thatΦ
(

ξ|c,q
)

is a standard (inhomogeneous) Poisson point process.

We first describe the distribution of theqj ’s, and then specify the associated kernel functionskj(·)’s.

1Given two functionsf(n) ≥ 0 and g(n) ≥ 0: f(n) = o(g(n)) means limn→∞ f(n)/g(n) = 0; f(n) = O(g(n)) means

lim supn→∞ f(n)/g(n) = c < ∞; f(n) = ω(g(n)) is equivalent tog(n) = o(f(n)); f(n) = Ω(g(n)) is equivalent tog(n) = O(f(n));

f(n) = Θ(g(n)) meansf(n) = O(g(n)) andg(n) = O(f(n)); at lastf(n) ∼ g(n) meanslimn→∞ f(n)/g(n) = 1.

2Given any two pointsX1 = (x1, y1) ∈ O and X2 = (x2, y2) ∈ O we define their distance asd(X1, X2) =

minu,v∈{−L,0,L}

p

(x1 + u − x2)2 + (y1 + v − y2)2
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Fig. 2. Functions(d), determining the shape of kernelskj(·).

To model the presence of a few large clusters together with many small clusters, we consider that the cluster

population size is distributed according to a power law, assigning to eachqj a discrete random valueq ∈ IN

according to the Zipf’s law

fζ(q) = Gq−ζ q ∈ {qmin, . . . , qmax} , (1)

whereG is a normalization constant andζ > 2. To guarantee that the average number of nodes in the networkis

Θ(n), it is necessary to selectqmin = Θ(n1−ν). We instead assume thatqmax = Θ(n1−β), where0 ≤ β ≤ ν is a

free parameter that will be better specified later.

Once the population size of each cluster has been assigned, the shape of kernel functionkj(·), which dictates

how nodes belonging to the cluster are distributed around the cluster centre, must reflect the fact that bigger clusters

are expected to occupy a larger network region than smaller clusters. At the same time, we want some nodes to

stay arbitrarily far from their cluster centre, filling those regions in between the clusters. At last, we wantkj(·) to

be a summable, non-increasing, bounded and continuous function whose integral over the entire network area is

equal to 1.

To satisfy all requirements above, we start with the function s(d) reported in Figure 2, which can be expressed

as

s(d) = I(d<1) + d−δ · I(d≥1).

Then, for everyj, we define a parameterrj that we call cluster radius of clusterj. Kernel functionkj(·) is finally

obtained rescaling and normalizings(d) over the network areaO:

kj(ξ, cj) =
s(‖ξ − cj‖/rj)

∫

O s(‖ξ′ − cj‖/rj) dξ′
, (2)

where
∫

O s(‖ξ′ − cj‖/rj) dξ′ = Θ(r2j ) for any δ > 2. By so doing, the node density of clusterj is constant within

a disc of radiusrj centered atcj , and decays as a power law of exponentδ outside the disc.

For greater flexibility, we let the cluster radius to depend on qj according torj = (qj/qmin)θ, whereθ ≥ 0 is

one additional parameter of our model which allows to model different levels of node concentration around the
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Symbol Definition

n average number of nodes

L edge length of the network area

α growth exponent ofL: L = Θ(nα), α ∈ [0, 1/2]

m average number of clusters

ν growth exponent ofm : m = Θ(nν), 0 < ν ≤ 1

ζ exponent of Zipf’s distribution of cluster population size, ζ > 2

θ exponent of cluster radius,θ > 0

β exponent of maximum cluster population size,qmax =Θ(n1−β)

δ power-law decay of node density,δ > 2

TABLE I

SYSTEM PARAMETERS

cluster centre. However we must be careful that the radius ofthe biggest clusters, having population sizeqmax,

does not exceed in order sense the edgeL = Θ(nα) of the network area. This is satisfied whenβ ≥ ν − α/θ,

which combined with previous constraints onβ leads to the following range of feasible values forβ:

max{0, ν − α/θ} ≤ β ≤ ν. (3)

Notice that we have normalized to 1 the radius of clusters having minimum population sizeqmin. This is not

restrictive, since one can play with the network edgeL = nα to account for different values of the minimum

cluster radius.

Table I summarizes all parameters of our model, which allow us to obtain a wide range of network topologies.

Figures 1(b) and 1(c) provide two example topologies containing on averagen = 100, 000 nodes. In both cases

there are (on average) 100 clusters distributed over a torussurface of edge length 100 (i.e.,α = ν = 0.4). The

topology of Figure 1(b) is characterized byζ = 2.3, θ = 0.7 and δ = 3, resulting in quite large cluster radiuses,

and rapidly decaying node density outside the cluster discs. In the topology of Figure 1(c) the distribution of cluster

populations is more skewed (ζ = 2.1), but cluster discs are smaller (θ = 0.3) while the node density decays more

slowly outside them (δ = 2.4). In both cases we have chosen the smallest possible value for β, equal to0.

B. Communication Model

We assume that time is divided into slots of equal duration, and that in each slot an optimal scheduling policy

enables a set of transmitter-receiver pairs to communicateover point-to-point wireless links which are modeled as

Gaussian channels of unit bandwidth. We assume that interference among simultaneous transmissions is described

by the following version of thegeneralized physical model, according to which the rate achievable by nodei

transmitting to nodej in a given time slot is limited to

Rij = min{R0, log2(1 + SINRj)}

whereR0 is the maximum rate attainable over a link due to physical limitations of transmitters/receivers (maximum

data speed of I/O devices, finite set of possible modulation schemes, etc) and SINRj is the signal to interference
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eΛ condition
1
2

α − ν
2

< 0

1
2
− (α − ν

2
)( δ

2
− 1) α − ν

2
≥ 0 ∧ α − ν

2
+ (ν − β)( ζ′

2
− θ) ≥ 0 ∧ θ < ζ′δ−2

2(δ−2)

1
2
− (α − ν

2
)( δ

2
− 1) + ν−β

2

h

(δ − 2)θ − ( ζ′δ
2

− 1)
i

α − ν
2
≥ 0 ∧ α − ν

2
+ (ν − β)( ζ′

2
− θ) ≥ 0 ∧ θ ≥

ζ′δ−2
2(δ−2)

