
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Capacity scaling of wireless networks with inhomogeneous node density: Upper bounds / Alfano, Giuseppa; Garetto,
Michele; Leonardi, Emilio. - In: IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. - ISSN 0733-8716. -
STAMPA. - 27:(2009), pp. 1147-1157. [10.1109/JSAC.2009.090911.]

Original

Capacity scaling of wireless networks with inhomogeneous node density: Upper bounds

Publisher:

Published
DOI:10.1109/JSAC.2009.090911.

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2360770 since:

IEEE and ACM



IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 27, NO. 7, SEPTEMBER 2009 1147

Capacity Scaling of Wireless Networks with
Inhomogeneous Node Density: Upper Bounds

Giusi Alfano, Michele Garetto, and Emilio Leonardi

Abstract—We analyze the capacity scaling laws of wireless
ad hoc networks comprising significant inhomogeneities in the
node spatial distribution over the network area. In particular,
we consider nodes placed according to a shot-noise Cox process,
which allows to model the clustering behavior usually recognized
in large-scale systems. For this class of networks, we introduce
novel techniques to compute upper bounds to the available per-
flow throughput as the number of nodes tends to infinity, which
are tight in the case of interference limited systems.

Index Terms—communication system performance, point pro-
cesses, wireless networks, capacity, non-Poisson models.

I. INTRODUCTION AND RELATED WORK

W IRELESS ad-hoc networks have been traditionally
modelled as a set of nodes placed over a finite bi-

dimensional domain and communicating among them (possi-
bly in a multi-hop fashion) over point-to-point wireless links
subject to mutual interference. In their seminal work, Gupta
and Kumar [1] have considered a model in which n static
nodes are placed in a disk of unit area, and establish n source-
destination flows. For arbitrary network topologies, they obtain
that the per-flow throughput is O(1/

√
n), thus providing an

upper bound to the performance achievable under any node
placement. In the case of nodes uniformly distributed over the
area, they propose a scheme achieving Θ(1/

√
n log n) per-

node throughput. Later on, Franceschetti et al. [2] have applied
percolation theory results to show that Θ(1/

√
n) transmission

rate is achievable by the flows also under the uniform node
distribution.
The goal of our work is to extend the capacity scaling

analysis to networks exhibiting a much higher variability in
the node spatial distribution than the one resulting from a
homogeneous Poisson point process. Indeed, almost all large-
scale structures created by human or natural processes over
geographical distances (such as urban or sub-urban settle-
ments) are characterized by significant degrees of clustering,
due to spontaneous grouping of the nodes around a few
attraction points. This motivated us to considering a general
class of clustered point processes referred to as shot-noise Cox
processes [3], which includes several special cases widely used
in many different fields, such as Neyman-Scott process [4],
Matérn cluster process [5], Thomas process [6].
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While analyzing the impact on the network capacity of such
node placement processes, we maintain the basic assumptions
originally introduced by Gupta and Kumar, and derive upper
bounds to the per-flow throughput as the number of nodes (and
the number of clusters) tends to infinity. Our main finding
is that the network capacity is intrinsically related to the
minimum intensity of the overall point process over the area.
In a separate paper [7], we introduce a class of scheduling and
routing schemes that approach the limits presented here (up
to a poly-log factor), thus showing that our upper bounds are
tight for the case in which the system performance is limited
by interference among concurrent transmissions.

To the best of our knowledge, only a few works have
analyzed the capacity of clustered networks. In [8], Toumpis
considers a set of n nodes wishing to communicate to
m = Θ(nd) cluster heads (0 < d < 1), and discovers that
the network throughput can be limited by the formation of
bottlenecks at the clusters heads. Both sources and cluster
heads are uniformly distributed, so the overall node density
does not exhibit inhomogeneities.

The deterministic approach proposed in [9] allows to derive
capacity results also for some non-i.i.d. node distributions.
In particular, the authors consider nodes distributed over

√
n

lines, or clustered around
√

n neighborhoods. In both cases,
a regular square tessellation of the network area can be built
in such a way that no squarelet is empty w.h.p., while the
maximum number of nodes in each squarelet increases at most
as a poly-log function of n. Therefore, the network does not
contain significant inhomogeneities, and the resulting capacity
is similar to that derived by Gupta and Kumar.

In [10] the authors consider a system which contains many
circular clusters with uniform node density within them, whose
centres are distributed according to a Poisson process over the
network area (a Matérn cluster process). Moreover, clusters are
surrounded by a sea of nodes with much lower node density.
The only quantity that scales with n is the network size. Below
a critical network size, the per-node throughput is limited by
the amount of data that a cluster can exchange with the sea of
nodes, whereas above the critical size the per-node throughput
is limited by the capacity of the sea of nodes. In contrast to
[10], we consider a more general shot-noise Cox process, and
we let the density of clusters (and the number of nodes per
cluster) to scale with n as well. Moreover our techniques to
compute upper bounds to the capacity are totally different.

The authors of [11] consider nodes placed according to
Poisson cluster processes similar to ours, and focus their
attention on a specific transmitter-receiver pair at a distance
R apart. They characterize the distributional properties of the
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interference at the receiver, and the outage probability under
Rayleigh fading.
In [12] the authors present a spatial framework to upper

bound the number of simultaneous transmissions in a network
with general topology. However, it is unclear how their ap-
proach can be used to upper bound the capacity of the class
of networks considered here, and the corresponding per-flow
throughput.

II. SYSTEM ASSUMPTIONS AND NOTATION

A. Network Topology

We consider networks composed of a random number N
of nodes (being E[N ] = n) distributed over a square region
O of edge L. To avoid border effects, we consider wrap-
around conditions at the network edges (i.e., the network area
is assumed to be the surface of a two-dimensional Torus).
The network physical extension L is allowed to scale with the
average number of nodes, since this is expected to occur in
many growing systems. Throughout this work we will always
assume that L = Θ(nα), with α ≥ 0.
The clustering behavior of large scale systems is taken into

account assuming that nodes are placed according to a shot-
noise Cox process (SNCP). An SNCP can be conveniently
described by the following construction. We first specify a
point process C of cluster centres, whose positions are denoted
by C = {cj}M

j=1, where M is a random number with average
E[M ] = m. In the literature the centre points cj are also
called parent or mother points. Each centre point cj in turn
generates a point process of nodes whose intensity at ξ is given
by qjk(cj , ξ), where qj ∈ (0,∞) and k(cj , ·) is a dispersion
density function, also called kernel, or shot. In the literature
the nodes generated by each centre are referred to as offspring
or daughter points. The overall node process N is then given
by the superposition of the individual processes generated by
the cluster centres. The conditional local intensity at ξ of the
resulting SNCP is

