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Abstract

We analyze the capacity scaling laws of wireless networks where theatial distribution of nodes over the
network area exhibits a high degree of clustering. In particular we onsider the presence of heterogeneous
clusters, both in size and in population, which are common in many reasystems. We completely characterize
the scaling exponent of the resulting network capacity by providingupper and lower bounds which differ at

most by a poly-logarithmic factor in the number of nodes.

I. INTRODUCTION AND RELATED WORK

The fundamental problem of determining the asymptotic ciypaf large ad hoc wireless networks has received
significant interest in the past several years, startinmftioe seminal work of Gupta and Kumar [1]. A variety of
results are currently available under different systenuraggions related to the interference model (i.e., protocol
or physical model), channel fading, scaling of the netwaraa constraints on the power/transmission range, and
shape of the power attenuation function (see [2] for a suofeesults).

One critical aspect that can affect the applicability ofsérg results to real network scenarios is the way in
which nodes are assumed to be distributed over the area& sitovork topology can strongly affect the overall
system performance.

In [1] Gupta and Kumar have shown that the per-node througtspupper bounded by /\/n under arbitrary
nodes placement. Later on, Franceschetti et al. [3] haveeprausing percolation theory results, that the above
upper bound is actually achievable (under the physicatfertence model) when nodes are distributed according to
a Homogeneous Poisson Point (HPP) process over the netngakltdence the case in which nodes are distributed
according to a HPP process is optimal in terms of capacity.

The natural question, which has received little attentionfar, is whetherl/\/n is actually achievable in
more general network topologies which cannot be adequatglyesented by a HPP process. Indeed, most of
the topologies generated by natural growing processe$ @siarban or sub-urban settlements) are characterized
by large inhomogeneities in the nodes spatial distribytgince preferential attachment phenomena produce high

degree of clustering [4].
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(a) Example of topology with homogeneous (b) Example of topology with{ = 2.3, § =  (c) Example of topology with = 2.1, 6 =
clusters,d = 2.6. 0.7, 6 = 3.0. 0.3, 6 =2.4.

Fig. 1. Examples of topologies with = 100, 000 nodes belonging to 100 different clusters=£ 0.4), distributed over the squad@®0 x 100
(o = 0.4).

In our previous work [5], [6], we have derived both lower argbar bounds to the capacity of wireless networks
with inhomogeneous node density. In particular, we havesidened the case of several identical clusters, in which
the node density decays from the cluster centre with a poaverof exponent (one example is reported in Figure
1(a)). For this class of topologies the per-node througlyamt be significantly smaller thaty,/n, and turns out
to be intrinsically related to the node density of the leagtytated areas.

In this paper we move one step forward toward the capacityysisaof realistic inhomogeneous networks, by
considering a much richer class of point processes gengrhéterogeneous clusters (both in size and population),
which are usually found in real networks. In particular wensider power laws for both the cluster size and the
cluster population, which naturally appear in many growsygtems [7]. To this extent we generalize the approach
of [5], [6], developing a methodology that permits to chaesize the capacity of rather complex and heterogeneous
topologies such as those shown in Figures 1(b) and 1(c).

Prior to our work, only a few papers have considered the rsgdiiehavior of network in which nodes are
not uniformly distributed. In [8] the authors considemodes distributed ovey/n lines, or clustered aroung’n
neighborhoods. However, both cases lead to topologieshahic not contain significant inhomogeneities in the
node density, thus the resulting capacity is similar to tlexived by Gupta and Kumar.

In [9] the authors consider a system which contains manyularcclusters with uniform node density within
them, surrounded by a sea of nodes with much lower node gefi$ie only quantity that scales with is the
network size. Below a critical network size, the per-nod®tighput is limited by the amount of data that a cluster
can exchange with the sea of nodes, whereas above the Icsiteathe per-node throughput is limited by the
capacity of the sea of nodes. In contrast to [9], we consideruah more general class of clustered topologies,

which requires also different techniques to compute thaltiag network capacity.



Il. SYSTEM ASSUMPTIONS ANDNOTATION
A. Network Topology

We consider networks composed of a random nunibesf nodes (beindE[N] = n) distributed over a square
region O of edgeL. To avoid border effects, we consider wrap-around condfitiat the network edges (i.e., the
network area is assumed to be the surface of a two-dimensionss). The network physical extensi@nis allowed
to scale with the average number of nodes, since this is &gbeéo occur in many growing systems. Throughout
this work we will assume thatL = ©(n®), with a € [0,1/2], which permits to model all intermediate systems in
between the two extreme cases usually referred to in thatitee asdense networka = 0) andextended network
(a=1/2).

Nodes are grouped into a random numBérof clusters, withE[M] = m. Each cluster has a centre denoted
by ¢;, for j = 1... M. Cluster centres are placed 6haccording to a HPP process of intensity = m/L?. We
allow the average number of clustersto scale withn as well, according to the lawm. = O(n"), with v € (0, 1].

Each cluster generates an Inhomogeneous Poisson Point ({iBéss of nodes around the cluster centre
whose local intensity at poirgt is denoted byy;(£). Hence the number of nodes belonging to clugtés itself a
random variable, whose mean is given by the integral ove® of the local intensity); (&), which is assumed to

be rotationally invariant around the cluster centre. Tfweewe can expresg; () in the form
V(&) = q;k; (& ¢5) = qk; (1€ — ¢5)

where||¢ —¢; || denotes the distantef point ¢ from cluster centee;, andk;(-) is a kernel function whose integral
over O is equal to 1.

We remark that our model for heterogeneous clusters candmded as a special case of generalized shot-
noise Cox processes [10]. The overall node process overetweork domain® is a random field obtained by the
superposition of the individual point processes generh;ethe clusters. Given the positions of clusters’s centres
c = {¢ Ml and the mean clusters populatiogs= {g;}¥ _1, the conditional local intensity &t of the overall

point process is

£|C Cl ZQJ gacj

Notice that<I>(§|c, q) is a standard (inhomogeneous) Poisson point process.

