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Abstract— Nanoscale arrays based on nanowires are expected
to have a promising future thanks to their amazing density
and regularity. Experiments demonstrated the feasibility of this
technology and pointed out that accurate reliability analyses
should be accomplished to assure proper yield requirements.
Due to the complexity of these systems and the arising ne-
cessity of thorough fault analysis, design automation tools are
mandatory in order to explore architectural solutions and
fault tolerant approaches deriving information from reliable
nanoarray characterisation.

We present a simulator, never attempted at this level of detail,
based on specific technological and topological tiled nanoarray
descriptions, conceived to carry on characterisations in terms of
logic behaviour, defect-induced error rate assessment, switching
activity and other figures of merit like power and timing
performance (not discussed in this paper). It is formulated in a
flexible and modular way to assure the simulation of manifold
advancing technological solutions, among which the winner has
not been determined yet. Marking a difference with respect
to the state of the art, the algorithm is based on an event-
driven engine and not on cost functions evaluations. Thus even
dynamic control sequences can be processed and their evolution
followed throughout all the inner components of the array
allowing to obtain system level characterization as a projection
of the real internal parameters.

In this paper we show results attained for one of the possible
nanoarray structures proposed in literature, the NASIC: logic
behaviour, defect error rates and switching activity for two
types of function demonstrate the simulator trustworthiness,
its effectiveness for extensive nanoarrays characterisation and
its suitability as a foundation for both higher architectural and
lower device simulation levels.

I. INTRODUCTION

Parallel computation has been a driving topic since the
development of integrated architectures, and is now even
more a reality with multiprocessors systems thanks to the
integration capabilities reached by scaled technologies. How-
ever, parallelism levels now possible, even though more rel-
evant than ever, allow to achieve only a tiny portion of what
could really be faced in certain breakthrough applications
(biological related processing in medicine could be one of
the examples). Thus, even though research and technology is
expected to greatly improve in this field during the following
years, the predicted limits of CMOS technology [2] will pre-
vent substantial revolutions in the amount of information that
can be processed in parallel. On the contrary, nanoscale array
structures, albeit still in their infancy both from technological
and design points of view, show promising perspectives in

many possible applications and in particular in the direction
of massive parallel computing structures [3].

Manifold nano-structures have been proposed in recent
years [4], and probably few of them will survive feasi-
bility and selection [5]. The explored solutions for what
concerns massive parallelism are based on nanowire arrays
[6], organized in matrices [7], which allow the creation of
active nanodevices (diodes and FETSs) in their crosspoints
[8]. In general these structures are conceptually organized
in two-dimensional tiled arrays. In particular, nanoscale pro-
grammable logic arrays, e.g. nanoPLA, have been proposed
in [9], while [10], suggests molecular/nanowire array based
solutions, e.g. CMOL. Recently NASICs designs have been
proposed in [1], [11] as a way to achieve denser designs
with better fabric utilisation and efficient cascading of cir-
cuits with respect to general-purpose programmable fabrics
(PLASs). Authors in [12] and [13] show how such structures
are suitable for developing massively parallel architectures
like cellular neural networks or image processors. Neverthe-
less, despite their promising characteristics, these structures
have to cope with not negligible defect rates, primarily due
to the critical manufacturing processes at nanoscale level.
Defect tolerant techniques have been widely proposed in
connection with nanoscale arrays [14], [15], [16], [17], thus
clarifying that faults analysis is mandatory when dealing with
nanoarray structures.

There has been extensive work on the subject of defect
tolerant architectures, for instance by [18], and there is no
need to further emphasize the importance of this kind of
work based on computation models for nanoscale logic gates.
Notwithstanding, there is still a lack for a comprehensive
simulation tool that can work on actual nanofabric designs,
taking into account technological process-dependent fault-
probability distributions that characterise elemental com-
ponents (wires and devices in a well defined technology)
and that can devise information such as the reliability of a
processor made up of the said components.