1
2
−

ν0
2

(ζ′ − 1) α − ν
2
≥ 0 ∧ α − ν

2
+ (ν − β)( ζ′

2
− θ) < 0 ∧ θ ≥

ζ′δ−2
2(δ−2)

1
2
− min

n

(α − ν
2
)( δ

2
− 1), ν0

2
(ζ′ − 1)

o

α − ν
2
≥ 0 ∧ α − ν

2
+ (ν − β)( ζ′

2
− θ) < 0 ∧ θ < ζ′δ−2

2(δ−2)

TABLE II

SCALING EXPONENT OF NETWORK CAPACITY. ζ′ = ζ − 1. ν0 = 2α−ν
2θ−ζ′

and noise ratio at receiverj:

SINRj =
Piℓij

N0 +
∑

k∈∆,k 6=i Pkℓkj

Here,∆ is the set of nodes which are enabled to transmit in the given slot, Pi is the power emitted by nodei, ℓij

is the power attenuation betweeni and j, andN0 is the ambient noise power. The power attenuation is assumed

to be a deterministic function of the distancedij betweeni and j, according toℓij = d−γ
ij , with γ > 2. We

assume that nodes can employ different transmitting powers, according to an optimal strategy of power assignment

to simultaneous transmissions.

C. Traffic Model

Similarly to previous work we focus onpermutation traffic patterns, i.e., traffic patterns according to which every

node is source and destination of a single data flow at rateλ. Sources and destinations of data flows are randomly

matched, establishingN end-to-end flows in the network. Our goal is to maximize the common rateλ concurrently

achievable by all flows, or, equivalently, to maximize the network capacity, defined asΛ = Nλ.

III. SUMMARY OF RESULTS

Similarly to previous work, we characterize the scaling lawof the network capacityΛ by the scaling exponent

eΛ, defined as,

eΛ = lim
n→∞

log Λ(n)

log n

The scaling exponent allows to ignore all poly-logarithmicfactors, i.e., factors which areO(log n)k, for any finitek.

Since our lower and upper bounds differ at most by a poly-logarithmic factor, the corresponding scaling exponents

match, so we can claim that our characterization of the network capacity in terms of the scaling exponent is exact.

Results are reported in Table II as function of the system parametersα, ν, δ, ζ, θ, β. To simplify the expressions,

we have usedζ ′ = ζ − 1 andν0 = 2α−ν
2θ−ζ′ .

Wheneverα−ν/2 < 0 we get the maximum possible exponente(Λ) = 1
2 , equivalent to a system in which nodes

are distributed according to a HPP process; otherwise forα− ν/2 > 0 the network capacity is in general reduced
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fixed ζ = 2.1, θ = 0.8, δ = 3.
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for effect of nodes inhomogeneities. The behavior of the capacity is rather complex, coming to depend on all of

the system parameters(α, δ, ν, β, ζ, θ). In general we can observe that the system capacity is a non-increasing

function ofα, δ, β andζ, whereas it is a non-decreasing function ofν andθ.

To have a more immediate feeling of how the capacity depends on the the system parameters, Figure 3 reports

a 3D plot of e(Λ) as function ofα and ν, for fixed ζ = 2.1, θ = 0.8, δ = 3; while Figure 4 reports a 3D

plot of e(Λ) as function ofζ and θ, for fixed α = 0.4, ν = 0.6, δ = 3. In all cases we have set the smallest

β = max{0, ν − α/θ} (see (3). In particular, Figure 4 highlights the important role that parameters driving the

distribution of cluster population size can have on the overall system capacity. In particular, by increasing the

spreading of the nodes belonging to the same cluster over thenetwork area, i.e., forζ → 2 and θ → 1, we can

achieve the same capacity exponente(Λ) → 1
2 as if the nodes were homogeneously distributed.

IV. PRELIMINARIES

We introduce some basic properties and existing results that are needed in the analysis presented in the next

section. The first lemma is a standard concentration result about HPP processes.

Lemma 1: Consider an average numberm of points distributed overO according to an HPP of intensityφ. Let

A = {Ak} be a regular tessellation ofO (or any sub-region ofO), whose tilesAk have a surface|Ak| > 16 log m
φ ,

∀k. Let U(Ak) be the number of points falling inAk. Then, uniformly over the tessellation, for everyk it holds

φ|Ak|
2 < infk U(Ak) ≤ supk U(Ak) < 2φ|Ak|.

We do not repeat the proof of this lemma, which is based on a standard application of the Chernoff bound (see

[11]).

Corollary 1: As immediate consequence of Lemma 1, if we consider a regulartessellationA = {Ak} in which
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Fig. 5. Example of site percolation. There exists a path of empty squarelets

crossing the rectangular gridw × v from the top edge to the bottom edge.

d

L

Fig. 6. Network flow passing through an empty

corridor of lengthL and widthd.

|Ak| = O(logm/φ), ∀k, then uniformly over the tessellationU(Ak) = O(logm).

We will need the following result from percolation theory (see [12]):

Lemma 2: Consider a rectangular grid of squarelets (as in Figure 5), having v squarelets on the (long) vertical

edge andw squarelets on the (short) horizontal edge. Squarelets are independently marked as empty with probability

p, and occupied with probability1− p. Two squarelets are adjacent if they have a common edge. Letps
c ∼ 0.59 be

the critical probability of independent site percolation on the square lattice. Then, ifw = Ω(log v), for anyp > ps
c

and asv → ∞, there exists w.h.p. a vertical crossing path of empty adjacent squarelets, comprisingΘ(v) (empty)

squarelets.

The following property, established in [6], allows to upperbound the maximum amount of data that can be

transferred across a network cut, under the same communication model adopted in this paper.