We first describe the distribution of thg’s, and then specify the associated kernel functiby(s)’s

1Given two functionsf(n) > 0 and g(n) > 0: f(n) = o(g(n)) meanslim,_o f(n)/g(n) = 0; f(n) = O(g(n)) means
limsup,, o, f(n)/g(n) = ¢ < o0; f(n) = w(g(n)) is equivalent tog(n) = o(f(n)); f(n) = Q(g(n)) is equivalent tag(n) = O(f(n));

f(n) = ©(g(n)) meansf(n) = O(g(n)) andg(n) = O(f(n)); at lastf(n) ~ g(n) meanslim, .o f(n)/g(n) =
°Given any two pointsX; = (z1,71) € O and Xz = (z2,92) € O we define their distance ad(Xi,X2) =

min, ye{—r,0,0} V(@1 +u—x2)% + (y1 + v — y2)?



Fig. 2. Functions(d), determining the shape of kernelg(-).

To model the presence of a few large clusters together withynsanall clusters, we consider that the cluster
population size is distributed according to a power lawjgmisg to eachg; a discrete random valug € N

according to the Zipf's law
fC(Q):Gq_C qe{Qmina-~-7Qmax} ) (1)

whereG is a normalization constant argd> 2. To guarantee that the average number of nodes in the neiwork
O(n), it is necessary to selegt,;, = O(n' ). We instead assume that,., = O(n' %), where0 < g < vis a
free parameter that will be better specified later.

Once the population size of each cluster has been assigmeghape of kernel functioh;(-), which dictates
how nodes belonging to the cluster are distributed arouedlister centre, must reflect the fact that bigger clusters
are expected to occupy a larger network region than smdlisters. At the same time, we want some nodes to
stay arbitrarily far from their cluster centre, filling ttsegions in between the clusters. At last, we wyit) to
be a summable, non-increasing, bounded and continuousidonehose integral over the entire network area is
equal to 1.

To satisfy all requirements above, we start with the funmrcti@d) reported in Figure 2, which can be expressed
as

s(d) = Tiacry +d7° g1y

Then, for everyj, we define a parameter, that we call cluster radius of clustgr Kernel functionk;(-) is finally
obtained rescaling and normalizingd) over the network are®:

s(I1€ = ¢jll/ry)

Ri&e) = e e ry) d@ X

where [, s([[€' — ¢;|/r;) d¢’ = ©(r?) for any § > 2. By so doing, the node density of clustgis constant within
a disc of radius-; centered at;, and decays as a power law of exponémutside the disc.
For greater flexibility, we let the cluster radius to depemdge according tor; = (g;/qmin)?, Whered > 0 is

one additional parameter of our model which allows to mod#&erent levels of node concentration around the



Symbol| Definition

n average number of nodes

L edge length of the network area

@ growth exponent of.: L = ©(n®), « € [0,1/2]
m average number of clusters

growth exponent ofn : m = O(n¥),0 < v <1

exponent of Zipf’s distribution of cluster population size> 2
exponent of cluster radiug, > 0

exponent of maximum cluster population sizg,.x =©(n'=9)

S - 2N

power-law decay of node density,> 2

TABLE |

SYSTEM PARAMETERS

cluster centre. However we must be careful that the radiush@fbiggest clusters, having population sizg..,
does not exceed in order sense the edge ©(n®) of the network area. This is satisfied whgn> v — a/#,
which combined with previous constraints gnleads to the following range of feasible values for

max{0,v —«a/0} < <. 3)

Notice that we have normalized to 1 the radius of clustersnigaminimum population Size,;,. This is not
restrictive, since one can play with the network edge= n“ to account for different values of the minimum
cluster radius.

Table | summarizes all parameters of our model, which allswaiobtain a wide range of network topologies.
Figures 1(b) and 1(c) provide two example topologies coirtgi on averager = 100,000 nodes. In both cases
there are (on average) 100 clusters distributed over a wutface of edge length 100 (i.ex,= v = 0.4). The
topology of Figure 1(b) is characterized Ry= 2.3, # = 0.7 and § = 3, resulting in quite large cluster radiuses,
and rapidly decaying node density outside the cluster diadbe topology of Figure 1(c) the distribution of cluster
populations is more skewed & 2.1), but cluster discs are smallet £ 0.3) while the node density decays more

slowly outside them{ = 2.4). In both cases we have chosen the smallest possible valyg fmual to0.

B. Communication Model

We assume that time is divided into slots of equal duratiowl, @hat in each slot an optimal scheduling policy
enables a set of transmitter-receiver pairs to communimate point-to-point wireless links which are modeled as
Gaussian channels of unit bandwidth. We assume that inbeide among simultaneous transmissions is described
by the following version of thegeneralized physical modefaccording to which the rate achievable by nade

transmitting to nodg in a given time slot is limited to
R;; = min{Ry,log,(1 + SINR;)}

where R, is the maximum rate attainable over a link due to physicaitéitions of transmitters/receivers (maximum

data speed of 1/O devices, finite set of possible modulataheses, etc) and SINRs the signal to interference



ea condition

% a—-35<0

I (a-5)E-1) a—5>0Na-5+w-A(5-0)>0n0< {22

L-@-5E-D+52[6-20- (L -1] | a-4>0na-4+w-m(§ -0 >0r0> L2

1w —1) a—5>0Na-5+@w-B)(§ —0)<0A0> S22

%—min{(a—g)(g—l),'%“({’—l)} a—5>0na—5+@w—B)(§ -0 <0A0< $23
TABLE II

SCALING EXPONENT OF NETWORK CAPACITY (' = ¢ — 1. vp = 29=%

and noise ratio at receiver
Pili;
No + 2 ken ki Prlr;

SINR; =

Here, A is the set of nodes which are enabled to transmit in the gil@n B; is the power emitted by nodg ¢;;

is the power attenuation betweeérand j, and NV, is the ambient noise power. The power attenuation is assumed
to be a deterministic function of the distandg betweeni and j, according tol;; = d;;’, with v > 2. We
assume that nodes can employ different transmitting poveexording to an optimal strategy of power assignment

to simultaneous transmissions.