One system level approach has been developed in [19],
where a framework based on a variety of models allows
the architect to map an application on a wide range of
emerging nanofabrics. Based on models of a particular fabric,
e.g. computational, architectural, technological and fault,
this framework suits the need of the designer to compare
different nanoarray approaches. Anyway, it is based on high
level models of a whole tiled nanoarray, while the specific



nanoarray organization, its logic topology, the nanowire
and nanodevices technological description are not directly
included, thus allowing a system level perspective and not a
detailed array behaviour characterization.

In the field of synthesis for reconfigurable nanofabrics
extensive work has been done [20], but many promising ar-
chitectures are inherently not reconfigurable. The aim of this
work is to propose a new methodology and tool to validate
nanoscale designs with respect to different parameters (such
as fault rates, switching activity and more to come) in order
to assess their ability to meet the required reliability and
performance levels. We are not providing a synthesis tool,
but a simulation one that has been conceived from the ground
up to be tailored to different nanoscale architectures, be they
based on static or dynamic logic style and irrespective of the
actual underlying technology.

A device-level approach has been proposed in [21], where
a crossed nanowire field-effect transistor is 3-D modeled and
device level characteristics are extracted to validate at SPICE
level the dynamic circuit style adopted in the NASIC ap-
proach. Though this is a fundamental step for the validation
phase, it cannot be inherited at higher description levels, for
the inefficiency in both describing and simulating a complex
tiled structure or even more a nanoarray architecture.

The aim of the simulator we are developing is thus the
study of complex systems based on emerging electronic nan-
otechnologies, with particular emphasis on architectures that
can exploit their many peculiarities. More specifically, we
are interested in exploring techniques proposed to solve the
problems of reliability of these devices [16], in identifying
the most suitable methods of control in dynamic systems, in
studying power consumption, dimensions, performance and,
as a consequence, in developing optimised architectures.

Though we aim, like in [19], to maintain the simulator
general, so that it can be adapted to the evolving fabric
styles proposed in literature, we underline that the key feature
of our simulator is the ability to include in nanofabric
design descriptions characteristics derived from technology,
dynamic style, topology, and, at the same time, the possibility
to efficiently analyze the behaviour of complex architectures.
The expected overall result is thus nanoarray characterisation
based on specific parameters related to a well defined tiled
structure and not a set of figures of merit based on meta-
models.

This paper is organized as follows: in section II the general
features of the multilevel simulator are described, while in
section III the fabric example (NASIC) used here to describe
the simulator behavior is recalled. In section IV the specific
simulator organization is reported and preliminary simulation
results are commented in section V.

II. MULTILEVEL SIMULATOR

Each nanotechnology fabric, currently undergoing intense
research activity, has unique characteristics but, at the same
time, share technological constraints, which are a main cause
for unification of certain fundamental aspects. One of these is
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the requirement of a two-dimensional array as the underlying
structure for computing [3], [7], [9].

On account of the aforementioned consideration, alongside
the uncertainty over future developments of various technolo-
gies, one of the requirements for generality of the simulator
being described rises. We considered appropriate to retain the
opportunity of studying the behaviour of different nanofabric
structures exploiting their common points. Therefore the
question of how to cope with the particularities of each
technology arises. Our approach has been to develop a way
to describe the particularities of each technology, in spite of
the common simulation structure, and put this information in
technology-dependent libraries. Moreover, because the num-
ber of devices that would make future parallel architectures
will be several orders of magnitude higher than the current,
achieving a density as high as 10'> switches/cm?[23], it
seems appropriate to hierarchically decompose this study,
taking into account manufacturing, fabric and device con-
straints.

We thus envision a simulator organized as in Figure 1,
which, starting from the nanoarray tiled structure, associates
to every performance figure a dedicated simulation layer,
like for example timing, power, faults, logic behaviour...,
if necessary interleaved when cross information are needed.
This allows to lighten to the minimum the computational
weight according to the requested outputs. Once the nanoar-
ray is characterised an architectural simulation is feasible,
so that logic organization, fault-tolerant techniques choices,
parallelisation level trade-off can be explored as a function
of technology, reliability, dynamic structure, fabric type, and
SO on.