Lemma 3: Suppose there exists a corridor of widthd and lengthL dividing the network area in two parts (see

Figure 6), and which does not contain any node. Then the amount of data that can be transferred from one part to

the other across the corridor isO(L/d).
In particular, we can obtain an upper bound to the aggregate network capacity by considering a cut dividing area

O in two parts of areaΘ(L2), since w.h.p. there areΘ(n) flows established across it. Lemma 3 suggests that to

obtain the tightest possible bound we need to find an empty corridor crossing the network area from the top edge

to the bottom edge, having minimum lengthL and maximum widthd. Lemma 3 has been already used in [6] to

derive an upper bound to the capacity achievable in the case of identical clusters. In this paper, beside extending

the analysis to heterogeneous clusters (both in size and population), we will adopt a different technique to identify

the optimal corridor to which we can apply Lemma 3, which alsoimproves upon the bound derived in [6] for

identical clusters (actually, we believe that the technique presented here provides the best possible upper bound for
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our class of network topologies, including the special caseof homogeneous clusters).

The following lower bound has been instead obtained in [5] inthe case of identical clusters.

Lemma 4: Consider the clustered point process described in Section II-A, in which the population size is the

same for all clusters, i.e.,qj = q, (j = 1 . . .M ). Let Φ = infO Φ(ξ) be the minimum node density in the network.

Then it is possible to find a scheduling-routing scheme providing an aggregate capacityΛ = Θ
(

max{L√Φ,
√
m}
)

beingΦ = Ω(n1−ν−δ(α−ν/2)).

The basic idea underlying the scheduling-routing mentioned in the above lemma is to extract from the overall

point process a set of nodesX0 distributed according to a HPP process, and use this set as the main transport

infrastructure of the network, whose capacity can be computed using well-known results [3]. If the minimum node

densityΦ is not too low, a standard thinning technique can be applied to extract from the overall point process

a subset of nodes distributed according to a HPP of intensityΦ. Alternatively, one can select just one node per

cluster, and obtain with the selected nodes a HPP process of intensitym/L2 (this alternative leads to the second

term in themax function that appears in lemma 4). The main difficulty is thento show that the rest of nodes can

communicate with the nodes of the main infrastructure at a per-flow rate higher than that sustainable over the main

infrastructure (i.e., the network throughput is not throttled by communications between nodes inX0 and nodes not

belonging toX0). The interested reader is referred to [5] for the details.

V. A NALYSIS FOR FINITE NUMBER OF CLASSES

In the following we analyze a simplified scenario for the cluster population size: the techniques developed for

this case will come in handy later on in Section VI, in which weanalyze the case of cluster population distributed

according to a Zipf’s distribution. In particular, in this section we consider the case of non-homogeneous cluster

population size, where only a finite number of values can be taken. We assume that there exist a finite numberH

of classes, representing the possible value that the cluster population size can take. For everyh ∈ {0, . . . ,H − 1},

the population size value corresponding to classh is assumed to be

qh = Θ(qminn
hµ), (4)

whereqmin = Θ(n1−ν) is the minimum population size, andµ > 0 is a parameter that specifies how the populations

of the different classes are spaced apart. Note thatqh = Θ(n1−ν+hµ).

Every cluster is assigned to one of these class independently and identically with respect to other clusters. In

particular, every clusterj is assigned a random markhj taking values in{0,H − 1}, according to the distribution

ph = Pr(hj = h) = G′q−ζ′

h , (5)

whereG′ is a normalization factor, andζ ′ > 1. We haveph = Θ(n−hµζ′

) for any ζ ′ > 1. Notice that our

simplified model with finite number of classes can be used as anapproximation of the original Zipf’s distribution.

This is accomplished by slicing the domain of the original Zipf’s distribution into a finite set of intervalsIh =
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[qminn
hµ, qminn

(h+1)µ), for all 0 ≤ h < H, whereµ > 0, and assuming that all clusters within on interval have

the same size. The approximation becomes better and better as we increase the number of classes (i.e., lettingµ

tend to zero).

The average number of clusters assigned to classh is mh = mph = Θ(nν−hµζ′

). The average number of nodes

belonging to cluster assigned to classh is nh = mh qh = Θ(n1−hµ(ζ′−1)).

Having defined the cluster population size in the case of a finite number of classes, we need to specify the kernel

function kh(·) that characterizes the IPP generated by each cluster of class h: it can be obtained from the cluster

population sizeqh in exactly the same way as described in Section II. Followingthe rationale outlined there, the

radius of classh is set torh = Θ(nhµθ), θ > 0.

Note that the centres of clusters belonging to classh are distributed over the network area according to a HPP

process of intensity

φc(h) = φc ph. (6)

We also introducedc(h) =
√

1/φc(h) = Θ(nα−ν/2+hµζ′/2), which is the typical distance between clusters

belonging to classh. More precisely,dc(h) is the edge of the squarelet in which we expect to find, on average,

one cluster centre belonging to classh. Quantitiesdc(h)’s are fundamental in our analysis, as explained in the next

section.

A. Asymptotic analysis of the local node density

The first step of our analysis is the characterization of the asymptotic node density over the network area. Let

h = {hj}M
j=1 the collection of marks assigned to clusters, andc the position of the clusters’s centers. In the case

of a finite number of classes, we can express the conditional local intensity of nodes at pointξ, given the setsh

andc:

Φ(ξ|c,h) =

H−1
∑

h=0

∑

j:hj=h

qh kh(ξ, cj) =

H−1
∑

h=0

φc(h)(ξ|c,h)

whereφc(h)(ξ|c,h) =
∑

j:hj=h qh kh(ξ, cj) is the contribution of clusters of classh. To simplify the notation, in

the following we will write Φ(ξ) andφc(h)(ξ) instead ofΦ(ξ|c,h) andφc(h)(ξ|c,h), respectively.

We introduce the following quantities,Φ = supO Φ(ξ) and Φ = infO Φ(ξ), denoting, respectively, the supre-

mum and the infimum ofΦ(ξ) over O. Similarly, for each classh, we define Φh = supO φc(h)(ξ) and

Φh = infO φc(h)(ξ), which are the supremum and the infimum ofφc(h)(ξ) overO.3 Recall that the above quantities

are random variables depending on the positionsc of the cluster centres and their markingh. Note thatΦ ≥∑h Φh

andΦ ≤∑h Φh.

