COMPARISON OF Ni-Cr AND Co-BASED ALLOYS FOR FUEL INJECTORS

G. Scavino, P. Matteis, G.M.M. Mortarino, D. Firrao

Politecnico di Torino – DISMIC Torino, Italy

TIMIS2

Feb. 27-Mar. 3, 2011 – San Diego, CA, USA

G. Scavino et al. – ... alloys for fuel injectors

Introduction

- reduction of fuel consumption and pollutant emission
 - higher efficiency motor development
 - . increase of fuel injection pressure in cylinders
 - higher stresses in injection system components
- inadequacy of steels \rightarrow use of Co based alloys or Ni-Cr alloys for components mechanically stressed at high temperature
- literature about these alloys mainly concerns wear and corrosion resistance at high temperature, with few data on high temperature fatigue

A Ni-Cr alloy is compared with previously examined Co-based ones

Materials & specimens

Tensile and fatigue cylindrical (not notched) specimens, 8 mm diameter

• "weloral" Ni-Cr alloy made by powder metallurgy + HIP

• "stellite 6" Co alloys, produced by casting, or by powder metallurgy + HIP

Experimental methods

Mechanical tests

- hardness and micro-hardness tests at R.T.
- tensile tests at R.T., at 250 or 500 C
- pulsed traction fatigue tests (R \approx 0) up to 2.10⁶ cycles at 500 C

Crystallographic and micro-structural tests

- both on as received material, and after the 500 C treatment
- X ray diffraction (Co anode)
- optical and scanning electron metallography and EDS micro-analysis

Fractography

Chemical composition (% wt.)

HIP PM Ni-Cr Alloy

Ni	С	Cr	Al	Со	Si	Mn	Fe	V	Mg
bal.	0.46	48.5	0.055	0.023	0.41	0.11	0.14	0.028	0.028

Cast Co Alloy

Со	С	Cr	W	Ni	Si	Mn	Fe	V	Nb
bal.	1.19	25.5	5.21	1.99	1.56	0.69	0.85	0.028	0.034

HIP PM Co Alloy

Со	С	Cr	W	Ni	Si	Mn	Fe	V	Nb
bal.	1.48	27.2	4.78	0.30	1.21	0.21	0.44	0.021	0.002

XRD Analyses – HIP PM Ni-Cr alloy (Bragg-Brentano geometry, Co anode)

- \approx 70 % FCC Ni with some Cr in solid solution
- $\approx 30 \% BCC Cr$
- Possible Cr carbides

G. Scavino et al. – ... alloys for fuel injectors TMS201

Alloy position in the Ni-Cr phase diagram

XRD Analyses - Co alloys (Bragg-Brentano geometry, Co anode)

Cast alloy:

- \ast Probable prevalence of Co_{FCC} in respect to Co_{HCP}
- * Other phases: Cr carbides and intermetallic compounds
- * Possible phase evolution on heating at 500 C

*HIP PM alloy:

- \ast Prevalence of Co_{FCC}, with some Co_{HCP}
- * Possible presence of intermetallic compounds and carbides
- *No phase evolution on heating at 500 C

Microstructures - HIP PM Ni-Cr alloy *(OM)*

Microstructures - HIP PM Ni-Cr alloy image analysis of SEM – back-scattered (BS) electrons images

Cr-rich BCC phase (black): ≈30%

G. Scavino et al. – ... alloys for fuel injectors TMS201

Cast Co alloy microstructure

Main primary dendrites Inter-dendritic carbides (lamellar) No differences after 500 C treatment Matrix Cr W Mo Si Co 3.5 0.24 0.65 24 71 Cr carbides Mo Co W Cr OM, 456 x 362 μm 78 15 6.3 0.43 Co, W carbides SEM (BS) Cr Co W Mo 21 47 29 2.7

G. Scavino et al. – ... alloys for fuel injectors TMS2011

HIP PM Co Alloy microstructure

Co rich matrix, dispersed carbides, about 2 μ m diameter. Grain size in the range of 5-40 μ m with the most part in the range 5-10 μ m.

