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Abstract

We present here a method for the relativis-
tic positioning in spacetime based on the re-
ception of pulses from sources of electro-
magnetic signals whose worldline is known.
The method is based on the use of a four-
dimensional grid covering the whole space-
time and made of the null hypersurfaces rep-
resenting the propagating pulses. In our first
approach to the problem of positioning we
consider radio-pulsars at infinity as primary
sources of the required signals. The reason
is that, besides being very good clocks, pul-
sars can be considered as being fixed stars
for reasonably long times. The positioning is
obtained linearizing the worldline of the ob-
server for times of the order of a few periods
of the signals. We present an exercise where
the use of our method applied to the signals
from four real pulsars permits the reconstruc-
tion of the motion of the Earth with respect to
the fixed stars during three days. The uncer-
tainties and the constraints of the method are
discussed and the possibilities of using mov-
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ing artificial sources carried around by celes-
tial bodies or spacecrafts in the Solar System
is also discussed.

1 Introduction

In ancient times people learnt to travel by sea,
far from the cost, looking at the sky. Though
they measured time on the basis of the day and
night alternation and not much more, Polyne-
sian settlers, using the stars as a guide, were
able to sail across the Pacific ocean over thou-
sands of kilometers without getting lost. In the
West, once the measurement of time reached
modern accuracy and precision with the first
marine chronometer, the celestial navigation
was the base of the spread of European col-
onization over the world. Today the equiva-
lent of the old navigation (and of the present,
though by other guidance systems) is repre-
sented by the exploration of the Solar Sys-
tem and, possibly, even beyond. Until now
however the guidance of the spacecraft is per-
formed from Earth; stars are used at most for
trim definition purposes on board. In fact
the idea of using stars for navigation in space
seems sound and appealing, but now it must
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take into account our better knowledge of the
concepts of time and space which General
Relativity binds together. In particular in order
to achieve the precision and accuracy needed
in space we cannot simply consider the config-
uration of ”fixed” stars and the times at the ori-
gin of our travel and at the local position. We
need to compare clocks far away in the sky (or
at least following known spacetime trajecto-
ries or worldlines) with a clock we carry with
us. The idea we are reviewing and presenting
in the present paper outlines a fully relativis-
tic navigation system based on the local mea-
surement of the arrival times of electromag-
netic signals from sets of at least four pulsat-
ing sources, located at known positions in the
sky. The first implementation of the idea con-
siders pulsars as sources, however, as we shall
see, the same approach can be adopted when
the origin of the pulses is an artificial one.

2 Relativistic positioning
Any object in spacetime, for instance a point-
like observer, is represented by a line, actually
its worldline, in the fourdimensional contin-
uum. Electromagnetic signals that reach the
observer at a given position and time, travel
on his past light cone. The situation is schema-
tized in fig. 1

The figure necessarily represents a three-
dimensional spacetime; actually the dimen-
sions should be four, but the geometrical con-
figuration is essentially the same. Imagine you
have not less than four broadcasting devices,
each one equipped with a clock; their elec-
tromagnetic signals can convey the informa-
tion of the proper time of each emitter at the
moment of the emission. The user is reached
at any moment by a set of four signals; the

Figure 1: View of a pointlike observer with its
past light cone; time flows from bottom to top.
The black almost vertical lines correspond to
the world lines of three light emitters slowly
moving around. The straight lines on the sur-
face of the cone are the worldlines of the elec-
tromagnetic signals emitted by each source.
The numbers τ1, τ2 and τ3 are the proper times
at the emission event.

information carried by each signal concerns
the identification code of the source and the
proper emission time of that signal. The rel-
evant fact is that the set of the four emis-
sion times depends on the position of the ob-
server in spacetime. The correspondence be-
tween positions and quartets of proper times
is one to one, provided the four worldlines
of the emitters are linearly independent from
one another and as far as we do not consider
lensing effects, which are important in strong
gravitational fields. Under these conditions we
may think to use the four numbers (the four
emission times) as good coordinates localiz-
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ing the receiver both in space and in time (this
is the reason why the emitters must be at least
four). The basis for this peculiar coordinate
set is given by the spacetime trajectories of
the four emitters. The four proper times are
the emission coordinates of the user. This ap-
proach has been considered by various authors
[2, 9, 11, 1, 6] and has especially been studied
by B. Coll and collaborators [3, 5, 4].