3In the following, with slight abuse of terminology we will refer to Φ (Φh) andΦ (Φh), respectively as the maximum and the minimum of

Φ(ξ) (φc(h)(ξ)) overO.
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The following theorem characterizes the extreme values ofφc(h)(ξ), for eachh.

Theorem 1: Let ηh = dc(h)
√

log mh

rh
. If ηh = o(1), then it is possible to find two positive constantsgh, Gh, with

gh < Gh, such that∀ξ0 ∈ O,

gh
nh

L2
< φc(h)(ξ0) < Gh

nh

L2
w.h.p. (7)

Hence in this caseΦh = Θ(Φh) = Θ(nh/L
2). Instead, whenηh = Ω(1) it results, w.h.p.,Φh = o(Φh). Moreover:

Φh =O(qh logmh) andΦh =Ω
(

qh logmhs(ηh)/r2h
)

.

For the proof of Theorem 1, see Appendix A. Here, we provide anintuitive interpretation of the main result of

the theorem. Whenηh = o(1) the typical distance between clusters belonging to classh, i.e., dc(h), becomes in

order sense smaller than the cluster radiusrh. As consequence the density of nodes belonging to classh tends to

become uniformly constant over the entire network domain. We say in this case that classh is in thecluster-dense

regime.

On the contrary, whenηh = Ω(1) the typical distance between neighboring class-h clusters is larger (in order

sense) than the class-h cluster radius. Hence the density of nodes belonging to class h is no longer uniformly

distributed (in order sense), i.e.,Φh = o(Φh). We say in this case that classh is in thecluster-sparseregime.

Since for the same values of the system parameters the various classes can be in different regimes (eitherdense

or sparse), we distinguish the following four cases:

• full cluster-denseregime, when all classes are in thecluster-denseregime. This case occurs whenα− ν/2 +

hµ(ζ/2 − θ) < 0 for any h, which requires that:

(i) α− ν/2 < 0 if θ ≥ ζ ′/2.

(ii) α− ν/2 + (H − 1)µ(ζ ′/2 − θ) < 0 if θ < ζ ′/2.

• full cluster-sparseregime, when all classes are in thecluster-sparseregime. This case occurs whenα− ν/2+

hµ(ζ ′/2 − θ) > 0 for any h, which requires that:

(i) α− ν/2 ≥ 0 if θ ≤ ζ ′/2.

(ii) α− ν/2 + (H − 1)µ(ζ ′/2 − θ) ≥ 0 if θ > ζ ′/2.

• h̃-sparseregime, when classes0 . . . h̃ are in thecluster sparseregime, and classes̃h + 1 . . . (H − 1) are

in the cluster-denseregime. This case can occur only whenθ > ζ ′/2, and requires the existence ofh̃ ∈

{0, . . . , (H − 1)} such that

(i) α− ν/2 + h̃µ(ζ ′/2 − θ) ≥ 0.

(ii) α− ν/2 + (h̃+ 1)µ(ζ ′/2 − θ) < 0.

• h̃-denseregime, when classes0 . . . h̃ are in thecluster denseregime, and classes̃h + 1 . . . (H − 1) are in

the cluster-sparseregime. This case can occur only whenθ < ζ ′/2, and requires the existence ofh̃ ∈

{0, . . . , (H − 1)} such that
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(i) α− ν/2 + h̃µ(ζ ′/2 − θ) < 0.

(ii) α− ν/2 + (h̃+ 1)µ(ζ ′/2 − θ) ≥ 0.

Notice that the value ofθ with respect to that ofζ ′/2 is critical. Whenθ > ζ ′/2 the more ‘uniformly dense’

clusters are the biggest ones. On the contrary, whenθ < ζ ′/2 the more ‘uniformly dense’ clusters are the smallest

ones.

B. Capacity Upper bound

To compute an upper bound to the network capacity we are goingto apply Lemma 3, finding an empty corridor

that divides the area in two parts each having areaΘ(L2). Recall that the optimal corridor should have minimum

lengthL and maximum widthd. We observe thatL cannot be smaller thanL. To maximized, the corridor must

traverse those network regions where the node density is minimum. In particular, we need to identify a connected

region traversing the network area from top to bottom, and staying as far as possible from cluster centres, especially

from the biggest ones (i.e., those having markh = H − 1), which produce a large node density in their proximity.

Intuitively, the optimal corridor should stay at a distancefrom clusters of classh which increases withh.

We first focus on thefull cluster-sparseregime, in which clusters of any class are well separated from each

other, allowing to find an empty crossing path from the top to the bottom edge of the network area, which does not

contain any cluster centre. After analyzing this case, it will be clear how we can handle the concurrent presence of

some classes (in the extreme case, all classes) in thecluster-denseregime.

First, we build a sequence of nested corridorsP0 ⊂ P1 . . . ⊂ Ph ⊂ . . .PH−1, satisfying the property that, for

eachh ∈ {0, . . . ,H−1}, corridorPh does not contain any cluster centre belonging to classh. Then, within corridor

P0, we look for a final corridorPs free of nodes, to which we can eventually apply Lemma 3. The existence of

the sequence of nested corridorsP0 ⊂ . . . ⊂ PH−1 is guaranteed by the following theorem:

Theorem 2: In the full cluster-sparse regime, it is possible to find a sequence of nested corridorsP0 ⊂ . . . ⊂

Ph ⊂ . . .PH−1 ⊂ O, such that the width of corridorPh (h = 0, . . . ,H − 1) is Dh = Θ(1/
√

φc(h)).

Proof: Our construction starts with the biggest clusters (i.e., those of classh = H−1), which are more sparse,

and thus permit to find the largest initial corridorPH−1. We consider a vertical slice of the network area of width

Θ(L) and heightL, and divide it into a regular grid of squarelets of edgeDH−1, chosen in such a way that the

probability that no cluster center of classH − 1 falls within one of them is larger thanps
c, the critical probability

of site percolation in square lattice. This requires thate−φH−1D2
H−1 > ps

c (recall thatφc(h) is the intensity of the

HPP of cluster centres of classh, defined in (6)), which is satisfied (in order sense) whenDH−1 = Θ(1/
√

φH−1).