Φ(ξ) =
∑

j

qjk(cj , ξ)

Notice that Φ(ξ) is a random field, in the sense that, condi-
tionally over all (qj , cj), the node process N is an (inhomo-
geneous) Poisson point process with intensity function Φ. We
denote by X = {Xi}N

i=1 the collection of nodes positions in
a given realization of the SNCP.
In this work we restrict ourselves to kernels k(cj , ·)

which are invariant under both translation and rotation, i.e.,
k(cj , ξ) = k(‖ξ−cj‖) depends only on the euclidean distance
‖ξ − cj‖ of point ξ from the cluster centre cj . Moreover we
assume that k(cj , ·) is a summable, non-increasing, bounded
and continuous function whose integral

∫
O k(cj , ξ) dξ over

the entire network area is finite and equal to 1. In practice,
the kernels considered in our work can be specified by first
defining a non-increasing, bounded and continuous function
s(ρ) such that

∫∞
0

ρ s(ρ) dρ < ∞ 1 and then normalizing it
over the network area O:

k(cj , ξ) =
s(‖ξ − cj‖)∫

O s(‖ζ − cj‖) dζ

1In the case α = 0 the condition
R ∞
0

ρ s(ρ) dρ < ∞ can be relaxed toR L
0 ρ s(ρ) dρ < C for some C > 0

Notice that in our asymptotic analysis2 we can neglect the
normalizing factor

∫
O s(‖ζ − cj‖) dζ = Θ(1). Moreover

k(cj , ξ) = Θ(s(‖ξ−cj‖)). At last, we observe that, in order to
have finite integral over increasing networks areas, functions
s(ρ) must be o(ρ−2), i.e., they must have a tail that decays
with the distance faster than quadratically.
Under the above assumptions on the kernel shape, the quan-

tity qj equals the average number of nodes generated by cluster
centre cj . We assume that all cluster centres generate on
average the same number of nodes, hence qj = q = n/m. In
our work, we let q scale with n as well (clusters are expected
to grow in size as the number of nodes increases). This is
achieved assuming that the average number of cluster centres
scales as m = Θ(nν), with ν ∈ (0, 1]. Consequently, the
average number of nodes per cluster scales as q = Θ(n1−ν).
At last we need to specify the point process C of cluster

centres. We consider two different models:
Cluster Grid Model. Clusters centres are placed in a
deterministic fashion over the vertices of a regular square
grid covering the network area O.
Cluster Random Model. Cluster centres are randomly
placed according to a Homogeneous Poisson Process
(HPP) of intensity φc = m/L2 over O.

The Cluster Grid Model is simpler to analyze, because the
overall node process turns out to be a standard Inhomogeneous
Poisson Process (IPP) whose intensity over the area can easily
be computed, since the clusters centres C are assigned. This
model serves as an intermediate step towards the analysis of
the more complex Cluster Random Model.
For both models, we define dc = L/

√
m = Θ(nα−ν/2).

This quantity represents, in the case of the Cluster Grid Model,
the distance between two neighboring cluster centres on the
grid; in the case of the Cluster Random Model, dc is the edge
of the square where the expected number of cluster centres
falling in it is equals to 1. We call cluster-dense regime the
case α < ν/2, in which dc tends to zero an n increases. We
call cluster-sparse regime the case α > ν/2, in which dc tends
to infinity an n increases.
Figure 1 shows three examples of the kind of topologies

considered in this paper, in the case of n = 10, 000 and
α = 0.25. In all three cases we have assumed s(ρ) ∼ ρ−2.5.

B. Communication Model

We assume that time is divided into slots of equal duration,
and that in each slot an optimal scheduling policy enables a
set of transmitter-receiver pairs to communicate over point-to-
point wireless links which are modelled as Gaussian channels
of unit bandwidth. We consider point-to-point coding and
decoding, hence signals received from nodes other than the
(unique) transmitter are regarded as noise. We remark that
this is not the most general setting from an information theory
point of view, as nodes could potentially employ cooperative
coding-decoding schemes.

2Given two functions f(n) ≥ 0 and g(n) ≥ 0: f(n) =
o(g(n)) means limn→∞ f(n)/g(n) = 0; f(n) = O(g(n)) means
lim supn→∞ f(n)/g(n) = c < ∞; f(n) = ω(g(n)) is equivalent to
g(n) = o(f(n)); f(n) = Ω(g(n)) is equivalent to g(n) = O(f(n));
f(n) = Θ(g(n)) means f(n) = O(g(n)) and g(n) = O(f(n)); at last
f(n) ∼ g(n) means limn→∞ f(n)/g(n) = 1.
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(a) Cluster Random model with ν = 0.6. (b) Cluster Grid model with ν = 0.3. (c) Cluster Random model with ν = 0.3.

Fig. 1. Examples of topologies comprising n = 10, 000 nodes distributed over the square 10 × 10 (α = 0.25). In all three cases s(ρ) ∼ ρ−2.5. Case 1(a)
belongs to the cluster-dense regime (α < ν/2). Cases 1(b) and 1(c) belong to the cluster-sparse regime (α > ν/2).

We assume that interference among simultaneous transmis-
sions is described by the so called generalized physical model,
according to which the rate achievable by node i transmitting
to node j in a given time slot is limited to

Rij = log2(1 + SINRj)

where SINRj is the signal to interference and noise ratio at
receiver j:

SINRj =
Pi�ij

N0 +
∑

k∈Δ,k �=i Pk�kj

Here,Δ is the set of nodes which are enabled to transmit in the
given slot, Pi is the power emitted by node i, �ij is the power
attenuation between i and j, and N0 is the ambient noise
power. The power attenuation is assumed to be a deterministic
function of the distance dij between i and j, according to
�ij = d−γ

ij , with γ > 2. One drawback of this model is that
the received power (and the corresponding rate) is amplified
to unrealistic levels when dij tends to zero. Some authors
have suggested to account for near-field propagation effect by
bounding the attenuation function to 1: �ij = min{1, d−γ

ij }.
However, any fixed bound leads to pathological throughput
degradation in network regions where the node density tends
to infinity, as pointed out in [13]. To avoid such problems,
we simply assume that the achievable rate on any link cannot
grow arbitrarily large, but is bounded by a constant R0 due
to physical limitations of transmitters/receivers (maximum
data speed of I/O devices, finite set of possible modulation
schemes, etc). Therefore we consider the following variant of
the generalized physical model:

Rij = min{R0, log2(1 + SINRj)}
while keeping �ij = d−γ

ij , for any dij .
We assume that nodes can employ different transmitting

powers, according to an optimal strategy of power assignment
to simultaneous transmissions.