Our approach is slightly different, but in the
end it produces an equally reliable position-
ing. If we imagine to have a finite source of
electromagnetic waves located at space infin-
ity, the wave fronts of the signal will every-
where be planes. Suppose the source emits
periodic pulses: geometrically the signal will
be a set of non-intersecting planes traveling at
the speed of light. If we have four of such
pulsed sources, their pulses will fill space with
a sort of egg-crate lattice. Each signal from
each source may be labeled with a simple or-
dinal number, so that each cell in the lattice is
identified by the labels on one of the corners.
The orientation of one family of planes (pulses
from one of the sources) is specified when a
unit vector perpendicular to one of the planes
is given. All this is expressed in three di-
mensions, but spacetime is four-dimensional,
so that the same considerations as above can
be made identifying each traveling pulse with
a (three-dimensional) hyperplane; its orienta-
tion will be given by a four-vector orthogo-
nal to the (family of) hyperplanes. Our four-
vector can carry all the relevant information if
it is written like this:

χ
.
=

1

cT
(1, n⃗) (1)

Here n⃗ is a purely spacelike unit three-
vector. In an arbitrary Cartesian coordinates
system in space its components would be the

direction cosines of the vector with respect
to the coordinated axes. T is the periodic-
ity of the pulses given in a reference frame
where the source is at rest (proper period of
the pulses). The factor we put in front of
the expression of χ in (1) produces the same
dimensions as for ordinary three-dimensional
wave-vectors. Since we are speaking of elec-
tromagnetic pulses, the χ vector is null or self-
orthogonal:

χ · χ =
1

c2T 2
(1− 1) = 0 (2)

If we consider the covariant version of χ,
which is, technically speaking, a 1-form, we
know that it has a Hodge conjugate 3-form:

ϖ = ∗χ (3)

The 3-form ϖ is, by construction, perpen-
dicular to the four-vector χ: χ · ϖ = 0.
Furthermore, being χ a null vector, ϖ too
is null: ϖ · ϖ = 0. In practice, since χ
identifies a direction in space-time, ϖ, as we
wrote above, corresponds to a family of three-
dimensional hyperplanes perpendicular to χ.
When we split the four-dimensional descrip-
tion into space and time (3 + 1 splitting),
the projection of the above picture in space
gives the familiar view of a set of ordinary bi-
dimensional planes (wave fronts) propagating
along the direction given by the space compo-
nents of χ at the speed of light.

What matters for us is that four families
of independent hyperplanes of this sort cover
the whole spacetime with a four-dimensional
foam of (hyper)cells, each one uniquely la-
beled by a set of four integers (the ordinal
numbers of the hyperplanes, i.e. of individual
pulses, meeting at one of the vertices). This
configuration permits to position any event in

3



spacetime modulo the edges of a cell. If we
identify the sources by the indices a, b, c, d the
lengths of the edges will be cTa, cTb, cTc, cTd;
each edge is null in the sense of (2).

Now, if we have an observer moving across
spacetime, his worldline successively inter-
sects the cells of the ”foam” we mentioned
above. The situation is sketched in fig. 2.

Figure 2: Bidimensional view of the position-
ing pattern described in the text. ϖa and ϖb

identify two families of hyperplanes; each hy-
perplane corresponds to a single pulse from
a source and may be labeled by an ordinal
number. The dashed lines correspond to the
flow lines of the χ null four-vectors. The con-
tinuous wiggling line is the worldline of an
user traveling across spacetime. The intersec-
tion of the worldline with one of the hyper-
planes identifies the reception event of the cor-
responding pulse.