The horizontal and the vertical number of squarelets in the slice are of the same order of magnitude, hence we can

apply Lemma 2 and establish the existence of a corridorPH−1 of width DH−1 and physical lengthΘ(L) which

does not contain any cluster centre of classH − 1.

Once we have found corridorPH−1, we can sequentially find all of the other nested corridors
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...

clusters
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H − 2

H − 1

...

d

DH−1

DH−1/2

DH−2

D0

Fig. 7. Construction of the sequence of nested corridors

PH−2,PH−3, . . . ,P0 using the following iterative construction. We consider the generic corridorPh, with h > 0,

and denote byP ′
h ⊂ Ph the central part ofPh, having widthDh/2. InsideP ′

h, we look for the inner corridor

Ph−1, which must not contain any cluster centre belonging to class h−1. Figure 7 provides a graphical illustration

of our approach.

We divideP ′
h into a regular grid of squarelets of edgeDh−1, chosen in such a way that the probability that no

cluster center of classh−1 falls within one of them is larger thanps
c. This requires thate−φh−1D2

h−1 > ps
c which is

satisfied (in order sense) whenDh−1 = Θ(1/
√

φh−1). Let wh−1 andvh−1 be, respectively, the horizontal and ver-

tical number of squarelets of edgeDh−1 that we can put withinP ′
h. We havewh−1 = Θ(Dh/Dh−1) = Θ(nµζ′/2),

which does not depend onh. Moreover,vh−1 = o(n), sincevh−1 = L/Dh−1 whereDh−1 = Θ(L/
√
mh−1), with

mh−1 = O(n). Hence, conditionwh−1 = Ω(log vh−1) is verified and we can apply Lemma 2 to establish the

existence of corridorPh−1 ⊂ P ′
h ⊂ Ph. Iterating sequentially this step fromh = H − 1 down toh = 1, we obtain

the desired sequence of nested corridors.

At last, we need to establish the existence of a pathPs ⊂ P0 containing no nodes. We again consider the central

part P ′
0, having widthD0/2, of P0, and look for corridorPs only within P ′

0. This time the problem is more

difficult, because the point process of individual nodes within P ′
0 is no longer a HPP process, hence we cannot

apply exactly the same technique adopted above for the othercorridors.

A loose upper bound could be obtained assuming (as a worst case) that the node process withinP ′
0 is a HPP
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process of intensity uniformly equal to the maximum intensity attained by the point process withinP ′
0. One could

then build a regular grid of squarelets dimensioned in accordance to the above maximum intensity, and apply again

Lemma 2. This approach has been followed in [6] in the case of homogeneous clusters. Here we propose a novel

methodology which allows to obtain an improved bound (whichwe believe to be in order sense tight, i.e., leading

to an estimate of the network capacity matching, in order sense, the actual network capacity).

Recall from Section V-A that, given the seth of marks assigned to clusters and their locationsc, the point process

generated by clusters of classh, and the overall node process generated by all clusters, arestandard inhomogeneous

Poisson point processes whose (conditional) intensities are denoted byφc(h)(ξ) andΦ(ξ), respectively.

We introduce the following definition of the mean node density within a generic (Lebesgue-measurable) domain

B:

EB[Φ(ξ)] ,

∫

B Φ(ξ) dξ
∫

B dξ
(8)

In the hypothetical case in which the intensity of the point process withinP ′
0 were uniformly equal to its mean

EP′
0
[Φ(ξ)], we could build a regular grid of squarelets of edgezx = Θ

(

EP′
0
[Φ(ξ)]−1/2

)

, and apply Lemma 2 to

establish the existence of a corridorPs ⊂ P ′
0 having widthzx. Clearly, this hypothetical corridor would provide

an improved upper bound to the capacity (using Lemma 3), because its width is larger that the one that we obtain

assuming that the node process withinP ′
0 has intensity uniformly equal to its maximum value withinP ′

0.

Now, even if the point process withinP ′
0 is not a HPP process of intensityEP′

0
[Φ(ξ)], the following theorem

allows to establish the existence of a corridor having widthequal tozx as defined above.

Theorem 3: Let P0 be the innermost corridor found according to the construction in Theorem 2. LetP ′
0 ⊂ P0

be a corridor having the same length and half the width ofP0. Then, it is possible to find a corridorPs ⊂ P ′
0

empty of nodes, having lengthΘ(L), and widthzx = Θ
(

EP′
0
[Φ(ξ)]−1/2

)

.

Proof: We consider for simplicity the case in which pathP ′
0 has a rectangular shape. However, the same

approach can be applied to a general path, dividingP ′
0 into a sequence of partially overlapped rectangles. The basic

idea is to construct an irregular tessellation ofP ′
0 in which the sizes of the tiles are locally adapted to the intensity

of point processΦ(ξ). We consider tiles of rectangular shape, in which the horizontal edgezx is the same for all

tiles, while the vertical edgezy(ξ) can vary, being adapted to the local intensityΦ(ξ). Notice that we force all tiles

in the same row to have the same vertical dimension. This choice does not affect the tightness of our improved

bound, becauseΦ(ξ) does not change significantly in the horizontal direction (actually, Φ(ξ) is of the same order

of magnitude over any horizontal line withinP ′
0). Figure 8 provides a graphical illustration of our approach.

Let NA be the total number of tiles of the tessellation, andAk denote the generic tile. As already said, we

set the horizontal edge of all tiles equal tozx = EP′
0
[Φ(ξ)]. Let p = Pr(Ak free of nodes) = e

−
R

Ak
Φ(ξ) dξ. We

dimension the vertical edgezy(ξ) is such a way thatp > ps
c over all tiles belonging to the same row. By so doing,

we can map our irregular tessellation into a bidimensional lattice homologous to the one in Figure 5. Thus we left
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zx

D0

D0/2

Fig. 8. Novel approach to identify an empty path of widthzx which does not contain any node, nested in the innermost pathP ′
0 of width

D0. The vertical edge of the tiles is adapted to the local intensity of the point process.

unchanged the underlying discrete geometry over which we can apply Lemma 2, provided that the number of tiles

Ny along the vertical direction and the number of tilesNx along the horizontal direction satisfyNx = Ω(logNy).