Hardness and microhardness

Allov	Macroscopic	HV 0.05	HV 0.05
	hardness	Dendritic zones	Carbides rich zones
HIP NiCr Alloy	370 HV100	_	_
Cast Co Alloy	370 HV50	400-430	530-1100
HIP Co Alloy	460 HV50	-	-

Cast sample: scattered results on precipitated carbide zone (hardness indent large in respect to dimension of carbides)

Mechanical tests

TIMIS20

Fractography – HIP PM NiCr alloy, tensile fracture at 500 C

Fractography – cast Co alloy, tensile fracture at 500 C

Mainly inter-dendritic fracture (a), with some trans-dendritic quasi-cleavage fracture

Fractography – HIP PM Co alloy tensile fracture at 500 C

The fracture is ductile, nucleated by the presence of an inclusion

Fatigue - HIP PM Ni-Cr alloy

pulsed traction fatigue tests (R \approx 0), up to 2.10⁶ cycles, at **500** C

Strenght	Specimens results										Res	sults
Mpa	1	2	3	4	5	6	7	8	9	10	Χ	Ο
660					Χ		Χ				2	
650								Χ			1	
640		Χ		0		0			Χ		2	2
630												
620			0									1
610												
600	0											1

Fatigue limit (for 2·10⁶ cycles) ≈ 640 MPa

X: specimen broken before $2 \cdot 10^6$ cycles

O: specimen completes $2 \cdot 10^6$ cycles

CAST Co-Alloy

pulsed traction fatigue tests (R \approx 0), up to 2.10⁶ cycles, at **500** C

Strenght	Specimens results										Res	sults
Mpa	1	2	3	4	5	6	7	8	9	10	Χ	Ο
410	Χ		Χ								2	
400							Χ				1	
390		Ο		Χ		Ο		Χ		Χ	3	2
380									Ο			1
370					Ο							1

Fatigue limit (for 2·10⁶ cycles) ≈ 390 MPa

X: specimen broken before $2 \cdot 10^6$ cycles

O: specimen completes $2 \cdot 10^6$ cycles

G. Scavino et al. – ... alloys for fuel injectors TMS2

HIP PM Co-alloy

pulsed traction fatigue tests (R \approx 0), up to 2.10⁶ cycles, at **500** C

Strenght		Specimens results										Results	
Mpa	1	2	3	4	5	6	7	8	9	10	Χ	0	
740	Х										1		
720													
700		X									1		
680				X		Ο					1	1	
660			Ο		0							2	

Fatigue limit (for 2·10⁶ cycles) ≈ 660 MPa

X: specimen broken before $2 \cdot 10^6$ cycles

O: specimen completes $2 \cdot 10^6$ cycles

G. Scavino et al. – ... alloys for fuel injectors TMS2

Fractography – HIP PM NiCR alloy, fatigue fracture at 500 640MPa

660MPa

propagation

Nucleation zone (detail)

Fractography – HIP NiCR alloy, fatigue tests at 500 C

TIMIS20

G. Scavino et al. – ... alloys for fuel injectors

Fractography – cast Co alloy, fatigue fracture at 500 C

Fractography – HIP PM Co alloy, fatigue test at 500 C

Fracture surface observed by means of Stereo Macro-scope.

The fatigue fracture is nucleated by the presence of an inclusion.

G. Scavino et al. – ... alloys for fuel injectors

Discussion and conclusions (I/II)

- * Hipped PM Ni-Cr are biphasic, with about 70% Ni-rich FCC and 30% Cr BCC phases (confirmed by XRD analyses), with 1-5 μm grain size, with some porosity and inclusions
- * The cast Co alloy samples are formed by cobalt rich, FCC primary dendrites and lamellar inter-dendritic zones (eutectic mixtures) with high carbides content. EDS micro-analyses evidenced two carbide types: one with high Cr content, the other with high W content.
- * Hipped PM Co alloy samples present a Co rich matrix and dispersed carbides, about 2 µm diameter. Grain size is in the range of 5-40 µm with the most part in the range 5-10 µm.

Discussion and conclusions (II/II)

- The best performance both in tensile tests and in fatigue tests was observed for the hipped PM samples. In particular, in monotonic tests, the hipped Cr-Ni alloy was intermediate between the cast Co alloy and the hipped alloy. In fatigue tests the hipped Cr-Ni alloy behaved almost as the hipped Co alloy and much better than the cast Co one.
- The tensile fracture of the cast Co alloy is mainly inter-dendritic, completed by a quasi cleavage intra-dendritic fracture. In the HIP treated materials (both the Ni-Cr alloy and the Co one), a ductile fracture is nucleated by inclusions.
- In fatigue tests, the crack of cast samples is nucleated by casting defects and propagates on crystallographic planes, in a trans-dendritic way, with a stair morphology. The crack of hipped samples is nucleated by an inclusion and the fracture is mainly ductile.