The intersection of the worldline with one
of the hyperplanes identifies the reception
event of the corresponding pulse. If the re-
ceiver is equipped with a clock he can both
count the subsequent arrivals of the pulses and
measure the proper time intervals between the
arrivals, represented in fig. 2 by the length of
the worldline between two intersections.

If we consider, for instance, an arrival event
from source a, we may label it with the inte-
ger na. Of course from the viewpoint of the
signals from b the na event will have a label
somewhere in between an nb and nb + 1; the
same will in general be the case for sources c
and d. In practice we may think to use the four
numbers {na;nb+xb;nc+xc;nd+xd} as co-
ordinates to localize the reception event of the

na-th pulse from source a. The x’s we have
introduced are in general 0 ≤ x < 1.

2.1 Linearization

If we want the above defined coordinates to be
useful we must find a practical way to evalu-
ate the fractional x’s. This is indeed easy if
spacetime is flat and the worldline of the ob-
server is straight. The situation then is shown
in fig. 3. If the observer has got a clock he is
able to measure the time intervals between the
arrivals of the pulses, i.e. the lengths between
the light blue blobs marking the arrivals of the
signals in fig. 3.

Under the geometrical assumptions we have
made it is trivial to see that, given a sequence
of eight arrivals, simple linear relations be-
tween the time intervals and the x’s hold.
Solving the corresponding system of linear
equations leads to the complete definition of
the positions in spacetime of the first four re-
ception events. With a moving sequence of
events, it is then possible to fully reconstruct
the whole worldline of the receiver. In order
to turn our n’s and x’s into practical coordi-
nates we must also know the proper emission
periods of the sources (the T ’s) and their posi-
tions in the sky, or, to say better, their world-
lines, in practice the direction cosines of the
propagation from each source (for details see
[14, 15]).

3 Constraints and uncer-
tainties

In order to have an extremely simple algorithm
we considered a flat spacetime and a straight
worldline of the observer. Are these condi-
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Figure 3: Bidimensional representation of the
reception of a number of successive pulses ar-
riving from sources a and b according to the
scheme of fig. 2; the little ovals identify the
arrival events. When the worldline of the user
is straight, or may be thought to be approx-
imately straight, the knowledge of the time
span between the arrivals of the pulses is suffi-
cient to uniquely localize the reception events,
and then the position of the user.

tions credible? and to what extent?

3.1 The observer’s worldline

In a flat spacetime a straight worldline corre-
sponds to an inertial, then uniform, motion.
This condition is not appropriate to describe
the journey of a spacecraft in space both be-
cause of the presence of the gravitational field
and of the maneuvers made using an engine;
the more this is true if we consider the motion
on the surface of a celestial body, including
the Earth. In general the motion will be accel-

erated as in the case seen in fig. 2. Let for the
moment the gravitational field aside. How can
we treat the curvature of the worldline due to
the acceleration?

Developing the worldline function in pow-
ers of time and looking at the first non linear
term in the i-th space component of the motion
we have of course:

si = vit+
1

2
ait

2 (4)

The relative importance of the non linear
term with respect to the linear one is:

ϵ =
ait

2vi
(5)

Now if we decide what is the acceptable tol-
erance for our problem we obtain the maxi-
mum time within which the linear approxima-
tion for the worldline (i.e. the uniform motion
hypothesis) is viable:

t ≤ δt = 2ϵ
vi
ai

(6)