C. Traffic Model

Similarly to previous work we focus on permutation traffic
patterns, i.e., traffic patterns according to which every node
is source and destination of a single data flow at rate λ.
Sources and destinations of data flows are randomly matched,

TABLE I
SYSTEM PARAMETERS

Symbol Definition
n Average number of nodes
L Edge length of the network area
α Growth exponent of L: L = Θ(nα), α ≥ 0
m Average number of cluster centres
ν Growth exponent of m : m = Θ(nν), 0 < ν ≤ 1
q Average number of nodes per cluster, q = Θ(n1−ν)
φc Density of clusters centres over the area, φc = m/L2

dc Typical distance between cluster centres, dc = Θ(nα−ν/2)
s(ρ) Radial shape of rotationally invariant kernel
λ Per-flow throughput

establishing N end-to-end flows in the network. Note that a
permutation traffic pattern is represented by a traffic matrix
of the form Λ = λΛ̂ being Λ̂ a permutation matrix (i.e., a
binary valued doubly stochastic matrix).
Let B(t) be the network backlog, that is, the number of

data units already generated by sources which have not yet
been delivered to destinations at time t. We say that traffic
λΛ̂ is sustainable if there exists a scheduling-routing policy
such that lim supt→∞ B(t)/t = 0 w.p.1.

D. Asymptotic Analysis of the Capacity

As the average number of nodes increases, we generate
a sequence of systems indexed by n. To summarize, the
quantities that depend on n are: i) the network physical
extension L = nα; ii) the number of cluster centres m = nν ,
and consequently the average number of nodes belonging to
the same cluster q = n1−ν . We are essentially interested in
establishing how the network capacity scales with n under the
assumptions we have introduced above on network topology,
communication model and traffic pattern. The per-node ca-
pacity is Θ(h(n)) if, given a sequence of random permutation
traffic patterns with rate λ = h(n), there exist two constants
c, c′ such that c < c′ and both the following properties hold:{

limn→∞ Pr{cλ(n) is sustainable} = 1
limn→∞ Pr{c′λ(n) is sustainable} < 1

Equivalently, we say in this case that the network capacity (or
maximum network throughput) is Θ(n h(n)).
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To facilitate the reader, we have reported in Table I a
collection of system parameters frequently used in the rest
of the paper.

III. ASYMPTOTIC ANALYSIS OF THE SNCP

In this section we characterize the asymptotic behavior of
the local intensity Φ(ξ) resulting from the considered shot-
noise Cox process of node placement over the area. Recall that
the conditionalocal intensity of nodes at point ξ can be written
as Φ(ξ) =

∑
j q k(cj , ξ). For both Cluster Grid and Cluster

Random models, we define the following two quantities:
Φ = supO Φ(ξ) and Φ = infO Φ(ξ), denoting, respectively,
the maximum and the minimum of Φ(ξ) over O.

A. Cluster Grid Model

In the Cluster Grid model, Φ and Φ are two deterministic
values depending only on the system parameters α, ν, s(·),
since cluster centres in this case are regularly placed over
the area, so that nodes are positioned according to an IPP
with spatial (deterministic) intensity Φ(ξ). Recall that dc =
Θ(nα−ν/2) is the separation of cluster centres over the grid. It
is of rather immediate verification, that, whenever dc = O(1),
we have Φ = Θ(Φ) = Θ( n

L2 ). When dc = ω(1), Φ = o(Φ),
being Φ = Θ(q s(dc)) and Φ = Θ(q).

B. Cluster Random Model

Things are slightly more involved in the Cluster Random
model, in this case h both Φ and Φ are random variables which
depend also on the positions C of the cluster centres, which
are distributed according to an HPP of rate φc = m/L2. We
will need the following lemma, which has been widely used
in previous work:
Lemma 1: Consider a set of points C distributed over

O according to an HPP at rate φc = m/L2. Let A be
a regular tessellation of O (or any sub-region of O),
whose tiles Ak have a surface |Ak| non smaller than
16 log m

φc
, ∀k. Let U(Ak) be the number of points of

C falling in Ak. Then, uniformly over the tessellation,
U(Ak) is comprised w.h.p. between φc|Ak|

2 and 2φc|Ak|, i.e.,
φc|Ak|

2 < infk U(Ak) ≤ supk U(Ak) < 2φc|Ak|.
We do not repeat the proof of this lemma, which is based on

a standard application of the Chernoff bound (see for example
[14]).
Corollary 1: As immediate consequence of lemma 1, if we

consider a regular tessellation in which |Ak| = O(log m/φc),
∀k, then uniformly over the tessellation U(Ak) = O(log m).

The following theorem characterizes the extreme values of
the local intensity as function of dc = L/

√
m.

Theorem 1: Consider nodes distributed according to
a Cluster Random model. Let η(m) = dc

√
log m. If

η(m) = o(1), then it is possible to find two positive constants
g, G, with g < G, such that ∀ξ0 ∈ O,

g
n

L2
< Φ(ξ0) < G

n

L2
w.h.p. (1)

which means that Φ = Θ(Φ). On the contrary
when, dc = Ω(1) it results Φ = O(q log m) and
Φ = Ω(q log m s(dc

√
log m)).

Proof: The main steps of the proof are: i) the domainO is
divided into squarelets; i) the local intensity at ξ0 is expressed
as sum of contributions, each due to cluster centres located in
the same squarelet; ii) applying Lemma 1 every contribution
is bounded w.h.p. (both from below and from above); iii) the
upper (lower) bound is shown to converge w.h.p. to some value
for n → ∞.
More in details, consider a generic point ξ0 ∈ O. By

definition:

Φ(ξ0) =
M∑

j=1

q k(ξ0, cj) =
M∑

j=1

q
s(||ξ0 − cj ||)∫

O s(||ζ − cj ||) dζ

Now, let A denote a regular square tessellation of O,
such that each squarelet Ak has area |Ak| = 16 η2(m).
Let d0k and d0k be, respectively, the inferior and the supe-
rior of the distances between points ξ ∈ Ak and ξ0, i.e.,
d0k = infξ∈Ak

‖ξ − ξ0‖ and d0k = supξ∈Ak
‖ξ − ξ0‖; at last,

let U(Ak) and U(Ak) be, respectively, a lower bound and an
upper bound to the number of cluster centres falling in Ak. It
results:∑

k

q

H
s(d0k)U(Ak) < Φ(ξ0) <

∑
k

q

H
s(d0k)U(Ak)

being H =
∫
O s(||ζ − cj ||) dζ.