Since by hypotheses all tiles are dimensioned in such a way that
∫

Ak
Φ(ξ) dξ > − log ps

c, we can assume that for

some constantǫ

NA <

∫

P′
0
Φ(ξ) dξ

− log ǫ ps
c

(9)

Considering thatNA = Nx ×Ny, and thatzx = EP′
0
[Φ(ξ)] we have

Ny = NA/Nx
(9)
= O

(

LD0EP′
0
[Φ(ξ)]

Nx

)

Nx=D0/2zx
= O(L/zx).

SinceD0 = Ω(logL), we can indeed apply Lemma 2 and establish the existence of anempty corridor in the

underlying lattice, having widthzx and comprisingΘ(Ny) tiles. Since by construction the average vertical size of

the tiles isz̄y = L/Ny, we conclude that the empty corridor has average lengthΘ(L).

The following theorem characterizes the asymptotic behavior of the mean node density withinP ′
0.

Theorem 4: The mean node density withinP ′
0 is EP′

0
[Φ(ξ)] = O

(

∑

h qh
D−δ

h

r2−δ
h

)

.

For the proof of Theorem 4 see Appendix B.

From Theorem 4 we derive a lower bound forzx = Ω
(

∑

h qh
D−δ

h

r2−δ
h

)−1/2

, on which we can apply Lemma 3 and
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obtain our final upper bound to the network capacityΛ = O(L/zx).

Our approach can be easily extended to the case in which some (or all) classes are in thecluster-denseregime.

Indeed, the contribution of these classes to the overall density of the node process is almost uniform over the network

area, beingΦh = Θ(Φh) for any classh in the cluster-denseregime (see Section V-A). Hence these classes are

ignored in the construction of the nested corridorsPh, which is to be done only for classes in thecluster-sparse

regime. The contribution of classes in thecluster-denseregime to the overall node density must instead be taken

into account when we look for the final corridorPs containing no nodes.

In the full cluster-denseregime, beingΦ(ξ) = Θ( n
L2 ) uniformly over the whole domainO, the maximal width

of a corridor containing no nodes iszx = Θ(L/
√
n), i.e., it is equal (in order sense) to the typical distance between

neighboring nodes in a uniformly dense network.

In the h̃-sparseregime, the mean density of nodes withinP ′
0 can be evaluated (in order sense) as

EP′
0
[Φ(ξ)] = Θ





∑

h≤h̃

qh
D−δ

h

r2−δ
h

+
∑

h>h̃

nh

L2





and we can setzx = Θ
(

EP′
0
[Φ(ξ)]−1/2

)

.

In the h̃-denseregime, the smallest clusters in the sparse regime belong toclassh̃ + 1, hence we look for the

final corridor free of nodes withinPh̃+1, in which

EP′

h̃+1
[Φ(ξ)] = Θ





∑

h≤h̃

nh

L2
+
∑

h>h̃

qh
D−δ

h

r2−δ
h





Then we can setzx = Θ
(

EP′

h̃+1
[Φ(ξ)]−1/2

)

.

In all cases, the final upper bound to the network capacity isΛ = O(L/zx). Notice that in thefull cluster-dense

and in theh̃-denseregimes we recover the well known result thatΛ = O(
√
n) [1].

C. Capacity Lower Bound

Lower bounds to the network capacity are obtained by evaluating the performance of constructive scheduling-

routing schemes specifically tailored to the topologies generated by our model. In particular, we generalize the

scheduling-routing scheme developed in [5] for the case of homogeneous clusters, whose performance is given by

Lemma 4. The basic idea is still to extract from the overall node processX a set of nodesX0 distributed according

to a HPP process, and use such nodes as the main transport infrastructure through which data are transferred across

the network area. Similarly to the case of homogeneous clusters,X0 is either obtained by extracting a set of nodes

with intensity equal toΦ, or it is formed by just one node per cluster, if this providesa richer set of nodes (i.e.,

if φc > Φ). Then the main challenge is to show that the aggregate throughput is ultimately given by the capacity
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of the main infrastructure, i.e., that communications between setX0 and the rest of the nodes do not throttle the

capacity available over the main infrastructure.

Theorem 5: Consider the case of heterogeneous clusters belonging to a finite number of classes, as specified

earlier in this section. Then it is possible to find a scheduling-routing scheme providing an aggregate capacity

Λ = Θ(max{L√Φ,
√
m}).

Proof: In the full cluster-denseregime we haveΦ = Θ(Φ), hence we can exploit a general result (see [5],

Theorem 2) that assures that in this case we always get a network capacityΛ = Θ(LΦ) = Θ(
√
n). In the other

regimes, there are some classes (in the extreme case, all classes) in thecluster sparseregime. In this case, the

simplest approach is to separately consider the nodes of each classh (together with the nodes inX0), as if they

were the only nodes present in the network, and to devote to each class a constant fraction of time, during which

we schedule only transmission between nodes belonging to classh or to X0. In more detail, we introduce a

scheduling super-frame given by the succession ofH + 1 frames0, 1, . . . ,H of equal duration. During frameh,

with h = 0, 1, . . . ,H − 1, we consider only the nodes belonging to classh and to the main transport infrastructure.

This frame is used to make nodes belonging to classh exchange traffic with nodes belonging toX0. The last frame

h = H is instead devoted entirely to the main transport infrastructure, and it is used to transfer data of all classes

over large distances across the network area. Notice that communication among nodes belonging to different classes

occur only using nodes ofX0 as intermediate relays. Since the number of classesH is supposed to be finite, this

strategy, although suboptimal, achieves in order sense thesame performance of a network consisting only of the

main transport infrastructure, since the loss introduced by the scheduling super-frame is1/H = Θ(1). It remains to

show that, during the generic frameh, nodes belonging to classh can exchange traffic with nodes inX0 without

throttling down the per-node throughput. However, for thiswe can simply adapt the scheduling strategy developed

for the case of homogeneous clusters. More in detail, for each classh, we separately consider the sub-regionO′
h

of the network area in whichΦh = O(Φ) and the sub-regionO′′
h in which Φh = ω(Φ). Notice thatO′′

h can be

empty, if qh logmh = O(Φ).