Within the Solar System the speed of freely
falling objects is controlled by Kepler’s laws,
so that it does not exceed ∼ 105 m/s (the es-
cape velocity from the surface of the Sun is
∼ 6 × 105 m/s); for our purposes it is not the
case to consider ”visitors” not belonging to the
Solar System. On the other hand for manned
vehicles there are limitations of the maximal
acceleration that should not exceed 30 − 40
m/s2 in order to prevent unacceptable physi-
cal damages (the acceleration at launch of the
space shuttle is limited to approximately 30
m/s2 [8]). It is less simple to define upper lim-
its to the tolerable acceleration for unmanned
spacecrafts, since that limit would depend on
the fragility of the payload and of the onboard
equipments. It is however true that usually
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the preferred strategy for space missions tends
to favor weak long-lasting thrusts rather than
short and violent pushes, being the latter re-
served at most for the take off from celestial
bodies. Just to fix ideas we take as a reference
highest acceleration the value of 100 m/s2. Us-
ing these figures we see that an accuracy of 1
part in 105 implies that the linearity hypothe-
sis is not tenable for more than approximately
δt = 10−2s. If we think to our sources as be-
ing millisecond pulsars, the above δt includes
a number of cycles which is roughly 10: this
is enough for an 8 events sequence so that the
actual worldline of the receiver is piecewise
reconstructed as a chain of locally straight por-
tions. Of course if we think to sources with an
emission period in the order of µs’s or less1,
we may use a much higher number of paces
within a given interval. In this way, keeping
the prescribed accuracy fixed, we could allow
for much bigger accelerations.

The final accuracy of the positioning de-
pends both on the quality and emission fre-
quency of the sources and on the accuracy of
the onboard clock used to measure the delay
from one arrival event to the other.

3.2 The gravitational field

Until now we have neglected the influence of
a gravitational field which is of course present
throughout the Solar System. This means
that the background spacetime is curved rather
than flat; can we account for this? A first re-
mark is that the curvature of spacetime at the
emission point and along most of the trajec-
tory of the signal, out of the Solar System, is
irrelevant for our method, provided it does not

1In this case they could not be pulsars, since neutron
stars cannot speed that fast, because of their size.

change in time, or at least it changes only over
times much much longer than the ones implied
in our positioning process. The reason is that
the curvature in the environment of the emit-
ting neutron star and along the electromag-
netic ray determines the global time of flight
of a pulse in an (almost) time-independent
way, so that it does not affect the intervals be-
tween the arrival times of successive signals.
What remains to be considered is the effect
of the curvature in the region where the re-
ceiver is located; since the receiver is mov-
ing, also the local curvature it feels changes
with time. However we remark that the grav-
itational acceleration within the Solar System
(excepting the surface of the Sun and the giant
planets) is of the order of 10 m/s2 and usu-
ally much less than that. In these conditions a
simple Newtonian approach is acceptable; un-
der this condition the gravitational field can
be treated as any other acceleration field in a
flat background. In practice for times short
enough that the worldline can be considered
to be straight we are on the tangent space and
no gravitational field is visible, but for longer
times gravity appears in the bending of the re-
constructed space-time trajectory. Again we
have a time tolerance within which our lin-
ear algorithm works; if we wish instead to use
our method in order to investigate the structure
of the gravitational field at the receiver’s posi-
tion, we simply need to collect data for a long
enough time.

4 An exercise
In order to make a preliminary evaluation of
the feasibility of a positioning system like the
one we have been describing so far, we have
implemented our method developing a con-
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version algorithm from the arrival times mea-
sured by the receiver into the reconstructed
spacetime evolution of the observer. Then
we have applied our tool to the signals from
four real pulsars as they would be received at
the site of the Parkes observatory in Australia
[10]. In practice the arrival times were sim-
ulated using the TEMPO2 programme, which
has been developed by the astrophysics com-
munity to study the pulsars and can be used
to simulate the sequence of the signals from
known pulsars at any position on the surface of
the Earth. Our simulated data taking has been
prolonged for three days and has produced the
result synthetically visible in fig. ??.

In the figure one sees the space trajectory of
the Earth with respect to the pulsars, assumed
to be fixed stars. Actually the reconstructed
orbit is superposed to the expected path given
by the ephemerides. At the scale of the graph
in a) it is impossible to catch any difference
between the two curves, but in fact the sim-
ulated trajectory fluctuates about the fiducial
one according to the assumed accuracy in the
determination of the arrival times. The abso-
lute positioning error during the same period
is visible in part b) of the figure; it is in the
order of a few hundred meters.