C. Traffic Model

Similarly to previous work we focus opermutation traffic patterns.e., traffic patterns according to which every
node is source and destination of a single data flow atxatources and destinations of data flows are randomly
matched, establishiny end-to-end flows in the network. Our goal is to maximize thegmn rate\ concurrently

achievable by all flows, or, equivalently, to maximize théwwgk capacity, defined ad = N .

IIl. SUMMARY OF RESULTS

Similarly to previous work, we characterize the scaling lafathe network capacityA by the scaling exponent

en, defined as,

The scaling exponent allows to ignore all poly-logarithifactors, i.e., factors which a@(log n)*, for any finitek.
Since our lower and upper bounds differ at most by a poly+itiyaic factor, the corresponding scaling exponents
match, so we can claim that our characterization of the ni&twapacity in terms of the scaling exponent is exact.
Results are reported in Table Il as function of the systenampatersa, v, d,(, 6, 3. To simplify the expressions,

we have used’ = ¢ — 1 anduy = 25=5.

Whenevera — /2 < 0 we get the maximum possible exponeff\) = 3, equivalent to a system in which nodes

are distributed according to a HPP process; otherwisevfory/2 > 0 the network capacity is in general reduced
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Fig. 3. Scaling exponent ok as function ofa. and v, for Fig. 4. Scaling exponent of as function of¢ and@, for

fixed¢ =2.1,0 =0.8, § = 3. fixeda =0.4, v = 0.6, § = 3.

for effect of nodes inhomogeneities. The behavior of theacup is rather complex, coming to depend on all of
the system paramete(s, J, v, 3, ¢, §). In general we can observe that the system capacity is antoeasing
function of o, 0, 5 and ¢, whereas it is a hon-decreasing functionroénd 6.

To have a more immediate feeling of how the capacity dependhe the system parameters, Figure 3 reports
a 3D plot of e(A) as function ofa and v, for fixed ¢ = 2.1, 6 = 0.8, § = 3; while Figure 4 reports a 3D
plot of e(A) as function of¢ and 6, for fixed @« = 0.4, v = 0.6, 6 = 3. In all cases we have set the smallest
B = max{0,v — «/0} (see (3). In particular, Figure 4 highlights the importaolerthat parameters driving the
distribution of cluster population size can have on the aNesystem capacity. In particular, by increasing the
spreading of the nodes belonging to the same cluster ovendtweork area, i.e., fof — 2 andf — 1, we can

achieve the same capacity exponeft) — 3 as if the nodes were homogeneously distributed.

IV. PRELIMINARIES

We introduce some basic properties and existing resultsateneeded in the analysis presented in the next
section. The first lemma is a standard concentration rebolitaHPP processes.

Lemma 1: Consider an average number of points distributed ove® according to an HPP of intensity. Let
A = {A} be a regular tessellation @? (or any sub-region oD), whose tilesA; have a surfac¢A;| > 16“%,
Vk. Let U(Ay) be the number of points falling inl;. Then, uniformly over the tessellation, for everyit holds
PRl < infy, U(Ay) < supy, U(Ay) < 20| Ay|.
We do not repeat the proof of this lemma, which is based on redatd application of the Chernoff bound (see

[11]).

Corollary 1: As immediate consequence of Lemma 1, if we consider a regesaellationd = { A} in which
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Fig. 5. Example of site percolation. There exists a path of gnspuarelets Fig. 6. Network flow passing through an empty

crossing the rectangular grid x v from the top edge to the bottom edge. corridor of lengthZ and widthd.

|Ak| = O(logm/¢), Vk, then uniformly over the tessellatidii(Ax) = O(log m).

We will need the following result from percolation theoryeés[12]):

Lemma 2: Consider a rectangular grid of squarelets (as in Figure ®)ing v squarelets on the (long) vertical
edge andv squarelets on the (short) horizontal edge. Squareletsidepéndently marked as empty with probability
p, and occupied with probability — p. Two squarelets are adjacent if they have a common edge:’L-et0.59 be
the critical probability of independent site percolatiam the square lattice. Then, if = Q(logv), for anyp > p?
and asv — oo, there exists w.h.p. a vertical crossing path of empty amjasquarelets, comprisirg(v) (empty)
squarelets.

The following property, established in [6], allows to upgesund the maximum amount of data that can be
transferred across a network cut, under the same commiamaabdel adopted in this paper.

Lemma 3: Suppose there exists a corridor of widttand lengthZ dividing the network area in two parts (see
Figure 6), and which does not contain any node. Then the atmadfuwiata that can be transferred from one part to
the other across the corridor @3(£/d).

In particular, we can obtain an upper bound to the aggregatigonk capacity by considering a cut dividing area
O in two parts of area®(L?), since w.h.p. there ar®(n) flows established across it. Lemma 3 suggests that to
obtain the tightest possible bound we need to find an emptydoorcrossing the network area from the top edge
to the bottom edge, having minimum lengthand maximum widthd. Lemma 3 has been already used in [6] to
derive an upper bound to the capacity achievable in the chiewtical clusters. In this paper, beside extending
the analysis to heterogeneous clusters (both in size anadlgiam), we will adopt a different technique to identify
the optimal corridor to which we can apply Lemma 3, which alsproves upon the bound derived in [6] for

identical clusters (actually, we believe that the techaiguesented here provides the best possible upper bound for



our class of network topologies, including the special aafskomogeneous clusters).
The following lower bound has been instead obtained in [Shim case of identical clusters.
Lemma 4: Consider the clustered point process described in Sectifn ih which the population size is the

same for all clusters, i.eq; = ¢, (j =1...M). Let & = infp ®(£) be the minimum node density in the network.
Then it is possible to find a scheduling-routing scheme plingi an aggregate capacity= @(max{L@, \/ﬁ})

being® = Q(n!~v—(a=v/2)),

The basic idea underlying the scheduling-routing mentioimethe above lemma is to extract from the overall
point process a set of nodé§, distributed according to a HPP process, and use this seteamdin transport
infrastructure of the network, whose capacity can be coetpusing well-known results [3]. If the minimum node
density ® is not too low, a standard thinning technique can be appliedxtract from the overall point process
a subset of nodes distributed according to a HPP of intedsibAlternatively, one can select just one node per
cluster, and obtain with the selected nodes a HPP processenfsityn/L? (this alternative leads to the second
term in themax function that appears in lemma 4). The main difficulty is thershow that the rest of nodes can
communicate with the nodes of the main infrastructure atreflpe rate higher than that sustainable over the main
infrastructure (i.e., the network throughput is not tHemitby communications between nodesXig and nodes not

belonging toXy). The interested reader is referred to [5] for the details.