We have chosen the NASIC fabric as a case of study
as we deem it promising from both the manufacturability
and the fault-tolerance point of view. A brief summary on
its structure, functional to the following discussion only, is
in section III. Our data structure, anyway, has on purpose
been chosen general enough so that other two-dimensional
nanoarray grids can be easily included and simulated. At
the current stage of development, the simulator (described
in section IV) is able to study the NASIC nanoarray from
the logical point of view, to extract the switching activity and
to explore reliability issues, according to a model proposed
in literature [24], and gather reliability information on the
design under analysis.



III. NASIC STRUCTURE

According to its proponents [1], the elemental units in
NASIC are the tiles (see Figure 2). These are circuits for
adders, multiplexers, and flip-flops. Individual tiles can then
be connected with nanowires or microwires to form a larger,
multi-tile structure.

All nanoscale computing systems have to deal with the
high defect rates of nanodevices and faults introduced by
manufacturing of fabrics, and so do NASICs. Their nano-
scale underpinning is based on a grid of Nano Wires (NWs)
or Carbon Nano Tubes (CNTs). The grid crossings can be
programmed either as FETs, P-N type diodes, or can be dis-
connected, thus implementing a two-level logic architecture.

NASIC designs do not have logic planes of fixed size
and wiring/routing between them, as in PLA-type designs.
Furthermore, NASICs have been proposed in both static-
ratioed and dynamic styles [1], with the latter that enables
pipelining and overcomes the many limitations of a static
design. An example of a NASIC tile (i.e. a specific type
of “nanotile”) for a two output AND function (a- b, a-b)
without complementary outputs is sketched in Figure 2. In
this example we have chosen the NAND-NAND structure
[21]. Each rectangle represents a nFET, with gate (G), source
(S) and drain (D) connected to the nanowires. nFETs are
organised into two logical planes, horizontal and vertical.
Finally, micro-wires are used to carry power and control
signals from the CMOS level.
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Fig. 2. NASIC tile and examples of subtiles. Two outputs AND: a-b, a-b.

Dataflow in NASICs is through a 3-phase progression and
the control signals from the CMOS level coordinate these
phases. An example is given in Figure 3 [21], where a
typical dynamic control style input sequence is shown. An
evaluation phase for both the horizontal and vertical planes
(Heva and Veva respectively) follows the necessary precharge
step (Hpre and Vpre).

Faults are handled by masking them in the circuit and/or
architecture design itself, implementing a multi-tiered built-
in fault tolerance approach [24]. Simulations suggests that
this built-in approach would be able to achieve 25-30% yield
at 10% defect rate on a fabric grid implementing a simple
processor [25].
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IV. SIMULATOR STRUCTURE

The overall description of the basic simulator structure will
be carried out with reference to the simplified flow diagram
depicted in Figure 4: the representation has been organised
into three parts (a, b, c) for the sake of clarity. Details on the
algorithm are in subsection IV-E, while methodology criteria
are described in subsection IV-A, IV-B, IV-C and IV-D.

A. Two-dimensional array data structure

One of the ideas behind our simulator is to look at the
two-dimensional array, which is the main unifying aspect
of many different technologies, and to ideally superimpose
an identical array, staggered on both axes half the basic
pitch of the grating array. In this way, we can highlight
what we call sub-tiles (for some examples see details in
Figure 2), as they are actual tiles, constituted by a vertical
element, a horizontal element and one at the intersection of
the previous two, denoted as the central element. We call
these elements components and observe that a dynamic style
NASIC circuit with n-type FETs only [21] can be described
with a very small number of such components: microwire(s),
nanowire(s), n-type FETs (with two orientations, horizontal
and vertical) and contact(s).