In order to verify the response of our pro-
gramme to the uncertainties in the measure-
ment of time by the observer we have run
some preliminary tests simulating an observer
at rest with the fixed stars. A typical result
(with one space dimension suppressed) can be
seen in fig. 5. The asymmetry between the x
and y directions is due to the non-fully sym-
metric distribution of the pulsars around the
hypothetical user.

For the test we have simulated the actual be-
haviour of the onboard clock superposing to
the fiducial arrival times a nanosecond Gaus-

(a)

(b)

Figure 4: Motion of the Earth with respect to
the fixed stars during three days, reconstructed
using the arrival times of four pulsars at the
site of the Parkes observatory in Australia. (a)
Global view; the scale does not allow to dis-
tinguish between the reconstructed trajectory
and the ephemerides. (b) The values of the
positioning during the same three days; they
are in the order of hundreds of meters.
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Figure 5: Worldline of an observer at rest. The
blue dots are obtained from the simulated ar-
rival times of the signals from four pulsars; the
red line is the real spacetime position. The dis-
persion is contained into 40 cm.

sian noise. Consistently the reconstructed po-
sition of the receiver displays a dispersion of
the order of approximately 40 cm.

5 Fixed stars versus artifi-
cial sources

The idea of using pulsars for navigation and
positioning purposes was put forth since the
early times of their discovery [7] but every-
body is perfectly aware of the fact that, though
appealing, radio-pulsars are very faint objects
so that their signals are many orders of mag-
nitude below the noise at corresponding fre-
quencies [12]. This means that big antennas
and refined elaboration techniques are needed
in order to receive their pulses; the size of

the antenna could be reduced considering X-
ray pulsars, but the receiving device should
be out of the atmosphere and the problem of
the intensity of the signal remains [13]. It is
true that recognizing a known pulsar is not
the same as looking for unidentified new ob-
jects, as people at radiotelescopes do, but any-
way the use of pulsars would be difficult and
limited to a few and expensive cases. Once
however the method is adopted and validated
there is no reason for excluding artificial pul-
sating sources. Actually if we allow for mov-
ing emitters we have an ample choice of dif-
ferent solutions. The relevant requisite is that
the worldline of the emitter must be known; in
practice in our algorithms we shall have time
depending direction cosines and time depend-
ing relativistic γ factors with respect to the ref-
erence frame in which we decided to repre-
sent both the sources and the user. The rate
of change of the time depending values will
have to be small enough not to spoil the lin-
earization procedure for the receiver’s world-
line. If the emitter is an artificial one, we may
of course think of using much higher frequen-
cies than the ones we find in pulsars: GHz’s
will not be a problem. Since the piecewise lin-
earization is made over times of a few tens of
the emission periods at most, the relative sta-
bility will have to be kept over tens or hun-
dreds of µs.

Suppose the source is carried by a space-
craft whose path in the Solar System is well
known, or even by a satellite orbiting the
Earth. The relative speeds of these vehicles
with respect to the user can be of the order
of, say, ∼ 104 m/s, which means that the
emitter during the integration time of the al-
gorithm moves at most 1 m. At a distance
ranging from thousands to millions of km that
displacement corresponds to angles from µrad
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down to nrad or less. Coming to the expected
rate of change of the relative velocity of the
emitter with respect to the receiver, we see that
at the highest credible acceleration we have
room for changes of the speed at most in the
order of 1 cm/s. A change of this amount pro-
duces a corresponding change in the γ in the
order of 1 part in 1019: perfectly negligible.

Similar results hold also when we imagine
our emitters to be laid down on celestial bod-
ies, such as the Moon, or Mars, or the aster-
oids.