V. ANALYSIS FOR FINITE NUMBER OF CLASSES

In the following we analyze a simplified scenario for the tdungpopulation size: the techniques developed for
this case will come in handy later on in Section VI, in which amalyze the case of cluster population distributed
according to a Zipf’s distribution. In particular, in thiecion we consider the case of non-homogeneous cluster
population size, where only a finite number of values can kenaWe assume that there exist a finite numkber
of classes, representing the possible value that the clpstilation size can take. For eveliyc {0,..., H — 1},

the population size value corresponding to class assumed to be
dh = @(Qminnhu)7 (4)

whereg,i, = O(n'~") is the minimum population size, and> 0 is a parameter that specifies how the populations
of the different classes are spaced apart. Note ghat ©(n!=v+),
Every cluster is assigned to one of these class independamd identically with respect to other clusters. In

particular, every clustef is assigned a random mafk taking values in{0, H — 1}, according to the distribution
pn = Pr(h; =h) =G, (5)
where G’ is a normalization factor, and’ > 1. We havep, = ©(n~"#<") for any ¢’ > 1. Notice that our

simplified model with finite number of classes can be used agpanoximation of the original Zipf’'s distribution.

This is accomplished by slicing the domain of the origingbfa distribution into a finite set of interval$, =
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[qminnh“,qminn(h“)“), for all 0 < h < H, wherep > 0, and assuming that all clusters within on interval have
the same size. The approximation becomes better and bsttee ancrease the number of classes (i.e., letting
tend to zero).

The average number of clusters assigned to dlaissm;, = mp, = @(n”"“‘C'). The average number of nodes
belonging to cluster assigned to cldsss n, = my, g, = O(n! (¢ ~1),

Having defined the cluster population size in the case of tefmimber of classes, we need to specify the kernel
function k,(-) that characterizes the IPP generated by each cluster of /elascan be obtained from the cluster
population sizey, in exactly the same way as described in Section Il. Follovihng rationale outlined there, the
radius of class: is set tor;, = O(n"#9), 6 > 0.

Note that the centres of clusters belonging to classe distributed over the network area according to a HPP

process of intensity

pc(h) = ¢c ph- (6)

We also introduced,(h) = /1/¢.(h) = ©(n®~¥/2tmu’/2) which is the typical distance between clusters
belonging to class:.. More preciselyd.(h) is the edge of the squarelet in which we expect to find, on gegra
one cluster centre belonging to cldssQuantitiesd..(h)'s are fundamental in our analysis, as explained in the next

section.

A. Asymptotic analysis of the local node density
The first step of our analysis is the characterization of thargtotic node density over the network area. Let
= {h 1 | the collection of marks assigned to clusters, anthe position of the clusters’s centers. In the case

of a finite number of classes, we can express the conditiatal intensity of nodes at poit given the seth

andc:

H-1

(¢lc,h) :Z an kn(&,¢j) = Zéi?c (&|c, h)

h=0 j:h J:

whereo.(h)(£|c,h) = Zj;h,:h an kn(&,¢;) is the contribution of clusters of clags To simplify the notation, in
the following we will write ®(£) and ¢.(h)(€) instead of®(&|c,h) and ¢.(h)(£|c, h), respectively.

We introduce the following quantitiesp = sup,, ®(¢) and ® = infp ®(¢), denoting, respectively, the supre-
mum and the infimum of®(¢) over O. Similarly, for each classh, we define ®; = supy, ¢.(h)(¢) and

@, = info ¢.(h)(£), which are the supremum and the infimumypfh) (&) over O.2 Recall that the above quantities

are random variables depending on the position§the cluster centres and their markihgNote that® > >, &,

and® <Y, @,.

3In the following, with slight abuse of terminology we will iafto ® (&) and® (®),), respectively as the maximum and the minimum of

®(&) (e (h)(€)) over O.
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The following theorem characterizes the extreme values.6k)(¢), for eachh.

Theorem 1: Let i, = % Vi"g’”“. If n, = o(1), then it is possible to find two positive constapts Gy, with
gn < Gp, such thatv§, € O,

9n 75 < 6c(h)(&) < Gn7y  whop. )
Hence in this cas@;, = ©(®;,) = O(n;/L?). Instead, whemy, = Q(1) it results, w.h.p.®, = o(®;,). Moreover:
@5, =0(qp logmy) and @, = Q(qh log mhs(nh)/ri).

For the proof of Theorem 1, see Appendix A. Here, we providénauitive interpretation of the main result of
the theorem. Whem;, = o(1) the typical distance between clusters belonging to classe., d.(h), becomes in
order sense smaller than the cluster radiysAs consequence the density of nodes belonging to élassds to
become uniformly constant over the entire network domaia.sSak in this case that classis in the cluster-dense
regime.

On the contrary, whem, = Q(1) the typical distance between neighboring classlusters is larger (in order
sense) than the clags<cluster radius. Hence the density of nodes belonging tosdlais no longer uniformly
distributed (in order sense), i.@, = o(®;). We say in this case that classis in the cluster-sparseegime.

Since for the same values of the system parameters the satiasses can be in different regimes (eithlense
or sparse, we distinguish the following four cases:

« full cluster-densegegime, when all classes are in thleister-denseegime. This case occurs when—v/2 +

hu(¢/2 — 6) < 0 for any h, which requires that:
() a—-v/2<0if 6>)2
(i) a-v/24+(H-1Du(l'/2-0)<0if 0 <'/2.
« full cluster-sparseegime, when all classes are in tbleister-sparseegime. This case occurs when-v/2 +
hu(¢'/2 — 0) > 0 for any h, which requires that:
i a—-v/2>0if 0<()2
(i) a-v/24(H-1Du(l'/2-0)>0if 0 > /2.