Any sub-tile which is part of the nanotile can be obtained
by placing one of the five components listed above in
horizontal, vertical or central position. One of the reasons
behind this structure choice is that we can describe a library
of components for each technology we are interested in,
and the components will realize the sub-tiles that will form
the actual design. If we remove the overhead related to
symmetries, due to rotations of the sub-tiles in the NASIC
tile, we can greatly reduce the number of sub-tiles necessary
to describe a complete NASIC design. Another reason is that
with such a structure we are separating the technology of the
components from the structure of the circuit we are willing
to simulate.

Therefore, in this work sub-tiles are the elemental units of
a design: as far as we know, no nanoarray simulators have
been attempted at this level of detail. This view is particularly
useful if one describes the sub-tiles in terms of information
routing, that is to say one can describe the properties of
the components, as well as the properties of the sub-tiles,
in terms of their effect on the information they are routing.
For instance, a nanowire in whatever sub-tile will propagate



information from one end to the other, irrespective of the
technology of the nanowire itself. The very same can be
said for microwires. A contact will propagate information
cross the junction between the components it puts in contact.
FETs will act as switches for the propagation of information,
and they will act as a function of the information at the
gate input. This kind of information is not related to the
technology, but describes the behaviour of the components
from an informational point of view.

B. Technological parameters

Technology will only come into play when technological
dependent electrical parameters have to be considered: this
does not impact the logic of information routing. Technolog-
ical parameters for the components are stored in dedicated
libraries, in the form of XML files.

We put routing information in an XML based description
language to be able to simulate the propagation of infor-
mation inside a nanoarray: we called it NEEDL (Nanoscale
Electronics Easy Description Language). At present time it
can operate at two levels: component level and sub-tile level,
but it is being revised and expanded to support simulation at
higher abstraction levels. The component level is the most
informational, of course, but other levels can be useful in
higher abstraction simulations.

C. Event driven logic simulation

The simulation is said to be event driven because it follows
the information flow inside the structure under simulation
and generates specific events when necessary to correctly
handle the propagation of information. To better understand
this process, let’s turn back for a while to the sub-tiles and
their regular three-component structure. We can imagine each
sub-tile as a four-port device, each identified by a cardinal
point: N, S, W, E.

A change in the information at a port may need to be
propagated inside the sub-tile, if there is the appropriate
component to support propagation (e.g. a nanowire). As a
function of the port at which the change in information
happens and the original direction of propagation of this
piece of information, we can check whether there is support
for further propagation and, if this is the case, to change the
information on another port of the sub-tile. This, in turn, will
trigger an update event over the sub-tile, if any, connected
to the first one by means of the output port. By following
the very same process, the information is propagated inside
the structure.

There could be an active device inside the sub-tile, and
the propagation of information could lead to a change in its
status. Should this happen, another kind of event would be
enqueued in the event queue, waiting to be processed to take
into account a possible change of information in a direction
of propagation that is orthogonal with the one that originated
the event.

This approach is very flexible, indeed, because it allows
for different kind of control of dynamic circuits (number of
phases) since the phase sequence is not embedded into the
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Fig. 4. Simplified flow diagram for the general simulation algorithm.

simulator but is coded in the input control sequence (like the
example in Figure 3) and the same approach can thereby be
used in many different scenarios.

D. Defects analysis

There could also be defects inside the sub-tile, so the
propagation of information process must be informed of
this possibility. We separated the information about the
component from its position inside the nanotile. In this
way we are able to take into account local deviations of
electrical parameters from their nominal values as a function
of virtually any kind of probability distribution, hence we
better describe real operating conditions. In section V details
on the actual defect generation will be given.

Now it is time to take into account this kind of positional
information. The simulator can be loaded with defect sets,
that is to say directories of files describing the defects



and their location on the nanoarray. This information is
loaded, in a sense, as a level of the base representation
in computer memory of the nanoarray setting up a defect
map (with reference to Figure 1). Every time information
has to propagate inside a component that can be defective,
the simulator checks with the current defect map to see
if propagation can proceed or not, and this impacts event
generation.