Summing up, a permanent structure to en-
able the navigation in the Solar System could
consist of a set of sources of electromagnetic
pulses located on celestial bodies and on freely
orbiting spacecrafts. Such a system could also
be integrated by the use of a limited number
of pulsars. In all cases, even though the mini-
mum number of emitters is four, the sources
on which to rely will have to be more than
four: redundancy is important (as it is the case
also for the present terrestrial GPS) because
some of the sources, for periodic occultation
or for any other reason, may turn out to be
unavailable for a while. Let us add that for
pure geometrical reasons the distribution of
the sources in the sky of the user should al-
ways be as even as possible in order to op-
timize the accuracy of the positioning. This
again implies a redundant number of emitters,
especially if their position changes with time.

6 Conclusion
We have seen that it is possible, for posi-
tioning purposes, to exploit periodic pulses
from sources with known worldlines. The
use of null vectors makes the method intrinsi-
cally relativistic, so that no ad hoc correction

is needed. If the time interval within which
it is possible to treat the user’s worldline as
being straight is not less than ten times the
longest period of the emitters, simple linear re-
lations between the arrival times of the pulses
from different sources hold. Solving the cor-
responding system of linear equations allows
the reconstruction of the worldline of the user.
Suppose you are starting a journey at a given
moment and from a given position. You need
to know: the position of the initial event with
respect to an arbitrary reference frame; the
position in the sky of at least four pulsating
sources and their possible law of change with
time; the period of the pulses from each source
in a reference frame where the source is at rest.

Applying our algorithm the whole world-
line of the traveler can be reconstructed with
respect to the start event in the chosen refer-
ence frame. The accuracy of the positioning
depends on the distribution of the sources in
the various directions and on the precision of
the clock the observer uses to measure the time
from one pulse and the other.

The use of pulsars as sources has been con-
sidered, though it is limited by: the extreme
weakness of the signals, the need for compar-
atively long integration times and the concen-
tration of the pulsars in the galactic plane (un-
even distribution in space). Anyway we have
been able to simulate the reconstruction, by
means of pulsars, of the worldline of a point
of the surface of the Earth.

We have then discussed the application of
our method to artificial emitters of pulses. In
this case we would have the possibility to
use higher frequencies, then shorter integra-
tion times, and much higher intensities, then
a cheaper and more manageable hardware for
the detection and treatment of the signals. In
the case of an artificial source we need also to
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know the worldline of the emitter. In order to
built a navigation support network in the So-
lar System we could think to place a number
of our pulsating emitters on different celestial
bodies and onboard freely falling spacecrafts.

Unlike the present situation, a space mis-
sion could be self-guided using the connec-
tion with the navigation support network. The
spacecraft would have to be equipped with: an
antenna apt to receive the pulses from the net-
work and to recognize from which one of the
sources they come; a clock; a memory con-
taining the ephemerides of the sources from
the initial event of the journey onward; a com-
puting facility with a resident simple linear al-
gorithm. No need for remote control would
remain, except for some calibration from time
to time. Of course the technological require-
ments of the equipment listed above have to be
discussed carefully. For instance the antenna
must be designed so that it can catch the pulses
from at least four sources at a time; we would
then need a set of either omnidirectional or
wide aperture elements, with different orien-
tation in space. Hopefully the determination
of the direction from which the signals arrive
is not necessary as far as the parameters of the
source are entirely known, so that it will be
sufficient to recognize the source form its ”sig-
nature”.

The attention has been concentrated on the
space missions, however there is no reason
to exclude more familiar applications for po-
sitioning on or around the Earth. Using a
constellation of high Earth orbit satellites as
primary sources would provide the equiva-
lent of the present GPS, without the need
for Sagnac periodic re-synchronization of the
clocks from Earth. By the way, the next gen-
eration of Galileo satellites could be an op-
portunity to test our method in the terrestrial

environment; for a practical test actually four
micro-satellites in high Earth orbit broadcast-
ing regular pulses could be enough.

The effort should now be concentrated
on technology: clocks, receivers, process-
ing units, energy consumption, miniaturiza-
tion etc. The prospective of an autonomous
navigation among the planets makes all this
worth doing.
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