. h-sparseregime, when classe. .. are in thecluster sparseregime, and classes + 1...(H—-1) are

in the cluster-densaegime. This case can occur only whén> (’/2, and requires the existence bfc

{0,...,(H — 1)} such that
) a—v/2+hu(('/2-6) >0,
(i) a—v/2+ (h+1)u(c'/2-6)<0.
« h-denseregime, when classes. .. h are in thecluster densaegime, and classes + 1...(H — 1) are in

the cluster-sparseregime. This case can occur only whén< (’/2, and requires the existence of
{0,...,(H — 1)} such that
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() a—v/2+hu(l/2-06)<0.
(i) a—v/2+ (h+1)u(c'/2-6)>0.
Notice that the value of with respect to that of’/2 is critical. When# > ¢’/2 the more ‘uniformly dense’

clusters are the biggest ones. On the contrary, when(’/2 the more ‘uniformly dense’ clusters are the smallest

ones.

B. Capacity Upper bound

To compute an upper bound to the network capacity we are doiapply Lemma 3, finding an empty corridor
that divides the area in two parts each having @¢&?). Recall that the optimal corridor should have minimum
length £ and maximum widthd. We observe that cannot be smaller thah. To maximized, the corridor must
traverse those network regions where the node density isymin. In particular, we need to identify a connected
region traversing the network area from top to bottom, aaglisy as far as possible from cluster centres, especially
from the biggest ones (i.e., those having mark H — 1), which produce a large node density in their proximity.
Intuitively, the optimal corridor should stay at a distarfoam clusters of clas& which increases witth.

We first focus on theull cluster-sparseregime, in which clusters of any class are well separatenh feach
other, allowing to find an empty crossing path from the tophi® lhottom edge of the network area, which does not
contain any cluster centre. After analyzing this case, it lbé clear how we can handle the concurrent presence of
some classes (in the extreme case, all classes) inltiséer-denseegime.

First, we build a sequence of nested corrid®sC P;... C P, C ... Py_1, satisfying the property that, for
eachh € {0, ..., H—1}, corridorP, does not contain any cluster centre belonging to cladhen, within corridor
Po, we look for a final corridorP; free of nodes, to which we can eventually apply Lemma 3. Thstexce of
the sequence of nested corridd?s C ... C Py_1 is guaranteed by the following theorem:

Theorem 2: In the full cluster-sparse regimeit is possible to find a sequence of nested corridégsC ... C
Pp C ... Pr_1 C O, such that the width of corridoP;, (h =0,...,H — 1) is Dy = O(1//¢.(h)).

Proof: Our construction starts with the biggest clusters (i.es¢hof clasg = H — 1), which are more sparse,
and thus permit to find the largest initial corridBy; ;. We consider a vertical slice of the network area of width
O(L) and heightL, and divide it into a regular grid of squarelets of ed@g 1, chosen in such a way that the
probability that no cluster center of clags— 1 falls within one of them is larger thap?, the critical probability
of site percolation in square lattice. This requires that -1 D1 > ps (recall thatg.(h) is the intensity of the
HPP of cluster centres of class defined in (6)), which is satisfied (in order sense) witgn_; = O(1/\/br_1).

The horizontal and the vertical number of squarelets in lice sre of the same order of magnitude, hence we can
apply Lemma 2 and establish the existence of a corrfdgr; of width Dy _; and physical lengt®(L) which
does not contain any cluster centre of cldss- 1.

Once we have found corridorPy_;, we can sequentially find all of the other nested corridors
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' clusters H — 1

‘ clusters H — 2

<> ‘ : ‘ @ clusters 0

Fig. 7. Construction of the sequence of nested corridors

Pu_2,Pu_3,...,Py using the following iterative construction. We considee teneric corridofP;,, with A > 0,
and denote byP; C P, the central part ofP,, having width Dy /2. Inside P;, we look for the inner corridor
Pr—1, which must not contain any cluster centre belonging tosclas 1. Figure 7 provides a graphical illustration
of our approach.

We divide P;, into a regular grid of squarelets of edg®,_,, chosen in such a way that the probability that no
cluster center of class— 1 falls within one of them is larger thapy. This requires that—¢»—1Di1 > ps which is
satisfied (in order sense) whéd, 1 = ©(1/+/¢dn_1). Letwy,_1 andv,_1 be, respectively, the horizontal and ver-

tical number of squarelets of edd®,_; that we can put withirP; . We havew;,_1 = ©(Dy,/Dj_1) = @(n*‘C'/z),
which does not depend dn Moreover,v;,_1 = o(n), sincev,_y = L/Dy,_1 whereDy_; = O(L/\/my_1), With
mp—1 = O(n). Hence, conditionw,_, = Q(logv,_1) is verified and we can apply Lemma 2 to establish the
existence of corridoP,_; C P; C P. lterating sequentially this step from= H — 1 down toh = 1, we obtain
the desired sequence of nested corridors. [ ]

At last, we need to establish the existence of a gatkC P, containing no nodes. We again consider the central
part P}, having width Dy/2, of Py, and look for corridorP, only within ). This time the problem is more
difficult, because the point process of individual nodeshimitP) is no longer a HPP process, hence we cannot
apply exactly the same technique adopted above for the atiredors.

A loose upper bound could be obtained assuming (as a wors) tast the node process with#®, is a HPP
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process of intensity uniformly equal to the maximum intgnsittained by the point process with#®,. One could
then build a regular grid of squarelets dimensioned in atamore to the above maximum intensity, and apply again
Lemma 2. This approach has been followed in [6] in the caseoofdyeneous clusters. Here we propose a novel
methodology which allows to obtain an improved bound (whigh believe to be in order sense tight, i.e., leading
to an estimate of the network capacity matching, in ordesagthe actual network capacity).

Recall from Section V-A that, given the setof marks assigned to clusters and their locationthe point process
generated by clusters of classand the overall node process generated by all clusterstandard inhomogeneous
Poisson point processes whose (conditional) intensitiesdlanoted bys.(h)(¢) and (&), respectively.