Applying Lemma 1 we have that, w.h.p., uniformly over
k, U(Ak) ≥ m/(2L2)|Ak| and U(Ak) ≤ 2m/L2|Ak|.
Moreover, we observe that i)

∑
k

q
H s(d0k)|Ak| and∑

k
q
H s(d0k)|Ak| can be interpreted, respectively, as lower

Riemann sum and upper Riemann sum of
∫
O

q
H s(‖ξ−ξ0‖) dξ;

ii) since η(m) = o(1), the mesh size of the partitions
associated to Riemann sums vanishes to 0 as n → ∞. As a
consequence:∑

k

q

H
s(d0k)|Ak| ∼

∑
k

q

H
s(d0k)|Ak| ∼

∼ q

H

∫
O

s(‖ξ − ξ0‖) dξ = q =
n

m

and we conclude that:
n

2L2
= q

m

2L2
< Φ(ξ0) < q

2m

L2
=

2n

L2

Thus (1) is verified for any 0 < g ≤ 1/2 and G ≥ 2.
When η(m) = Ω(1),

∑
k

q
H s(d0k)U(Ak) and∑

k
q
H s(d0k)U(Ak) provide, respectively, an upper

bound and a lower bound to the local intensity. It
turns out:

∑
k

q
H s(d0k)U(Ak) = O(q log m) and∑

k
q
H s(d0k)U(Ak) = Ω(q log m s(dc

√
log m)), for

dc = Ω(1).
The above results show that, for both Cluster Grid and

Cluster Random models, Φ = Θ(Φ) in the cluster-dense
regime (α < ν/2), whereas Φ = o(Φ) in the cluster-sparse
regime (α > ν/2). In the following we will focus on the most
interesting case in which Φ = o(Φ), considering separately
the Cluster Grid model in Section IV and the Cluster Random
model in Section V. In Section VI we will briefly discuss the
case Φ = Θ(Φ) under both Cluster Grid and Cluster Random
models.
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Fig. 2. Example of empty path cutting the grid in two halves

IV. CAPACITY BOUNDS FOR THE CLUSTER GRID MODEL

Using a combination of geometric and percolation argu-
ments, we will show that:
Theorem 2: Under the cluster-sparse regime, the per-node

throughput in the Cluster Grid model is upper-bounded, in
order sense, by

λ = O

(
L
√

μ

n

)
if dc

√
μ = ω(log n) (2)

λ = O

(√
m

n
log n

)
if dc

√
μ = O(log n) (3)

where μ = q s(dc).
Proof: The proof of (2) is provided in Section IV-A. The

proof of (3) is provided in Section IV-B.

A. The cluster sparse regime with dc
√

μ = ω(log n)
We consider a rectangle of size dc/2×L located in between

two adjacent columns of clusters centres, as illustrated by the
shaded area in Figure 2. We observe that the local intensity
of nodes is Φ(ξ) = Θ (q s(dc)) at any point ξ within the
considered rectangle. Actually, the maximum node density
within the rectangle, denoted by ΦP , is found at points located
at distance dc/4 from one cluster centre, such as point P in
Figure 2.
We divide the above rectangle into squares Z of area |Z| and

edge length z. Note that, being the nodes distributed according
to an IPP, the random variables representing the number of
nodes falling in each square are independent (although they
are not identically distributed).
We set |Z| in such a way that the probability that an

arbitrary square within the rectangle contains no node is
larger than the critical probability ps

c ≈ 0.59 of independent
site percolation in the square lattice [18]. Having chosen
p > ps

c, the above condition is satisfied when e−ΦP |Z| = p,
i.e., by setting |Z| = − log p

ΦP
. Notice that in this case the

square edge z = Θ(1/
√

ΦP ) = o(dc/ log n). By this choice
of |Z|, percolation results similar to those exploited in [2],
and reported in Appendix A, guarantee w.h.p. the existence,
within the considered rectangle, of at least one path (actually,
Θ(dc/z) non-overlapping paths) formed by empty squares and
connecting the top edge with the bottom edge of the rectangle.

lt r

i

c...

zz2z4z8z16z

A

Fig. 3. Example of tessellation of the left portion of the network area with
squares having geometrically increasing edge length

An example of top-to-bottom crossing path is depicted in
Figure 2. Such paths behave almost as straight lines, and in
fact there exists (w.h.p.) at least one crossing path comprising
Θ(L/z) squares of area |Z| (see Appendix A).
We consider such a path, and observe that it divides the

network area into two parts each comprising m/2 clusters.
Our goal is to upper bound the amount of information F
that can flow from left to right through the cut delimited
by the considered path. Since there are w.h.p. Θ(n) end-to-
end data flows necessarily routed across the cut, the per-node
throughput can then be upper bounded by F/n.
To evaluate F we first consider, for simplicity, the case in

which the top-to-bottom crossing path is exactly a straight
line, and later extend the analysis to an arbitrary crossing
path comprising a number of empty squares lc = Θ(L/z).
As illustrated in Figure 3, we partition the left side of the
network area into squares with geometrically increasing edge
length. More specifically, we use squares of edge equal to z
right in contact with the squares forming the empty path. To
the left of them, we use squares of edge 2z. To the left of
the latter ones, we use squares of edge 4z and so on until we
cover the entire left side of the network area.
Now, let us focus on a generic square A of edge 2jz, with

j ≥ 0, such as the shaded one in Figure 3, and let nA be
the number of nodes within it. We are going to show that the
contribution FA of information sent by nodes in A through
the cut is finite, even neglecting the interference produced by
nodes residing in all of the other squares. This will allow us
to upper bound F by the total number of squares forming our
tessellation of the left side of the network area.
The best case for a transmitter t located within A is

represented in Figure 3. Transmitter t is located in one corner
of A, and its intended receiver r is located at the minimum
possible distance right after the empty path, which is 2jz. All
other transmitters i (if any), acting as interferers, are located
in the opposite corner, and their distance from node r is equal
to

√
5 2jz. It can be rather easily verified that it is not possible

to improve the SINR at receiver j by moving the receiver to
a different position within the right side of the network area
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(we omit the proof). We further assume that the above optimal
configuration holds for all transmitters within A, although this
is clearly not possible when nA > 1. However this is not an
issue here since we are interested in obtaining an upper bound
to F .
To evaluate F , we first consider the simple case in which

all nodes within A employ the same transmitting power P .
Next we generalize the analysis to the case in which nodes
employ different powers.

a) Equal transmitting powers: If there is only one trans-
mitter in A, the contribution FA of the square is trivially finite,
being upper bounded by R0. If there are multiple transmitters,
in any number nA (even an infinite number), we can upper
bound FA as:

FA ≤
nA min

(
R0, log

(
1 +

P (2jz)−γ

No + (nA − 1)P (
√

5 2jz)−γ

))
≤

nA log
(

1 +
P (2jz)−γ

No + (nA − 1)P (
√

5 2jz)−γ

)
(4)

Using the fact that log(1 + x) < x, and neglecting (optimisti-
cally) the noise term we have

FA <
nAP (2jz)−γ

(nA − 1)P (
√

52jz)−γ
< 5γ/2 2 = Θ(1) (5)

We emphasize that the above bound becomes loose when
(nA − 1)P (

√
5 2jz)−γ = o(1), since in this case the ambient

noise N0 would be the dominant term in the denominator of
(4). In such a case, we could obtain a tighter upper bound
by neglecting the interference term, and applying again the
inequality log(1 + x) < x, we would get:

FA <
nAP (2jz)−γ

No
= Θ(nAP (2jz)−γ) (6)

Hence we obtain the following upper bound:
FA = Θ

(
min(1, nAP (2jz)−γ

)
(7)

In this paper we are mainly interested in the performance
of interference limited systems, in which the noise term can
indeed be neglected in the expression of SINR, at least for
transmitters located in proximity of the crossing path (i.e., in
squares with j = 0). Therefore we will use the bound (5)
instead of the more general (7), and leave to future work the
analysis of noise limited systems (or combined interference-
and noise-limited systems).

b) Different transmitting powers: Now we show that
no gain can be achieved by employing different transmitting
powers within A. Again, if there is only one transmitter, there
is nothing to prove, since the rate is limited to R0. In the
case of multiple transmitters, let P̂ be the maximum power
employed by nodes within A (this value can be arbitrarily
large). We define a set of power classes, indexed by i, such
that a node is declared to belong to power class i (i = 1, 2, . . .)
if its transmitting power falls in the interval (P̂ /2i, P̂ /2i−1].
Let ni be the number of transmitters in A belonging to power
class i, and F i

A be their contribution to FA.
Let w be the index of the class for which the quantity

nwP̂ /2w is maximum among all classes. We separately ana-
lyze the contribution Fw

A from the contribution due to all other
classes. An upper bound to Fw

A can be obtained assuming that

there is no interference produce by nodes belonging to classes
other than w. Moreover, we consider the ideal case in which, in
addition to the optimal nodes’ configuration shown in Figure
3, for any transmitter in class w the useful signal is sent at the
maximum power P̂ /2w−1, whereas all other interfering nodes
in class w transmits at the minimum power P̂ /2w. We obtain

Fw
A ≤

nw min

(
R0, log

(
1 +

P̂ /2w−1(2jz)−γ

No + (nw − 1)P̂ /2w(
√

5 2jz)−γ

))

≤ nw log

(
1 +

P̂ /2w−1(2jz)−γ

No + (nw − 1)P̂ /2w(
√

5 2jz)−γ

)

Similarly to the derivation of (5), we obtain that the contribu-
tion Fw

A is finite:

Fw
A <

nwP̂ /2w−1(2jz)−γ

(nw − 1)P̂ /2w(
√

52jz)−γ
< 5γ/2 4 = Θ(1)

For any other class i �= w, we instead optimistically neglect
the interference due to transmitters within the same class.
Moreover, we assume that nodes belonging to class i transmits
at the maximum power P̂ /2i−1, whereas nodes belonging to
class k �= i transmits at the minimum power P̂ /2k. By so
doing we obtain the upper bound:∑
i�=w

F i
A <

∑
i�=w

ni log

(
1 +

P̂ /2i−1(2jz)−γ

No +
∑

k �=i nkP̂ /2k(
√

5 2jz)−γ

)

Using again log(1 + x) < x, and ignoring the impact of N0,
we have ∑

i�=w

F i
A <

∑
i�=w

niP̂ /2i−1(2jz)−γ∑
k �=i nkP̂ /2k(

√
5 2jz)−γ

Now we observe that, for any i �= w,∑
k �=i

nkP̂ /2k(
√

5 2jz)−γ ≥
∑
k �=w

nkP̂ /2k(
√

5 2jz)−γ

owing to the definition of w. Hence we can write,∑
i�=w

F i
A <

∑
i�=w niP̂ /2i−1(2jz)−γ∑

k �=w nkP̂ /2k(
√

5 2jz)−γ
= 5γ/2 2 = Θ(1)

It follows that the overall rate produced by square A is finite:
FA = Fw

A +
∑
i�=w

F i
A < 5γ/2 6 = Θ(1) (8)

Notice that we have assumed, also in this case, that FA is
limited by the interference term. When

∑
i niP̂ /2i(2jz)−γ =

o(1) a better bound is obtained by neglecting the interference
term, obtaining:

FA <

∑
i niP̂ /2i−1(2jz)−γ

N0
= Θ

(∑
i

niP̂ /2i−1(2jz)−γ

)

however we do not further investigate the noise-limited regime
in our analysis.

From the above discussion, we conclude that, irrespective of
the power strategy employed in the network, F can be upper
bounded by the total number of squares in the considered
tessellation of the area to the left of the empty path. Let lc be
the number of of empty squares forming the crossing path. Let
E0 = lc be the number of squares of edge z. The number of
squares of edge 2z is E1 = E0/2. In general, the number of
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Fig. 4. Example of construction of sets S(j, i) in the network area to the
left of a general top-to-bottom crossing path. In the case j = 2, border B is
partitioned into groups of adjacent edges with cardinality 4.

squares of edge 2jz is Ej = E0/2j . We should mention that
it is not typically possible to fit an integer number of squares
of any size along the network extension3 L. However, it can
be easily shown (we omit the proof) that rounding effects do
not alter, in order sense, the upper bound obtained in the case
L can be divided perfectly by lengths 2jz.
Since numbers Ej form a geometric series, the total num-

ber of squares approaches 2E0 as the maximum index j
tends to infinity (notice that the maximum index j grows
as log n). Considering that lc = Θ(L/z), z = Θ(1/

√
ΦP ),

ΦP = Θ(q s(dc)), and that there are n flows traversing the
cut, the final per-node throughput is upper-bounded, in order
sense, by λ = O(L

√
q s(dc)/n).

