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ABSTRACT: Blasting in geological bodies is an industrial process acting in an 

environment characterized by high uncertainties (natural joints, faults, voids, abrupt 

structural changes), which are transposed into the process parameters (e.g. energetic 

transfer to rock mass, hole deviations, misfires, vibrations, fly-rock...). The approach to 

this problem searching for the “optimum” result can be ineffective. The geological 

environment is marked out by too many uncertainties, to have an “optimum” suitable to 

different applications. Researching for “Robustness” in a blast design gives rise to much 

more efficiency. Robustness is the capability of the system to behave constantly under 

varying conditions, without leading to unexpected results. Since the geology varies from 

site to site, setting a robust method can grant better results in varying environments, 

lowering the costs and increasing benefits and safety. Complexity Analysis (C.A.) is an 

innovative approach to Systems. C.A. allows to analyze the Complexity of the Blast 

System and the criticality of each variable (drilling, charging and initiation parameters). 

The lower is the complexity, the more robust is the System, and the lower is the 

possibility of unexpected results.  

 

The paper presents the results obtained thanks to the C.A. approach in an underground 

gypsum quarry (Italy), exploited by conventional Rooms and Pillars method by drilling 

& blasting. The application of C.A. led to a reliable solution to reduce the Charge per 

Delay, hence reducing the impact of ground vibration on the surrounding structures. 

The analysis of the correlation degree between the variables allowed to recognize 

empirical laws as well. 
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1. Introduction 

The underground quarry object of the present analysis is exploited by conventional 

room & pillars technique, a method in which rooms are opened by blasting and pillars 

are left to provide support [1]. The quarry is located in a quite densely anthropic context 

(see Fig. 1), and vibrations induced by the blasts are therefore perceived by the local 

population [2], [3].  

 

“Politecnico di Torino” carried out a a detailed vibration monitoring in order to check 

the possible interference with buildings and neighboring structures. Some of the record 

exceed the thresholds established by the German standard “DIN 4150-3: Effects of 

vibration on Structues” [4] (see Fig. 2), a widely recognized norm in Europe. It was 

hence decided to perform a Complexity Analysis (C.A.) of the phenomenon, in order to 



analyze it under the heuristic and complexity point of view, to detect criticalities using 

this innovative approach. 

 

 
 

Figure 1 – Plan view of the site. Highlighted profile: location of the quarry. A, B, C, D, E: positions of preliminary 

vibrometric records according to the complaints of the local population. 1, 2, 3: location of the monitored blasts. 
 

 
 

Figure 2 – ppv vs. frequency diagram obtained from the vibration monitoring, plotted on DIN 4150-3 chart where 

sensitivity class thresholds are highlighted 



 

2. Complexity Analysis 

Complexity Analysis (C.A.) is an innovative approach to engineering systems at its first 

applications in mining and explosives engineering. C.A. uses a heuristic approach to 

complex systems, avoiding approximation or linear regression, and allowing the 

evaluation of outliers in any kind of numerical dataset.  

 

In order to perform an analysis of the complexity of a system multi-dimensional maps 

have to be realized: images that report the raw measured data plotting: 

 

xi against xj variables of the system, with i≠j. 

 

Each map is divided into cells. On each cell an image analysis is performed. From the 

shape and the density of the cloud of points with coordinates (xi, xj), the presence of a 

connection (link), and the noise of this interaction are detected. The strength of the 

connection is known as correlation degree. This is done for each couple of variables of 

the system. Through this image analysis technique, multi-dimensional data are 

transformed into process maps.  

 

The complexity, then, appears as a measure of the structure of the interconnections and 

the noise between the variables.  

 

Any system has: 

 a minimum level of complexity Cmin, under which it behaves totally 

deterministic  

 an operative level of complexity C at which it works at the moment of the 

analysis 

  a critical level of complexity CCR, beyond which it becomes unstable, being able 

to change behavior unexpectedly and cause surprises.  