We introduce the following definition of the mean node densiithin a generic (Lebesgue-measurable) domain
B:

Jp ®(§) d¢

Ep[®(&)] = T
JB

8)

In the hypothetical case in which the intensity of the poirtgess withinP) were uniformly equal to its mean
Epy[@(€)], we could build a regular grid of squarelets of edge= © (57)[/) [@(5)]—1/2), and apply Lemma 2 to
establish the existence of a corridBt C P having widthz,. Clearly, this hypothetical corridor would provide
an improved upper bound to the capacity (using Lemma 3),Usecés width is larger that the one that we obtain
assuming that the node process witftf) has intensity uniformly equal to its maximum value withj.

Now, even if the point process withif? is not a HPP process of intensigp, [®(£)], the following theorem
allows to establish the existence of a corridor having wiglilual toz, as defined above.

Theorem 3: Let P, be the innermost corridor found according to the constoactn Theorem 2. Le; C Py
be a corridor having the same length and half the widtiPgf Then, it is possible to find a corridd?, C P}
empty of nodes, having leng(L), and widthz, = © (Ep [(£)]1/2).

Proof: We consider for simplicity the case in which pa@j has a rectangular shape. However, the same
approach can be applied to a general path, dividdnto a sequence of partially overlapped rectangles. Thie bas
idea is to construct an irregular tessellation/Rjf in which the sizes of the tiles are locally adapted to thenisity
of point processb(¢). We consider tiles of rectangular shape, in which the hotiloedgez, is the same for all
tiles, while the vertical edge, (£) can vary, being adapted to the local intengit§(). Notice that we force all tiles
in the same row to have the same vertical dimension. Thiscehdoes not affect the tightness of our improved
bound, becaus@(¢) does not change significantly in the horizontal directioctyally, ®(¢) is of the same order
of magnitude over any horizontal line withiR)). Figure 8 provides a graphical illustration of our appioac

Let N4 be the total number of tiles of the tessellation, aAg denote the generic tile. As already said, we

set the horizontal edge of all tiles equal 49 = &p, [®({)]. Let p = Pr(Ay free of nodes = e Jay PO e
dimension the vertical edge, (&) is such a way thap > p? over all tiles belonging to the same row. By so doing,

we can map our irregular tessellation into a bidimensioattice homologous to the one in Figure 5. Thus we left
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Fig. 8. Novel approach to identify an empty path of width which does not contain any node, nested in the innermost Btbf width

Dg. The vertical edge of the tiles is adapted to the local interef the point process.

unchanged the underlying discrete geometry over which weapmly Lemma 2, provided that the number of tiles
N, along the vertical direction and the number of til¥s along the horizontal direction satisfy, = Q(log V).
Since by hypotheses all tiles are dimensioned in such a mﬁyfm ®(&)d¢ > —logps, we can assume that for
some constant

Jp, @() de
< e —

— ©)
— l0g €P.

A

Considering thatV4 = N, x Ny, and thatz, = Ep,[®(£)] we have

LDoEp; [®(€)]

9
Ny:NA/Nz(:)O< -

) VTR o).

Since Dy = Q(log L), we can indeed apply Lemma 2 and establish the existence efrgty corridor in the
underlying lattice, having width, and comprisingd(NN,) tiles. Since by construction the average vertical size of
the tiles isz, = L/N,,, we conclude that the empty corridor has average lefyth).

The following theorem characterizes the asymptotic beitavi the mean node density withiR.
Theorem 4: The mean node density withiR; is Ep; [@(£)] = O (Zh th—E}).
Th

For the proof of Theorem 4 see Appendix B.

s\ —1/2
From Theorem 4 we derive a lower bound fgr= (Zh thJ,—a> , on which we can apply Lemma 3 and

pl
Th



16

obtain our final upper bound to the network capacity= O(L/z,).

Our approach can be easily extended to the case in which somadl)(classes are in theluster-denseegime.
Indeed, the contribution of these classes to the overaBlieof the node process is almost uniform over the network
area, beingp, = ©(®;) for any classh in the cluster-denseegime (see Section V-A). Hence these classes are
ignored in the construction of the nested corrid®s which is to be done only for classes in thiister-sparse
regime. The contribution of classes in thkister-denseegime to the overall node density must instead be taken
into account when we look for the final corrid®, containing no nodes.

In the full cluster-denseaegime, being®(£) = O(+%) uniformly over the whole domaid, the maximal width
of a corridor containing no nodes is = ©(L//n), i.e., itis equal (in order sense) to the typical distandevben
neighboring nodes in a uniformly dense network.

In the h-sparseregime, the mean density of nodes withfiyj can be evaluated (in order sense) as

Do
el =0 | D ats+ ) 7
Th

h<h h>h
and we can set, = © (Ep [®(£)]71/2).
In the h-denseregime, the smallest clusters in the sparse regime belomipssh + 1, hence we look for the
in which

final corridor free of nodes withiP;, Y

D
Epr [2(]=0© Z%‘F Qhr}

1
h+1 < _5
h<h h

vV
>
>N

Then we can set, = © (672 [@(5)]—1/2)

h+1

In all cases, the final upper bound to the network capacity s O(L/z,). Notice that in thefull cluster-dense

and in theh-denseregimes we recover the well known result that= O(y/n) [1].

C. Capacity Lower Bound

Lower bounds to the network capacity are obtained by evalgahe performance of constructive scheduling-
routing schemes specifically tailored to the topologiesegated by our model. In particular, we generalize the
scheduling-routing scheme developed in [5] for the caseonfidgeneous clusters, whose performance is given by
Lemma 4. The basic idea is still to extract from the overallenprocesX a set of node¥X, distributed according
to a HPP process, and use such nodes as the main transpastrinéture through which data are transferred across
the network area. Similarly to the case of homogeneouseaskiX is either obtained by extracting a set of nodes
with intensity equal tod, or it is formed by just one node per cluster, if this provigescher set of nodes (i.e.,

if . > ®). Then the main challenge is to show that the aggregate ghpu is ultimately given by the capacity
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of the main infrastructure, i.e., that communications le&tiw sefXy and the rest of the nodes do not throttle the
capacity available over the main infrastructure.