We now extend the analysis to a generic path crossing the
network area from top to bottom and comprising lc = Θ(L/z)
empty squares of edge z. Following the same rationale illus-
trated in Figure 3, we partition the network area to the left of
the crossing path into sets S(j, i) each providing a contribution
O(1) to the information flow through the cut, and then evaluate
the number of sets S(j, i).
To build sets S(j, i), we consider the border B separating

the crossing path from the right part of the network area (this
border is represented in Figure 4 by a thick solid line). For
each point P in the left part of the area, we identify the point
P ′ ∈ B at minimum euclidean distance from P , and denote
such minimum distance by dP,B (see example in Figure 4).
Now, distance dP,B belongs to one of intervals (2jz, 2j+1z],
with j ≥ 0, and this provides us with the index j used to
classify point P into one of sets S(j, i).
Given the value of j, we partition border B into groups

of adjacent edges each comprising 2j edges of length z, and
progressively number such groups using index i along border

3In practice, one can build �L/(2jz)� squares plus at most one rectangle
of vertical size smaller than 2jz, and repeat the same arguments.

B, from the top to the bottom edge. We then associate to
point P the index i of the group comprising point P ′ 4. For
the example in Figure 4, point P is characterized by j = 2.
Moreover, point P ′ belongs to the 11th group of cardinality 4
constructed along border B from the top to the bottom edge
(comprising edges in between points a and b indicated in
Figure 4) . The set of all points belonging to set S(2, 11)
(including P ) is represented in Figure 4 by a shaded region.
We observe that, in the case of a straight crossing path, sets

S(j, i) are exactly congruent to the squares of geometrically
increasing edges illustrated in Figure 3. However, for a general
crossing path the number of non-void sets S(j, i) can be
smaller than the number of squares build in the case of a
straight path. For example, in Figure 4 the set S(2, 7) anchored
to the group of edges between points c and d is empty. We
conclude that the cardinality of sets S(j, i) is upper bounded
by 2E0.
It remains to show that each set, considered in isolation,

provides a contribution O(1) to the information flow through
the cut, irrespective of its shape and of the number of trans-
mitters in it. This can be done following the same rationale
adopted in the case of squares. Indeed, the minimum distance
between a transmitter in set S(j, i) and a receiver r across the
cut is, by construction, 2jz. Moreover, by triangular inequality
the maximum distance between any interferer belonging to the
same set and receiver r is at most 2j+1z + 2jz = 3 · 2jz.
Hence we can repeat the same derivation of equations (5) and
(8) using 9 in place of 5. We conclude that (2) holds also for a
general crossing path of length lc = Θ(L/z), whose existence
is guaranteed by the percolation arguments in Appendix A.

B. The cluster sparse regime with dc
√

μ = O(log n)

This case occurs when the local intensity of nodes in the
mid region between two adjacent cluster centres is so low that
the edge length z = Θ(1/

√
ΦP ) becomes comparable or even

larger than dc, so that (2) no longer applies. In this case we
repeat the same construction as before, selecting a rectangle
of size dc/2 × L in between two adjacent columns of clusters
centres (Figure 2), and divide it into squares Z of area |Z| and
edge length z. However in this case, irrespective of Φ, z is
chosen to be z = dc

κ log n , where κ > 0 is a suitable constant.
Notice that, when dc

√
μ = Θ(log n), the probability p that

an arbitrary square within the rectangle contains no node can
be made larger than the critical probability ps

c ≈ 0.59 by
setting |Z| > − log ps

c

ΦP
, i.e., by selecting κ large enough; when

dc
√

μ = o(log n), instead, p → 1 as n increases for any choice
of κ > 0.
By an appropriate choice of κ, the same percolation results

reported in Appendix A, guarantee (w.h.p.) also in this case the
existence, within the considered rectangle, of at least one path
(actually, Θ(log n) non-overlapping paths) formed by empty
squares and connecting the top edge with the bottom edge of
the rectangle. Thus repeating the same arguments of Section
IV we obtain that the per-node throughput is upper-bounded

4Edge vertices belong to the group having the smallest index i. Moreover,
if there multiple points P ′ at minimum distance form P , we take the P
belonging to the group having the smallest index i
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by λ = O
(

L log n
n dc

)
= O

(√
m
n log n

)
. This concludes the

proof of Theorem 2.

V. CAPACITY BOUNDS FOR THE CLUSTER RANDOM
MODEL

For the Cluster Random Model, we obtain upper bounds
very close to those obtained for the Cluster Grid model.
Theorem 3: Under the cluster-sparse regime, the per-node

throughput in the Cluster Random model is upper-bounded, in
order sense, by

λ = O

(
L
√

μ

n

)
if dc

√
μ = ω(log n) (9)

λ = O

(√
m

n
log n

)
if dc

√
μ = O(log n) (10)

where μ = q s(dc) log n.
Proof: The above upper bounds to the per-flow through-

put are again obtained by evaluating the network flow through
a cut traversed by Θ(n) end-to-end flows, which approxi-
mately divides the network area into two halves. Also in this
case, the idea is to find an empty path crossing the network
area from the top to the bottom edge, and lying in a region
of minimal node density. However, here the approach is made
slightly more complicated by the randomness of the clusters
positions. We proceed in two steps: first we identify a large
crossing path formed by big squares in which there are no
cluster centres. Then we build a thinner crossing path, nested
in the previous path, formed by smaller squares in which
there are no nodes, and to which we can apply the same
results derived in Section IV. Figure 5 offers a graphical
representation of this construction. We now formalize the
above idea and compute a simple upper bound to the resulting
network capacity.
In the first step, we use squares V of area |V | and edge

length v. Similarly to what has been done in Section IV, we
set |V | in such a way that the probability that an arbitrary
square contains no cluster centre is larger than the critical
probability ps

c ≈ 0.59 of independent site percolation in the
square lattice. Having chosen p > ps

c, the above condition
is satisfied when e−φc|V | = p, i.e., by setting |V | = − log p

φc
.

Notice that v = Θ(dc).
Then the same percolation arguments used before allows to

say that, in a rectangle L/c × L embedded in the network
area (c is an arbitrary constant larger than 2), one can find
w.h.p. at least one top-to-bottom crossing path P formed by
lv = Θ(L/v) squares V in which there are no cluster centres.
Notice that, for any c > 2, there are w.h.p. Θ(n) end-to-end
data flows necessarily routed across the path. We remark that
crossing path P depends on the cluster centres’ positions C.
Focusing on a given crossing path P , we consider the

inner, centered path I of width v/2 (see Figure 5). Since, by
construction, no cluster centres fall within P , the density of
nodes at every point ξ of I can be upper bounded w.h.p. by a
constant value ΦP (specified later). Similarly to what has been
done in Section IV, I is then partitioned into squares Z ′ of
area |Z ′| and edge length z′, and we look for a top-to-bottom
crossing path within I made of empty squares Z ′. Since the
intensity at every point ξ ∈ I is dominated by ΦP , the random
variables denoting the number of nodes in different squares

A

...