In this way we can get accurate data about the design
under test that can be useful, for example, to characterise
complex nanotiles and to support a more abstract simulation
layer built on top of these results.

E. The algorithm

Now we are going to have a closer look at the general
simulation algorithm referring to Figure 4: there is a risk
of oversimplification in this diagram, but it is necessary to
focus on key aspects.

o The simulation starts, as in Figure 4a), by parsing a
number of files in XML format that hold the informa-
tion for the simulation that is being run. At the very
beginning, a configuration file that holds many flags
(that can be changed inside the simulator) to drive
the ongoing simulation (type of analysis performed,
taking into account defects or not, etc.) is read, then a
parse of some supporting information about the design
follows. If the required analysis is not purely logical, the
simulator will also parse the appropriate technological
process file, holding information about the available
components in the selected technology. For static timing
analysis, FETs can be modeled by means of resistors
of a given value (two, actually: Roy and Ropr): these
values are technologically dependent.

We then initialise basic data structures to carry out
the required computations, as defined by the selected
configuration. Components information in NEEDL for-
mat is loaded from the selected component set. A
description of the basic sub-tiles that will embody the
design (NASIC in this case) is loaded as well.

Then we build an efficient memory representation of the
nanofabric under test from a description file (or, possi-
bly, many description files): this structure is lightweight
from a computational point of view, because it only
holds references to a very few number of sub-tiles
actually instantiated in memory, hierarchically built in
the previous steps from their basic components.

Once the nanofabric has a representation in computer
memory we have to power it up: for the sake of
brevity, we will not go in details about this phase. The
power.xml file describes the contact points between the
nanofabric and power supply rails, to be as general as
possible with respect to possible power issues. Power
propagates into the circuit and generates events when-
ever necessary (e.g. when a nanowire is put in contact
with a microwire by means of a contact component).
This marks the beginning of the simulation, because the
simulator starts propagating events and handling them,
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Fig. 5. Probability distribution of faults along tile nanowires. U: uniform
distribution of faults in all the tiles; G: gaussian distribution of faults with
mean value centered in tile; C-NE: gaussian distribution with mean value in
North-East corner of the tile; C-NW: gaussian distribution with mean value
in North-West corner of the tile

as in Figure 4c), but in quite different ways as a function
of the kind of analysis required.

o In fact, Figure 4b) shows that the simulation branches
here: if we are evaluating an ideal design without faults
we can get directly to the next section of Figure 4c),
while if we deal with defects we have to first parse
defect sets and correct outputs of the circuit for the given
input sequence, that was generated by the simulator
itself in a prior faults-free run. A defect set is a file (then
a structure in memory) that has been previously gen-
erated according to technology-related fault-probability
distributions, providing information about which defects
are present in the circuit under test. During a simulation,
the tool will use thousands of such defect sets to
characterise the circuit behaviour.

o Figure 4c) shows that as long as the simulator gets
new data from input file(s) it will keep propagating and
handling events in the structure as necessary, with the
process above portrayed, and will collect information
in the form of output file(s) and statistical analysis
results.

TABLE I
INPUTS AND OUTPUTS VALUES SIMULATED PHASES FOR AND DESIGN

[ Inputs Outputs
Heva a a b b Hpres Veva Vpre |Veva Vpre Heva a-b a-b Hpre

I 0 1010 1 0 0 1 1 1 11 1
I 1 1010 O 0 1 1 1 1 1 1 0
il 0 1010 O 1 0 1 0 0O 1 0 1
I 0 1001 1 0 0 0 1 1 11 1
I 1 1001 O 0 1 1 1 1 1 1 0
I 0 1001 0 1 0 1 0 0o 0 0 1
I 0 0110 1 0 0 0 1 1 1 1 1
)i 1 0110 O 0 1 1 1 1 1 1 0
11 0 0110 O 1 0 1 0 o 0 0 1
I 0 1010 1 0 0 1 1 1 11 1
I 1 1010 O 0 1 1 1 1 1 1 0
111 0 1010 O 1 0 1 0 0o 0 1 1




TABLE I
INPUTS AND OUTPUTS VALUES SIMULATED PHASES FOR FA DESIGN.