 
 

Figure 3 – Example of the functioning of Complexity Analysis. Levels of complexity (left), corresponding 

multidimensional maps (center) and system map (right). 

 



The margin between operative and critical complexity is known as topological 

robustness: the capability to withstand a degree of uncertainty in the input without 

greatly influencing the output results. Inversely proportional to robustness is the 

fragility of the system, i.e. its capability of abrupt rupture (output of unexpected results) 

without signals of breaking, and due to apparently innocent causes. 

 

Any variable has an individual contribution to the total complexity of the system. This 

contribution is calculated by taking the variable off and calculating the consequent drop 

of total complexity. This measure of contribution to total complexity is an indicator of 

how critical the variable is for the whole system. 

 

Additional and more specific references on the operation of C.A. can be found in 

Marczyk, 2006 [5], Marczyk, 2008 [6], in Ottino, 2004 [7], in Dellino et al. , 2008 [8] 

and, in relation to the first application of C.A. to the excavations by drilling and 

blasting, in Seccatore et al., 2010 [9]. 

 

3. Case Study 

The exploited orebody is a sedimentary deposit,  approximately 100 meters wide and 40 

meters deep, dipping approximately 50 degrees to the SW. The waste cover is about 

20m deep, consisting of loose colluvial debris, laying on a bed of marl and calcareous 

sandstone. The orebody develops in E-W direction, with interlayers of marlin the same 

direction. Two main discontinuities, consisting of marl layers up to some decimeters 

thick, dip parallel to the orebody, with the joints filled with silt and clay.  

 

A basic approach of calculating the effects of the joint sets was used to evaluate the 

influence of parting planes and frequency of occurrence, for roughly estimating the rock 

mass behavior: an RQD of 80% has been found, while a Rock Mass Rating (RMR) of 

52 gives rise to a class III rock, according to Bieniawski [10]. 

 

The quarry is located in a hilly countryside, approximately 300m above the sea level. 

The area is especially devoted to agriculture, and is well known for its famous 

wineyards. Rural houses and warehouses located in the closest neighborhood belong to 

class 1 and 2 according to DIN 4150-3. Some historical monuments and structures 

located in the same area, and in the medieval village of Murisengo, belong to class 3. 

 

With room and pillar mining, the orebody is excavated as completely as possible, 

leaving sections of ore as pillars to support the hanging wall. Room and pillar is the 

most common method of mining flat deposits of limited thickness, and it is to a great 

extent used for rocks of sedimentary origin, such as gypsum. The dimensioning of 

stopes and pillars depends on the stability of the hanging wall and the ore itself, the 

thickness of the deposit and the rock pressure [11], [12], [13]. Pillars are arranged after 

a regular pattern, shaped as elongated walls, separating the stopes: the usual thickness of 

the pillar is the same as the width of the stope. The drilling and blasting operations are 

organized with the objective to perform up to three blasts per day, generally at the same 

time, with short intervals (max. five minutes) between them. 

 

The opening cut is performed with horizontal holes, according to different geometries, 

V-cut and fan cut respectively. Three schemes are adopted for blasts, as shown in Fig.4.  

 

 



 

3.1 Blast Schemes 

Scheme n.1 consists in a V-cut placed in the middle of the cross section and quite low 

down; each V in the cut, consisting of 6 holes, is fired with the same interval number, 

using 25 ms delay electrc detonators, to ensure a good coordination between the 

blastholes with respect to breakage. The charge concentration in the cut holes is 2.4 

kg/hole, resulting in a CPD (charge per delay) of 14.5 kg. Total consumption of 

explosive per blast is 210 kg, divided into 18 delays. 1 cartridge of dynamite is placed 

in each hole as bottom charge, while the column charge consists in 3 cartridges of 

emulsion. 

 

Scheme 2 adopts a fan cut (Fig.4); total consumption of explosive per blast is 90 kg, 

divided in 10 delays, with a CPD of 14.1 kg. 