...

... ...

...

...

I

L/ c

L

v

v/ 2

V

Fig. 5. Construction of a top-to-bottom crossing path nested in a larger
top-to-bottom crossing path in which there are no cluster centres (represented
by dots).

Z ′ are dominated by i.i.d variables distributed according to a
Poisson distribution with mean ΦP |Z ′|. Thus we can apply
again the percolation results of Appendix A5. In particular, by
an appropriate choice of z′, the (conditional) probability that
there is no top-to-bottom crossing path of squares Z ′ within I
decreases exponentially to zero as n goes to infinity. Moreover,
there exists at least one crossing path formed by a number
l′c = Θ(L/z′) of empty squares of edge z′ (using again the
same argument as in Appendix A).
We conclude that, w.h.p., the above two nested crossing

paths can be found. Then we can apply exactly the same
techniques described in Section IV to upper bound the ca-
pacity through the inner crossing path (the one formed by
squares Z ′). The only difference with respect to the previous
calculation lies in the size of z′, which is directly related to
the maximum node density ΦP within path I.
Differently from the Cluster Grid model, in which cluster

centres are regularly spaced, we have to account for the
possibility that some squares V right in contact to the outer
crossing path P (for example, squareA in Figure 5) are highly
populated by cluster centres, with a consequent increase of the
node density within I. A simple upper bound to ΦP can be
obtained considering that, by corollary 1, uniformly over the
entire tessellation of the network area, all squares V contains
O(log m) = O(log n) cluster centres. Under the optimistic
assumption that all squares contain Θ(log n) cluster centres,
the maximum node density within I is ΦP = Θ(q s(dc) log n).

5A top-to-bottom crossing path does not exist only if at least one of the
Θ(L/z′) nodes on one side of path I is connected, in lattice L� , to a node
on the other side of I . Hence we can repeat exactly the same arguments of
Appendix A.
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Similarly to Section IV, we have to distinguish the two cases in
which dc

√
ΦP = ω(log n) or dc

√
ΦP = O(log n), obtaining

upper bounds to the per-node capacities given by (9) and (10),
respectively. We observe that the above upper bounds for the
Cluster Random model differs by a factor at most

√
log n from

the corresponding upper bounds obtained for the Cluster Grid
model.

VI. THE CLUSTER-DENSE REGIME

In this case, as proved in Section III, Φ = Θ(Φ) = Θ( n
L2 )

under both Cluster Grid and Cluster Random models, hence
Φ(ξ) = Θ( n

L2 ) at any point ξ ∈ O. In [7] we show that in this
case it is possible to achieve the upper bound λ = O(1/

√
n)

valid for arbitrary node placement (see [1] and extensions
in [15]). We observe that an alternative proof of this bound
can be obtained using the technique described in this paper,
i.e., looking for a top-to-bottom crossing path in a rectangle
L/c × L (c > 2) arbitrarily placed in the network area, and
taking ΦP = Φ as the maximum node density within it.

VII. SUMMARY OF RESULTS

Table II summarizes the maximum achievable per-flow
throughput (in order sense) under the cluster-dense (α < ν/2)
and cluster-sparse (α > ν/2) regimes, for both Cluster
Grid and Cluster Random models. The table reports the
upper bounds (UB) obtained in this paper, together with the
corresponding lower bounds (LB) derived in [7]. We observe
that the lower bound coincides with the upper bound in the
cluster-dense regime. In the cluster-sparse regime, upper and
lower bounds differ at most by a poly-log factor, under the
assumption that the system is limited by interference.
Lower bounds have been derived in [7] by introducing

a class of scheduling and routing schemes which allows to
achieve the capacity reported in Table II. The main idea in
[7] is to extract a subset of nodes distributed according to
an homogeneous poisson process with intensity equal to the
minimum node density Φ over the area, and use this subset
as the main transport infrastructure (highway system) of the
network. The main challenge is to design clever scheduling
and routing scheme to exploit the capacity provided by the
main infractracture avoiding the formation of bottlenecks
while traffic moves towards the highway system from network
regions having higher node density.

A. Graphical representation of results

To illustrate graphically our results, we consider the inter-
esting case of functions s(ρ) whose tail decays as a power-
law: s(ρ) ∼ ρ−δ , for δ > 2. For the Cluster Grid model,
we obtain that, in the cluster-sparse regime (α > ν/2),
μ = Θ(n1−ν−δ(α−ν/2)). Hence applying (2) the per-node
throughput is λ = O

(
nα−(ν+1)/2+(α−ν/2)δ/2

)
, provided that

2(ν−1)+(2α−ν)(δ−2) < 0. In this case the width z of the
empty path is Θ(nτ ), where τ = (ν−1)/2+(α−ν/2)δ/2. We
remark that, if τ > 0, nodes get increasingly far apart in low-
density regions, so our bound is tight only when nodes can
compensate for the distance scaling up the emitted power (as
nτ γ). Otherwise the network is noise-limited and the proposed
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Fig. 6. Per-node throughput (in logn scale) as a function of δ and ν, in the
case α = 0.3

bound becomes loose. For τ < 0, instead, the network is
interference-limited even if the nodes’ transmission power is
bounded.
In Figure 6 we have reported, using a logn vertical scale,

the per-node capacity for fixed α = 0.3, letting both δ
and ν vary. Notice that on this scale we can neglect log n
factors, thus results under the Cluster Random model look
the same. We observe that the cluster-dense regime, in which
λ = O(1/

√
n), occurs for all ν > 0.6, independently of δ.

In the cluster-sparse regime, the per-node capacity decreases
for increasing values of δ and decreasing values of ν. When
2(ν − 1) + (2α − ν)(δ − 2) > 0, the per-node capacity is
λ = O(nν/2−1 log n) and approaches 1/n as ν tends to 0. At
last, points below the contour curve drawn on the surface at
λ = n0.7 are characterized by τ > 0, hence in this region the
network is noise-limited if the transmission power is bounded.

VIII. CONCLUSIONS

In this paper we have studied the asymptotic capacity of
clustered, random networks in which the local intensity of
the node process can vary significantly across the network
area, determining orders of magnitude difference between
high-density and low-density regions. Using a combination
of geometric and percolation arguments, we have obtained
upper bounds to the per-node capacity which are tight for
interference limited systems. Additional work is needed to
obtain tight upper bounds also for noise-limited systems.