Theorem 5: Consider the case of heterogeneous clusters belonging tota fiumber of classes, as specified
earlier in this section. Then it is possible to find a schedytiouting scheme providing an aggregate capacity
A = O(max{Ly&, /m}).

Proof: In the full cluster-denseegime we haveb = ©(®), hence we can exploit a general result (see [5],
Theorem 2) that assures that in this case we always get a metapacityA = O(L®) = O(y/n). In the other
regimes, there are some classes (in the extreme case, sdesjain thecluster sparseegime. In this case, the
simplest approach is to separately consider the nodes of @dassh (together with the nodes iX,), as if they
were the only nodes present in the network, and to devotedb elass a constant fraction of time, during which
we schedule only transmission between nodes belongingass &l or to Xo. In more detail, we introduce a
scheduling super-frame given by the successiod{of 1 frames0,1,..., H of equal duration. During frame,
with h =0,1,..., H— 1, we consider only the nodes belonging to clasand to the main transport infrastructure.
This frame is used to make nodes belonging to clasgchange traffic with nodes belongingXy,. The last frame
h = H is instead devoted entirely to the main transport infrastme, and it is used to transfer data of all classes
over large distances across the network area. Notice thatemication among nodes belonging to different classes
occur only using nodes aXq as intermediate relays. Since the number of clagfds supposed to be finite, this
strategy, although suboptimal, achieves in order sensedhee performance of a network consisting only of the
main transport infrastructure, since the loss introdugethk scheduling super-frameigH = ©(1). It remains to
show that, during the generic franke nodes belonging to clags can exchange traffic with nodes X without
throttling down the per-node throughput. However, for this can simply adapt the scheduling strategy developed
for the case of homogeneous clusters. More in detail, foh etessh, we separately consider the sub-regitf
of the network area in whicl®;, = O(®) and the sub-regio®; in which &, = w(®). Notice thatO;’ can be
empty, if g, logm;, = O(®).

The two sub-regions above can be again considered in igojagince we can assign to each sub-region (when
both are non empty) half of the frame devoted to clasgithout affecting the overall performance in order sense.
Nodes belonging t@;, can directly communicate with nodes Xy using single-hop transmissions, in the same
way adopted for thdull cluster-densaegime (see [5], Theorem 2). Nodes belongingd) must adopt, instead,
the hierarchical multi-hop scheme described in [5], whittbves to spread out the traffic generated by the ‘peaks’
of nodes belonging to clags over the ground-level infrastructudq. The only difference is that in this case the
ground-level infrastructure can be above the one give®pyi.e., the density of the main infrastructure could be
higher than the minimum node density generated by diagghis situation makes even easier the traffic spreading
procedure described in [5], reducing the number of hopsirequo reach the main infrastructure. We conclude

that the proposed strategy allow to achieve the same cgpdct network in which nodes are distributed according
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(@) (b) (©) (d)

Fig. 9. lllustration of the different cases that can occuthwiwo classes of clusters. For simplicity, we have considletee case of a

uni-dimensional network.

to a HPP of intensitynax{¢., ®}, which is A = ©(max{L+\/®, \/m}). [

Figure 9 provides a graphical illustration of the differeatses that can occur witH = 2 classes of clusters,
assuming < ¢’/2. It refers to the case in which there are many small clustelsniging to class 0 and a few large
clusters belonging to class 1. Cases (a) and (b) in Figureo@ide an example of mixed regime (more precisely,
a 0-denseregime, according to the definitions in Section V-A), whereases (c) and (d) in Figure 9 correspond
to the full cluster-sparseregime. The minimum network density is determined by chsstd class 0 in cases (a)
and (c), and by clusters of class 1 in cases (b) and (d). Thensixin to a generic number of cluster classes is
straightforward.

Using the lower bound a®,, given in Theorem 1, it turns out that the network capacityi@eble by our schemes
exactly matches the corresponding upper bound when thalbeapacity is dominated by the contribution of classes
in the cluster dense regimewhile it differs only by a poly-log factor when capacity igtdrmined by classes in
the cluster sparse regimdn this case, the poly-log gap between lower bounds andruppends is entirely due
to the lower bound, since the proposed scheduling routihgrees do not always achieve optimal throughput. We
are confident that employing more sophisticated techniguesnstructive lower bound that exactly matches the

corresponding upper bound can be found; however we leasagiie for future investigations.

VI. ZIPF' S DISTRIBUTION OF CLUSTER POPULATION SIZE

We are now ready to extend the analysis to the case in whicherki populations are distributed according to a
Zipf’s distribution of exponent. The basic idea is to reduce the analysis of this case to flesgstem with finite
number of cluster classes. This can be done by slicing theadtoof the original Zipf's distribution into intervals
I, = [qminnh“,qminn(”“)#), forall 0 < h < H, wherep > 0, and assuming that all clusters within one interval
belong to the same class. Since our analysis for finite numbelasses requires that all clusters belonging to the
same class are homogeneous, an approximation is needeid g@otht, as we have to assign the same nominal
population sizey;, to all clusters infj,.

Considering that the network capacity is intimately redate the minimum node density over the area, to
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Fig. 10. Slicing of the Zipf’s distribution of cluster pogation

obtain an upper/lower bound to the capacity in the Zipf cagensed to assure that the above approximation
provides a corresponding upper/lower bound to the regutiode density. This is easily accomplished by setting
qn = SUPyey, = Ioinn"TDH when we wish to upper bound the system capacity, @ne- infycy, = Gminn ™
when we wish to lower bound the capacity (see Figure 10).

In this way, by employing the techniques developed in theipus section, we can obtain for apy> 0 both
an upper bound\(x) and a lower bound\(x) to the network capacity of the original Zipf case.