 

Scheme 3 is quite uncommon, and is just adopted to rearrange the floor of the quarry; 

also in this case a fan cut is adopted, while all the stoping holes are drilled following an 

almost squared pattern with the same inclination (Fig.4). Each row consists in 8 

blastholes, simultaneously fired. Total consumption of explosive per blast is 

approximately 120 kg, divided into 10 delays, with a CPD of 11,3 kg. 

 

Charging geometry, both for scheme 2 and 3, consists of 2.5 cartridges of dynamite in 

each hole as a bottom charge, and of 2 cartridges of emulsion as a column charge. 

Stemming is not adopted and the firing pattern is designed according to the employment 

of 25 ms detonators. 

 

 
Table 1 – Parameters of the blast schemes 

Symbol Parameter Unit Scheme 1 Scheme 2 Scheme 3 

Ld Design pull [m] 3.10 2.50 2.50 

La Actual pull [m] 2.80 2.25 2.25 

Η Efficiency - 0.91 0.90 0.90 

V Blasted volume [m3] 180 118 142 

Q Total charge [kg] 213 83 124 

PF Powder Factor [kg/m3] 1.18 0.71 0.87 

N Holes number - 88 61 88 

S Cross section [m2] 58 47 63 

CPDmax Maximum charge 

per delay 

[kg] 14.5 14.1 11.3 

 



 
 

Figure 4 – Schemes of the blasts adopted in the quarry  

 

The most relevant data on blasts geometry and explosive consumption are given in 

Table 1. 

 

4. Complexity Analysis of the data 

The C.A. was made considering the following groups of variables: 

 Vibrometric records: peak particle velocity (ppv) and frequency, using triaxial 

geophones and considering the distances from the blasting site and the 

instruments; 

 Drilling parameters: diameter, length, number of the blastholes; 



 Charging parameters: charge per hole, charge per type of explosive, charge per 

delay (CPD); 

 Firing sequence: time and number of delays. 

 

All blasts, during the experimental campaign, were recorded thanks to four traxial 

geophones, coming from different firms. To perform C.A., data obtained from each 

instrument have been separately analyzed. If data coming from different instruments 

(each one having its own systematical error) would have been considered, an artificial 

complexity should have been generated. 

 

4.1 Contribution to total complexity 

The contribution to total complexity of the main parameters is shown in Fig. 5. The 

maximum number of holes per delay is a critical parameter in most cases. Then its 

influence has been analyzed against critical vibrometric records. The results, given in 

figure 5, show that when 6 blastholes are simultaneously fired (scheme 1), the most 

critical conditions are reached (in terms of high ppv and low frequencies): it can give 

reason of significant damage to nearby buildings or various structures. 

 

Scheme 1, to be noticed, presents the highest CPD, and the highest number of holes and 

delays. Contributions to total complexity of these parameters are shown in figure 4.The 

CPD max that was found in scheme 1 can be ascribed to the 6 zero-delay cut holes, 

which are simultaneously ignited. The results of C.A. suggest the way to solve the 

problem: either a greater number of delays  or a lower number of rows has to be 

employed while performing the V-cut, reducing the CPD max (by reducing the number 

of holes per delay) and the peak particle velocity.  

 

 
 

Figure 5 – Main contributions to total complexity of the variables, separately considered for each instrument 
  



 
 

Figure 6 – Influence of the number of blastholes per delay on peak prticle velocity and frequency 
 

4.2 Temporal complexity analysis 

Temporal analysis of complexity and robustness behaviors supplied the results shown in 

Figure 7. According to the time discretization shown in Figure 8, the first four steps 

include only blasts of Scheme 1: their complexity C is very close to critical level CCR, 

then the robustness is very low. As the time rolls by, and blasts of the second and third 

scheme are included, CCR increases more than C, giving rise to a higher robustness. This 

is in agreement with the above mentioned results: Scheme 1 is more critical and more 

fragile at the same time. 