DETAILS OF SWITCHING ACTIVITY ARE ON THE RIGHTMOST COLUMN.

[ Inputs Outputs Switching activity
Hevaaa b b ¢ ¢ Hpre Veva Vpre |Veva Vpre Heva ¢, ¢, 5§ s Hpre| 0—1 1—0 total

1 0O 010101 1 0 1 1 1 1 1 111 1 0 14

I 1 010101 O 0 1 1 1 1 1111 0 9 25 57

111 0 010101 0 1 0 1 0 0 1010 1 9 0

1 0O 010110 1 0 1 0 1 I 1111 1 5 14

1I 1 010110 O 0 1 1 1 1 1111 0 9 9 46

I 0O 010110 O 1 0 1 0 0 1001 1 9 0

1 0 011001 1 0 1 0 1 1 1111 1 6 19

11 1 011001 0 0 1 1 1 1 1 111 0 9 9 52

1T 0 011001 0 1 0 1 0 0 1001 1 9 0

1 0 011010 1 0 1 0 1 1 1 111 1 5 14

11 1 011010 0 0 1 1 1 1 1111 0 9 9 46

111 0 011010 O 1 0 1 0 0 0110 1 9 0

1 0 100101 1 0 1 0 1 1 I 111 1 11 24

1I 1 100101 O 0 1 1 1 1 1111 0 9 9 64

111 0 100101 O 1 0 1 0 0 1001 1 11 0

1 0 100110 1 0 1 0 1 1 1111 1 5 14

1I 1 100110 O 0 1 1 1 1 1111 0 9 11 50

111 0 100110 O 1 0 1 0 0 0110 1 11 0

1 0 101001 1 0 1 0 1 1 1111 1 1 19

I 1 101001 0 0 1 1 1 1 1111 0 9 11 60

1T 0 101001 0 1 0 1 0 0 0110 1 11 0

1 0 101010 1 0 1 0 1 1 1111 1 5 14

1I 1 101010 O 0 1 1 1 1 1111 0 9 11 50

111 0 101010 O 1 0 1 0 0 0101 1 11 0

V. RESULTS along their axes during the assembly process, hence defects

At the current stage of development our multilevel simu-
lator has been tested on NASIC NAND-NAND nanoarrays
for a few logic functions and simple designs. In this paper
we report preliminary results for the two input AND port
depicted in Figure 2 and for the 1-bit Full Adder.

The simulator has been developed in C++, with the
support of a custom XML-based language for all the input
and configuration information, and of Perl scripting for the
generation of faults sets. All the software is written paying
attention to portability issues. Different computing platforms
are suitable: UNIX, Linux and Mac OS X are currently
supported.

The event driven logic simulation described in section
IV.C requires input and control signals: all the input combi-
nations for the designs under test have been tested and initial
(® 1), intermediate (P II) and final (P III) digital values
for the three-phase control scheme are reported in Table I
and in Table II, where main inputs and outputs values are
highlighted in bold. Control signals are evolved as required
by the NASIC technology (as in Figure 3).

This simulation technique allows us to gather precise
information about the switching activity that occurs inside
the target design. In Table II we show the results of
such a simulation for the FA. With reliable technological
information about power consumption of both 0 —1 and
1 —0 transitions we could accurately determine the power
consumption of the simulated nanoarray with the chosen
control style and technology.