The two sub-regions above can be again considered in isolation, since we can assign to each sub-region (when

both are non empty) half of the frame devoted to classh without affecting the overall performance in order sense.

Nodes belonging toO′
h can directly communicate with nodes inX0 using single-hop transmissions, in the same

way adopted for thefull cluster-denseregime (see [5], Theorem 2). Nodes belonging toO′′
h must adopt, instead,

the hierarchical multi-hop scheme described in [5], which allows to spread out the traffic generated by the ‘peaks’

of nodes belonging to classh over the ground-level infrastructureX0. The only difference is that in this case the

ground-level infrastructure can be above the one given byΦh, i.e., the density of the main infrastructure could be

higher than the minimum node density generated by classh. This situation makes even easier the traffic spreading

procedure described in [5], reducing the number of hops required to reach the main infrastructure. We conclude

that the proposed strategy allow to achieve the same capacity of a network in which nodes are distributed according
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Fig. 9. Illustration of the different cases that can occur with two classes of clusters. For simplicity, we have considered the case of a

uni-dimensional network.

to a HPP of intensitymax{φc,Φ}, which is Λ = Θ(max{L√Φ,
√
m}).

Figure 9 provides a graphical illustration of the differentcases that can occur withH = 2 classes of clusters,

assumingθ < ζ ′/2. It refers to the case in which there are many small clusters belonging to class 0 and a few large

clusters belonging to class 1. Cases (a) and (b) in Figure 9 provide an example of mixed regime (more precisely,

a 0-denseregime, according to the definitions in Section V-A), whereas cases (c) and (d) in Figure 9 correspond

to the full cluster-sparseregime. The minimum network density is determined by clusters of class 0 in cases (a)

and (c), and by clusters of class 1 in cases (b) and (d). The extension to a generic number of cluster classes is

straightforward.

Using the lower bound ofΦh given in Theorem 1, it turns out that the network capacity achievable by our schemes

exactly matches the corresponding upper bound when the overall capacity is dominated by the contribution of classes

in the cluster dense regime, while it differs only by a poly-log factor when capacity is determined by classes in

the cluster sparse regime. In this case, the poly-log gap between lower bounds and upper bounds is entirely due

to the lower bound, since the proposed scheduling routing schemes do not always achieve optimal throughput. We

are confident that employing more sophisticated techniquesa constructive lower bound that exactly matches the

corresponding upper bound can be found; however we leave this issue for future investigations.

VI. Z IPF’ S DISTRIBUTION OF CLUSTER POPULATION SIZE

We are now ready to extend the analysis to the case in which clusters’ populations are distributed according to a

Zipf’s distribution of exponentζ. The basic idea is to reduce the analysis of this case to that of a system with finite

number of cluster classes. This can be done by slicing the domain of the original Zipf’s distribution into intervals

Ih = [qminn
hµ, qminn

(h+1)µ), for all 0 ≤ h < H, whereµ > 0, and assuming that all clusters within one interval

belong to the same class. Since our analysis for finite numberof classes requires that all clusters belonging to the

same class are homogeneous, an approximation is needed at this point, as we have to assign the same nominal

population sizeqh to all clusters inIh.

Considering that the network capacity is intimately related to the minimum node density over the area, to
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Fig. 10. Slicing of the Zipf’s distribution of cluster population

obtain an upper/lower bound to the capacity in the Zipf case we need to assure that the above approximation

provides a corresponding upper/lower bound to the resulting node density. This is easily accomplished by setting

qh = supq∈Ih
= qminn

(h+1)µ when we wish to upper bound the system capacity, andqh = infq∈Ih
= qminn

hµ

when we wish to lower bound the capacity (see Figure 10).

In this way, by employing the techniques developed in the previous section, we can obtain for anyµ > 0 both

an upper boundΛ(µ) and a lower boundΛ(µ) to the network capacity of the original Zipf case.

Note that, by construction, the fraction of clusters falling in classh, for both lower and upper bounds, is

ph = G

qminn(h+1)µ−1
∑

qminnhµ

q−ζ ≈ G

∫ qminn(h+1)µ

qminnhµ

q−ζ dq = G′qminn
hµ(1−ζ)[1 + o(1)] = G′′q1−ζ

h (10)

(expressed in terms of theqh to be used for the lower bound). Hence a Zipf’s distribution of exponentζ is mapped

into a model with finite number of classes in which the exponent is ζ ′ = ζ − 1 (see (5). For this reason in this

paper we have always assumed thatζ > 2 in the Zipf’s distribution, whereasζ ′ > 1 in the case ofH classes.

Now, considering that upper and lower bounds become tighterand tighter asµ is reduced, we obtain, for anyn,

the best bounds by lettingµ→ 0:

Λ = lim
µ→0

Λ(µ) ≤ Λ ≤ lim
µ→0

Λ(µ) = Λ

Since our upper/lower bounds for the case of finite number of classes are asymptotically tight except for poly-log

terms, we conclude that our analysis allows to obtain the scaling exponente(Λ) of the system, as reported in Table

II. Indeed,e(Λ) = e(Λ), i.e, lower boundΛ differs at most by a poly-log term from the upper boundΛ also in the

Zipf case.
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VII. C ONCLUSIONS

In this paper we have proposed a methodology to upper and lower bound the asymptotic capacity of a static

wireless networks with heterogeneous clusters. We have first analyzed the case in which there areH classes of

homogeneous clusters, and then generalized the approach tothe more complex case in which the cluster population

size is distributed according to a Zipf’s distribution. In both cases the obtained upper and lower bounds have been

shown to be tight except for poly-log terms. Our results suggest that cluster heterogeneity can have in same cases

a significant impact on the achievable network capacity.
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APPENDIX A

PROOF OFTHEOREM 1

The main steps of the proof are: i) the domainO is divided into squarelets; ii) the local intensity atξ0 is expressed

as sum of contributions, each due to cluster centres locatedin the same squarelet; iii) applying Lemma 1, every

contribution is bounded w.h.p. (both from below and from above); iv) the upper (lower) bound is shown to converge

w.h.p. to some value forn→ ∞.