 

Blast schemes n.2 and 3, from the Complexity point of view, are as well more 

robust and reliable and have lower probability of unexpected results. 

 
 

Figure 7 – Temporal complexity analysis. Left: evolution of complexity in time (upper line: critical complexity; 

middle line: operational complexity; lower line: minimum complexity). Right: evolution of robustness in time. 



 
Figure 8 – Time discretization of the steps used to perform temporal analysis: central dates of the steps are 

highlighted in dark grey, time overlays in light grey; the blast schemes adopted are given in the last column  

 
5. How C.A. detects empirical relationships 

As mentioned above, when performing C.A. the presence of links and their strength is 

measured as the correlation degree.  

 

A strong correlation degree has been detected amongst the three components of 

frequency and the CPD of each explosive, as shown in Figure 9. This correlation has 

been recognized as Sadowskij´s empirical law [14]: 

 

 
(1) 

 

Where f is the frequency of vibrations, R the distance between the blast and the 

geophones and Kf a coefficient, depending on the type of soil. In Figure 10 the minimal 

frequencies have been plotted versus the scaled distance (distance reduced by the 

squared root of the minimal CPD), therefore including the two variables whose 

correlation has been detected by C.A., and Sadowskij´s law has been plotted as follows:  

 

 

(2) 

 

where d is the distance between the blast and the geophones and CPDmin is the 

minimum CPD used in the quarry. A Kf = 0.02 has been used, being valid for compact 

rocks, as the gypsum is.  

 



 
 

Figure 9 – Correlation degrees depending on frequency components with CPD max both for dynamite (exp 1) and 

emulsion (exp 2) explosives. To be noticed, no differences were found between the two kind of explosives in terms of 

influence on vibrations frequency 

 
Figure 10 – Trend of the frequency vs. scaled distance: a good accordance with respect to Sadowskij´s modified law 

(see Eq. 2) is clearly observable 

 

C.A. is still at its first steps in explosives applications, and its employment as an 

engineering tool is still under evaluation. From the results here obtained, C.A., having 

recognized a kind of correlation confirmed by empirical rules widely accepted, appears 

to be an effective tool to analyze such complex systems as blast-induced vibrations. 

 



 
Figure 11 – Typical decision-making process that involves the C.A. results. The decision can be made considering 

also complexity and criticality as numerical values amongst the other factors 

 

6. Conclusions 

The experimental study dealt with in this paper has been developed to analyze the 

results of a vibration monitoring in an underground gypsum quarry exploited by 

explosive. In some cases, the measured ppv exceeded the limits suggested by the DIN 

4150-3 Norm, and Complexity Analysis has been employed to check and verify the 

main reasons of that. 

 

Its application made it possible to detect reliably how, in order to limit vibrations, it’s 

possible to reduce the charge per delay employed in the quarry. The C.A. results 

detected as a main criticality the number of holes per row of the V-shaped open cut that 

were initiated with zero delay. The solution to reduce ground vibrations, then, was 

found not by merely reducing the CPD by the charging parameters, but by micro-

delaying the open cut and reducing its number of rows being fired contemporarily, 

without changing the charging scheme of the holes [15]. In this way, at the same time 

the CPD was reduced and the confining conditions of the blast were changed. The 

identification of the critical parameters CPD and number of holes per delay, their 

connection, the critical value of CPD and how to reduce it has been suggested thanks to 

the C.A. application. Figure 11 resumes a typical decision-making process based on the 

results of C.A. 

 



It can be inferred that C.A. can lead to: 

 a comprehension of where criticalities are in the work system 

 an individuation of where to operate in order to reduce criticalities 

 a choice of the better method to increase robustness and avoid unexpected results 

 a way to manage the reliability of the work system 

 

The effectiveness of C.A. as a tool also in explosive works needs further investigations; 

the example here presented, anyhow, confirms its capability to detect structural 

correlations that are confirmed by empirical laws experimentally found. 
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