The analysis of the impact of defects described in section
IV.D is based on set of files which include fault information
statistically generated in a Montecarlo style (2000 trials for
each faults set). According to literature [9], NWs could break

could have a not uniform distribution along the wire length.
To show the impact of different fault distributions in both
wire and device on the output error rate, we performed
multiple simulations. In each one, we associate a Gaussian
(G) distribution or a Uniform (U) one, as reported in Figure
5. In particular, the Normal distributions where staggered,
to simulate an increase in wire failure towards one of the
corner (C-NE, C-SE, C-NW, C-SW), instead of failing with
preference in the middle (G). Devices were supposed to
fail in line with a Uniform distribution in each and every
simulation run.

Chosen randomly under such distributions the defect point
along the wire, we also randomly decide its presence: the
maximum error rate is varied from 1% to 20% [25].

In Figure 5 we show a 2D and 3D representation of defects
distribution in the case of a 20% error rate. Top left and top
right show a Uniform and Gaussian distribution respectively,
while in bottom left an example of faults condensed in the
North-West corner is shown. On the bottom right we have
a 3D view contrasting the bottom left case at 20% and 5%
error rate.

The output error rate for the AND port (for the four input
combinations in Table I) due to faults distributed along both
horizontal and vertical nanowires according to the above-
mentioned statistics is in Figure 7.left. Output error rate
shows a linear increase with nanowire defect rate with a
unexpectedly high ratio: 2% of nanowire defects cause a
~ 28% output error rate, whilst 10% causes a ~ 40% to
~ 50% as output error probability, depending on distribution
type. In the C-NW and C-NE cases, an early failure is
propagated throughout the whole structure, leading thus to a
greater output error rate.
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In Figure 7.right the output error rate is shown (for
the eight input combinations in Table II) under the same
conditions in the 1-bit Full Adder (FA) case. It shows a
linear increase with nanowire defect rate, but with a lower
ratio (= 5% for 2% of nanowire defects) at the lowest values
of defect rate. Even if they start at quite different output
error rates for low wire defect rates, both the AND port
and the FA reach an = 70% output error rate for a 20%
nanowire defect rate in the worst case. It is worth noticing
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Output error rate for AND port (left) and Full Adder (right) as a function of nanowire defect rate.

that the span from worst-to-best case is about 30% for the
latter design. The different behaviour of the AND port and
FA is even more evident in Figure 8, where their output
error rates are superposed when both nanowire and device
defects are taken into account (20% defect rate with uniform
distribution for devices). The impact of device error rate is
of 5% in the worst case, thus reflecting its lower importance
with respect to nanowire failure which influences larger parts
of the design.
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nanowire faults are superposed.

The ability to handle defects distributions, not just a defect
rate, is an important distinguishing factor from literature.
Given a fault-rate we have shown there is a remarkable differ-
ence in the output failure depending on the actual distribution
of the faults in the structure and we can precisely evaluate the
effect of whatever such distribution. Therefore, we can also
asses the effectiveness of fault tolerance techniques proposed
in literature: this will be included in our future work points.

These results show how much important is to have a
simulator which details the behaviour at sub-tile level, able
thus to extract performance and topological data (in this case
related to faults) useful for both higher architectural level
simulation steps and synthesis and physical design tools.

VI. CONCLUSION

Our simulator can perform mid-to-low level simulations,
taking into account the inner statistical nature of different
type of nanofabrics, with a general approach that can vir-
tually be applied to any parameter of interest affecting the
structure.

Provided that information about probability distributions
of many technological aspects is drawn from actual experi-
ments, the simulator can supply quite accurate results. It can
also be used with data set based on speculative models, of
course, with the limits incidental to this kind of approach. In
the former case, the produced results could be used at higher
simulation levels as a strong foundation.

At present time, we can perform logical analysis of array-
based nanostructures and thoroughly investigate the impact
of both defects and fault-tolerance techniques, and devise ac-
curate switching activity information. In particular, since we
focused on NASIC designs, we developed all the supporting
libraries for this architecture.

Much work has still to be done in order to expand the
feature set of the simulator, to exploit the potential of
the proposed simulation architecture: as a next step, we
plan to take advantage of this event-driven variability-aware
simulation technique to analyse delay.
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