Consider a generic pointξ0 ∈ O and a classh. Let Ah = {Ah
k} denote a regular square tessellation ofO, such

that each squareletAh
k has area|Ah

k | = 16 η2
h. Let dh

0k and d
h

0k be, respectively, the inferior and the superior of

the distances between pointsξ ∈ Ah
k andξ0, i.e., dh

0k = infξ∈Ah
k
‖ξ − ξ0‖ andd

h

0k = supξ∈Ah
k
‖ξ − ξ0‖; at last, let
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U(Ah
k) andU(Ah

k) be, respectively, a lower bound and an upper bound to the number of cluster centers of typeh

falling in Ah
k . We recall that, by definition:φc(h)(ξ0) =

∑

j:hj=h qh kh(cj , ξ0), andkh(cj , ξ0) has the same form

as (2). It results:
∑

k

qh
r2h
s(d

h

0k/rh)U(Ah
k) < φ

c
(h) ≤ φc(h)(ξ0) ≤ φc(h) <

∑

k

qh
r2h
s(dh

0k/rh)U(Ah
k). (11)

Applying Lemma 1 we have that, w.h.p., uniformly overk, U(Ah
k) ≥ (mh/2L

2)|Ah
k | and

U(Ah
k) ≤ (2mh/L

2)|Ah
k |. Moreover, if we introduce the variableDh

0k = dh
0k/rh (and analogouslyD

h

0k),

we observe that i)
∑

k qhs(D
h

0k)
|Ah

k |
r2

h

and
∑

k qhs(D
h
0k)

|Ah
k |

r2
h

can be interpreted, respectively, as lower Riemann

sum and upper Riemann sum of
∫∞
0
qhD · s(D) dD; ii) since ηh(m) = o(1), the mesh size of the partitions

associated to Riemann sums vanishes to 0 asn→ ∞. As consequence:

∑

k

qhs(D
h

0k)
|Ah

k |
r2h

∼
∑

k

qhs(D
h
0k)

|Ah
k |
r2h

∼ qh

∫ ∞

0

D · s(D) dD = qh =
nh

mh

and we conclude that:

nh

2L2
= qh

mh

2L2
< φc(h)(ξ0) < qh

2mh

L2
=

2nh

L2

Thus (7) is verified for any0 < g ≤ 1/2 andG ≥ 2.

On the other hand, whenηh = Ω(1), the sums in (11) provide, respectively, an upper bound and alower bound to

the local intensity. It turns out:φ
c
(h) >

∑

k qhs(D
h
0k)

U(Ah
k)

r2
h

= Θ(qh logmh) andφc(h) <
∑

k qhs(D0k)U(Ak)
r2

h

=

Θ(qh logmh s(D
h
c

√
logmh)).

APPENDIX B

PROOF OFTHEOREM 4

We first observe that our construction of nested corridors guarantees that any cluster centre belonging to class

h (h = 0 . . . H − 1) stay at a distance at leastDh/4 from any point belonging to corridorP ′
0. To simplify the

geometry, we suppose thatP ′
0 has a perfect rectangular shape; however we emphasize that our arguments can be

extended to the more general case. We have:

∫

P′
0

Φ(ξ) dξ =

∫ D0/2

0

∫ L

0

Φ(ξx, ξy) dξy dξx =

∫ D0/2

0

∫ L

0

∑

j

q(hj)khj
(cjx, cjy, ξx, ξy) dξy dξx =

∑

h

∑

j:hj=h

∫ D0/2

0

(

∫ L

0

qhkh(cjx, cjy, ξx, ξy) dξy

)

dξx (12)
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In the last member of (12) we can observe that the quantity inside the brackets is constant with respect to the

vertical component of the cluster’s center positioncjy. Thus we can write:
∫

P′
0

Φ(ξ) dξ =
∑

h

∑

j:hj=h

Fh(djx)

wheredjx = infξ∈P′
0
|cjx − ξx| is the horizontal component of the distance between the cluster’s center and points

in P ′
0, andFh(djx) =

∫D0/2

0
(
∫ L

0
qhkh(cjx, cjy, ξx, ξy) dξy)

Now we evaluate the contribution to the node density of a specific classh:
∫

P′
0

φc(h)(ξ) dξ =
∑

j:hj=h

Fh(djx).

First, we divide the whole domainO\Ph into stripesPk
h parallel toPh of dimensionsDh×L (i.e., congruent with

Ph); then we upper-bound the contribution of clusters with center in every stripe by lower-bounding the horizontal

component of the distance between the cluster’s centres andpoints ofP ′
0.

To simplify the notation we restrict ourselves to considering only clusters centres placed in the right half of the

network area with respect to the cutP ′
0 (the same can be done for clusters on the left half). The contribution of

classh is:
∫

P′
0
φc(h)(ξ) dξ =

∑

j:hj=h Fh(djx) ≤
∑

k N
k
hFh(dk

x)

whereNk
h is the number of cluster’s centres of classh falling within thek-th stripePk

h , anddk
x = Dh/4 + kDh is

by construction the minimal distance between thek-th stripe andP ′
0. Applying corollary1 we can conclude that

w.h.p., uniformly overk, Nk
h = Θ(φc(h)LDh). Thus, summing over all classes, we obtain:
∫

P′
0

Φ(ξ) dξ = O
(

∑

h

φc(h)DhL
∑

k

Fh(Dh/4 + kDh)
)

After some calculations, it turns out thatFh(Dh/4 + kDh) = Θ(D0Dh
qh

r2
h

s((Dh/4 + kDh)/rh). Then it is easy

to verify that
∑

h

∑

k F (Dh/4 + kDh) = Θ(
∑

hD0Dh
qh

r2
h

s(Dh/rh). At last, recalling that by constructionD2
h =

1/φc(h) we have:

∫

P′
0

Φ(ξ) dξ = O

(

∑

h

LD0
qh
r2h
s

(

Dh

rh

)

)

Thus we obtain

EP′
0
[Φ(ξ)] =

∫

P′
0
φ(ξ) dξ
∫

P′
0

dξ
= O

(

∑

h

qh
D−δ

h

r2−δ
h

)