APPENDIX A
PERCOLATION THEORY RESULTS

In this Section, we provide the percolation theory arguments
that are needed to show the existence of an empty path of
length Θ(L) and width Ω(z) cutting the network area in two
regions of area Θ(L2).
Let L� = Z

2 be the planar square lattice, and let L� be
the graph with vertex set Z

2 in which we add both diagonals
to each face of L�, so that any two vertices at Euclidean
distance 1 or

√
2 are adjacent. Each vertex of Z

2, also called
a site, is in one of two states: open or closed. We consider the
product probability measure Pp in which each site is open
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TABLE II
THE PER-FLOW THROUGHPUT ACHIEVABLE IN DIFFERENT CASES. LB (UB) STANDS FOR LOWER BOUND (UPPER BOUND).

cluster-dense (LB=UB) cluster-sparse (LB) (from [7]) cluster-sparse (UB)

Cluster Grid 1√
n

max

j
L
√

qs(dc)

n
,
√

m
n

ff
max

j
L
√

qs(dc)

n
,
√

m
n

log n

ff

Cluster Random 1√
n

max

(
L

q
qs(dc

√
log n)

n
,
√

m
n

)
max

j
L
√

qs(dc) log n

n
,
√

m
n

log n

ff

path in 

path in 

open site

closed site

Λ�

Λ�

h

v

sites

si
te

s

x

Fig. 7. Example of vertical open path in a rectangle with h = 5, v = 9.
There cannot exist an horizontal path of closed sites in the same rectangle.

independently with probability p (equivalently, closed with
probability 1 − p).
For L = L� or L�, the open cluster Cu containing the

generic vertex u is the set of open vertices that may be reached
from u by a path in the graph L all of whose vertices are open.
The number of vertices in Cu is denoted by |Cu|. The radius
rad(Cu) of the open cluster Cu is the maximum distance (in
graph-theoretic sense) between u and other vertices belonging
to Cu.
Let ps

c(L�) and ps
c(L�) be the critical probabilities for site

percolation on L� and L�, respectively. We recall that the
critical probability is defined as

ps
c = sup{p : Pp(|Cu| = ∞) = 0}

It was proved by Russo [16] that
ps

c(L�) + ps
c(L�) = 1 (11)

Below the critical probability, a special case of the general
result of Menshikov [17] implies that for L� or L� there is
exponential decay of the cluster radius. This means that, for
any p < ps

c, there exist σ(p) > 0 such that
Pp(rad(Cu) ≥ m) < e−mσ(p) for all m (12)

Let R = [h]× [v] be an h by v rectangle embedded in Z
2.

Let V o
L�

be the event that there is a path of open sites crossing
R vertically in graph L�, and Hc

L�
be the event that there is

a path of closed sites crossing R horizontally in graph L�.
It can be easily seen (Figure 7) that, whatever the states of

the sites in R, there is either a path of open sites crossing
R vertically in L�, or a path of closed sites crossing R
horizontally in L�. This implies that the probability that there
does not exist a vertical crossing of open sites equals the

probability that there exists an horizontal crossing of closed
sites. In particular, in the case of independent state assignment
to sites, we can write

1 − Pp(V o
L�) = Pp(Hc

L�)

Let y1 . . . yv be the vertices along one vertical side of R. We
denote by Hi the event that site yi is connected by a path of
closed sites to another vertex belonging to the opposite side
of R. We have

Pp(Hc
L�) = Pp(∪i{Hi}) ≤

v∑
i=1

Pp(Hi)

A necessary but not sufficient condition for the event Hi to
occur, is that the closed cluster 6 Cyi has radius larger than
or equal to h.
If we take a site percolation process in graph L� with

p > ps
c(L�), (11) implies that 1 − p < ps

c(L�). This means
that if we consider the site percolation process on graph
L� in which each site is declared open independently with
probability p′ = 1 − p, we are in the subcritical regime, and
we have exponential decay of the radius of any cluster of open
sites (closed sites in the original graph L�) belonging to L�.
Hence using (12) we can write for all i,

Pp(Hi) ≤ Pp′(rad(Cyi) ≥ h) < e−hσ(p′) ∀i

Putting things together, we obtain the inequality
1 − Pp(V o

L�) ≤ ve−hσ(1−p) (13)

Armed with the above result, we go back to the problem
of finding an empty path of width Ω(z) crossing the network
area from the top to the bottom edge. Each square Z within
the rectangle dc/2 × L can be mapped on a vertex of the
square lattice, belonging to a rectangle of vertices having
h = dc/(2z) and v = L/z. The probability p that a vertex is
open equals the probability that the corresponding square Z
does not contain any node. We can thus apply directly (13) to
obtain the probability that there is no top to bottom crossing
path formed by empty squares. Such probability tends to zero
exponentially with n provided that hσ > log v. We remark
that (as required in the derivation of (3) and (10)) the latter
inequality can be satisfied also when h = κ log n, by choosing
κ large enough (notice that log v is proportional to log n as
well).
If, for the chosen value of p > ps

c, there is exponential
decay of the probability that there is no top-to-bottom crossing
path, one can show an even stronger result, namely that
there is exponential decay of the probability that there are
Nc = o(h) vertex-disjoint crossing paths. This means that

6similarly to the open cluster, the closed cluster Cu containing vertex u
is the set of closed vertices that may be reached from u by a path of closed
vertices
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one can actually find a number Nc of distinct crossing paths
(not sharing any vertex) proportional to the width h of the
rectangle. To show this fact, we consider a value p∗ such that
ps

c < p∗ < p (for example p∗ = (p + ps
c)/2. Since p∗ > ps

c,
we have exponential decay of the probability that there is
no top-to-bottom crossing path in the rectangle in which the
probability that a vertex is open equals p∗. For p > p∗,
the event that there is a vertical crossing path is expected
to be more likely to occur. Indeed, one can characterize the
probability that the same event still occurs even if we alter
the state of r arbitrary vertices. This happens only when there
are at least r + 1 vertex-disjoint crossing paths. By the site
percolation version of Theorem 2.45 of [18], the probability
Pp(Nc ≤ r) that there are less than r + 1 vertex-disjoint
crossing paths can be upper bounded as

Pp(Nc ≤ r) ≤
(

p

p − p∗

)r

ve−hσ(1−p∗)

Denoting by r = β h (0 < β < 1) the number of vertex-
disjoint crossing paths, the above probability decays exponen-
tially with h provided that βp

p−p∗ − σ(1 − p∗) < 0, which is
satisfied for β small enough. Hence we have Nc = Θ(h).
At last, since there are h v total vertices in the rectangle, if
we have more than β h vertex-disjoint paths, at least one of
them is formed by a number of vertices less than or equal to
v/β = Θ(L/z).
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