Note that, by construction, the fraction of clusters falim classh, for both lower and upper bounds, is

Gminn TR 1 Gminn (AT
pn =G Z ¢~ G . ¢~ dg = G quinn™ O 4+ 0(1)] = G"q, ¢ (10)
Gminnhe Gmin

(expressed in terms of thg, to be used for the lower bound). Hence a Zipf’s distributiérexponent( is mapped

into a model with finite number of classes in which the exponer’ = ¢ — 1 (see (5). For this reason in this

paper we have always assumed that 2 in the Zipf's distribution, whereag’ > 1 in the case ofHf classes.
Now, considering that upper and lower bounds become tigintdrtighter ag: is reduced, we obtain, for any,

the best bounds by letting — 0:

Since our upper/lower bounds for the case of finite numbetasfses are asymptotically tight except for poly-log
terms, we conclude that our analysis allows to obtain théngpaxponente(A) of the system, as reported in Table
Il. Indeed,e(A) = e(A), i.e, lower boundA differs at most by a poly-log term from the upper boukdlso in the

Zipf case.



20

VIl. CONCLUSIONS

In this paper we have proposed a methodology to upper and Ibaend the asymptotic capacity of a static
wireless networks with heterogeneous clusters. We havediitalyzed the case in which there dife classes of
homogeneous clusters, and then generalized the approdod teore complex case in which the cluster population
size is distributed according to a Zipf’s distribution. Inoth cases the obtained upper and lower bounds have been
shown to be tight except for poly-log terms. Our results gsgighat cluster heterogeneity can have in same cases

a significant impact on the achievable network capacity.
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APPENDIXA

PROOF OFTHEOREM 1

The main steps of the proof are: i) the domélns divided into squarelets; ii) the local intensity&atis expressed
as sum of contributions, each due to cluster centres lodat#ite same squarelet; iii) applying Lemma 1, every
contribution is bounded w.h.p. (both from below and from\a#)piv) the upper (lower) bound is shown to converge
w.h.p. to some value for — cc.

Consider a generic poirfy € O and a class. Let A" = {A'} denote a regular square tessellationfsuch
that each squarelet? has aregA}| = 1677. Let dj, and Egk be, respectively, the inferior and the superior of

; at last, let

§—%

. . . . —=h
the distances between poiriss A? andé&, i.e.,d);, = infee qn [I§ — oll @nddyy, = supge an
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U(Al) andU(Al) be, respectively, a lower bound and an upper bound to the eunficluster centers of type
falling in A%. We recall that, by definitions.(h)(&) = Zj:h]_:h an kn(cj, &), andky(c;, &o) has the same form

as (2). It results:

Zq (doge/ri)U(AL) < & (B) < 6(h) (&) < Go(h th (dhy /) U (AD). (11)

Applying Lemma 1 we have that, w.h.p., uniformly ovek, U(A})> (my/2L%)|A}| and
U(Al) < (2my,/L?)|A?|. Moreover, if we introduce the variabl®}, = df, /. (and analogouslyﬁgk),

h h
we observe that i}, gns (DOk) A§ and )", qhs(DOk)‘Afl can be interpreted, respectively, as lower Riemann

sum and upper Riemann sum ¢f° ¢, D - s(D)dD; ii) since n,(m) = o(1), the mesh size of the partitions

associated to Riemann sums vanishes to @ as co. As consequence:

Aj n
2 s D02~ 3 (D%)'r— ~a / D-s(D)dD = gy = =
h

& h

and we conclude that:

th th
2?2

np o mp
or2 ~ a2

< ¢e(h)(&0) < an

Thus (7) is verified for any) < ¢ < 1/2 andG > 2.
On the other hand, whem, = Q(1), the sums in (11) provide, respectively, an upper bound donder bound to

the local intensity. It turns outp _(h) >3-, qhs(DOk)U(A ) — O(qy logmy) and e, (k) < 3, qns(Dox) Lat) =

T
O(qn logmy, s(D/logmy,)).

APPENDIXB

PROOF OFTHEOREM 4

We first observe that our construction of nested corrido@raptees that any cluster centre belonging to class
h (h =0...H — 1) stay at a distance at least, /4 from any point belonging to corriddP;. To simplify the
geometry, we suppose th&) has a perfect rectangular shape; however we emphasize tharguments can be

extended to the more general case. We have:

/ £)d = / e / (62.€,) €, €, = / e / Q03 VB, (€0 s o £) AE, AE, =

Do /2
3 / (/0 qhkh@jx,cjy,sw,ﬁy)d@)dgw (12)

hj:hj=h
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In the last member of (12) we can observe that the quantifgenthe brackets is constant with respect to the
vertical component of the cluster's center positigp. Thus we can write:

[ #0a=% ¥ A

h jihj=h

whered;, = infeep, |cj. — €| is the horizontal component of the distance between theerlssenter and points

in P(/), anth(def) == ODO/Q(fOL qhkh<cj$7cjy7€$7§y) dgll)

Now we evaluate the contribution to the node density of aifipadassh:

| PO A= >, Fild).

j:hj:h

First, we divide the whole domai@? \ P, into stripes?’}j parallel toP;, of dimensionsD;, x L (i.e., congruent with
Pr); then we upper-bound the contribution of clusters withteein every stripe by lower-bounding the horizontal
component of the distance between the cluster’s centrepaints of ).

To simplify the notation we restrict ourselves to considgronly clusters centres placed in the right half of the
network area with respect to the cBf, (the same can be done for clusters on the left half). The iboiton of

classh is:

Jpy (M€ e = X —p Fildia) < 324 NiFi(dy)

WhereN,’;‘ is the number of cluster’'s centres of clasgalling within the k-th stripeP}’f, andd’; = Dy /44 kDy, is
by construction the minimal distance between khth stripe andP|. Applying corollary1 we can conclude that

w.h.p., uniformly overk, N} = ©(¢.(h)LD},). Thus, summing over all classes, we obtain:

/p/ (&) de = O(quc(h)DhLZFh(Dh/zl + th))
0 h k

After some calculations, it turns out théy, (D, /4 + kDy) = (Do Dy 5((Dp,/4 + kDy)/ry). Then it is easy
h
to verify that}~, >, F(Dn/4+ kDy) = ©(3, DoDn % s(Dy, /ry). At last, recalling that by constructioR;, =
h

1/¢.(h) we have:

Thus we obtain




