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Abstract

Here we classify the weakly uniform rank two vector bundles on multiprojective spaces.
Moreover we show that every rank r > 2 weakly uniform vector bundle with splitting type
a1 =--- = aps = 0 is trivial and every rank = > 2 uniform vector bundle with splitting
type a; > --- > a,, splits.

1 Introduction

We denote by P™ the n-dimensional projective space aver an algebraic field of characteristic
zero. A rank r vector bundle E on P" is said to be it uniform if there is a sequence of integers
(a1,...,ar) with a1 > --- > a, such that for every line L on P", Ej; = ®]_;O(a;). The
sequence (ai,...,a,) is called the splitting type of E.

The classification of these bundles is known in many cases: rank E < n with n > 2 (see [10],
[9], [4]); rank £ =n + 1 for n = 2 and n = 3 (see [3], [5]); rank E = 5 for n = 3 (see [1]).
Nevertheless there are uniform vector bundles (of rank 2n) which are not homogeneous (see
7).

In [2] the authors gave the notion of weakly uniform bundle on P! x P!. For the study of
rank two weakly uniform vector bundles on (P!)*, see [11], [6] and [2].

Here we are interested on vector bundles on multiprojective spaces. Fix integers s > 2 and
n; > 1. Let X :=P™ x ... x P be a multiprojective space. Let

u; : X — P
be the projection on the i-th factor. For all 1 < ¢ < j let

Uij - X — P x P
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denote the projection onto the product of the i-th factor and the j-th factor. Set O := Ox.
For all integers bq,...,bs set O(b1,...,bs) := ®;_ju;(Opni(b;)). We recall that every line
bundle on X is isomorphic to a unique line bundle O(br, ..., bs). Set X; := [],,; P". Let

7T1':X—>XZ‘

be the projection. Hence 7; *(P) = P™ for each P € X;. Let F be a rank r vector bundle
on X. We say that E is weakly uniform with splitting type (ap;), 1 < h <7, 1 <i <s,
if for all i € {1,...,s}, every P € X; and every line D C ; }(P) the vector bundle E|D
on D = P! has splitting type ai; > -+ > ar;. A weakly uniform vector bundle E on
X is called uniform if there is a line bundles (ai,...,as) such that the splitting types of
E(ay,...,as) with respect to all m; are the same. In this case a splitting type of E is the
splitting type ¢ > --+ > ¢, 7 := rank(FE), of E(ay,...,as). Notice that the r-ple of integers
(c1,...,¢r) is not uniquely determined by F, but that the (s — 1)-ple (¢ — ¢a,...,cs—1 — Cs)
depends only from FE. Indeed, a rank r weakly uniform vector bundle E of splitting type
(ani), 1 < h <7, 1 < i < s, is uniform if and only if there are s — 1 integers d;, 2 <
j < s, such that ap; = ap1 +d; for all i € {2,...,s}. If E is uniform, then the r-ples
(a11+Y,...,ar1+Y), y € Z, are exactly the splitting types of E. If E is uniform it is usually
better to consider E(0,a12 —ai1,...,a1,s—a1,) instead of £, because all the splitting types
of E(0,a12 —ai,...,a1s —ais) as a weakly uniform vector bundle are the same.
In this paper we prove the following result:

Theorem 1.1. Let E be a rank 2 vector bundle on X. E is weakly uniform if and only if
there are L € Pic(X), indices 1 < i < j < s and a rank 2 weakly uniform vector bundle G
on P x P% such that E Q@ L = u;‘](G) E splits if either n; > 3 ornj > 3. If 1 <ny <2,
1 <ng <2 and (n1,n2) # (1,1), then E splits unless there is h € {1,2} such that n, = 2
and E ® L = u}(TP?) for some L € Pic(X).

Moreover we discuss the case of higher rank. We show that every rank r > 2 weakly
uniform vector bundle with splitting type a11 = --- = a, s = 0 is trivial and every rank r > 2
uniform vector bundle with splitting type a1 > - -+ > a,, splits. Our methods did not allowed
us to attack other splitting types.

2 Weakly uniform rank two vector bundles

In order to prove Theorem 1.1 we need a few lemmas.
We first consider the case s = 2.

Lemma 2.1. Assume s =2, ny = 1 and ny = 2. Let E be a rank 2 vector bundle on P! x P?.
E is weakly uniform if and only if either E splits as the direct sum of 2 line bundles or there
is a line bundle L on P! x P? such that E = L @ 75(TP?).

¢

Proof. Since the “if ” part is obvious, it is sufficient to prove the “ only if ” part. Let (ap;),
1 <h <2, 1< < s, be the splitting type of E. Up to a twist by a line bundle we may
assume a1 = ay 2 = 0. By rigidity or looking at the Chern classes ¢;(E|{Q} x P?), i = 1,2,
it is easy to see that if one of these two cases occurs for some @, then it occurs for all Q.
First assume ag 2 = 0. Since the trivial line bundle on P! is spanned, the theorem of changing
basis implies that F := mo.(F) is a rank 2 vector bundle on P? and that the natural map
74 (F) — E is an isomorphism ([8], p. 11). Since E is weakly uniform, F' is uniform. The



classification of all rank 2 uniform vector bundles on P? shows that either F splits or it is
isomorphic to a twist of TP? (see [4]), concluding the proof in the case ags = 0. Similarly, if
azy = 0, there is a rank 2 vector bundle G on P! such that 7j(G) = E. Since every vector
bundle on P! splits, we have that also E splits. Now we may assume az2 < 0 and a1 < 0.
Since ag 2 < 0, the base-change theorem gives that mo,(E) is a line bundle, say of degree by,
and that the natural map 73me.(E) — E has locally free cokernel ([8], p. 11). Thus in this
case F fits in an exact sequence

0 — O(O, bg) — E — 0(0271, —bg — az’g) — 0 (1)

The term ag; in the last line bundle of (1) comes from ¢; (E). If (1) splits, then we are done.
Since a1 < 1, Kiinneth’s formula gives HY(P! x P?2,0(—az1,2by + as2)) = 0. Hence (1)
splits. O

Lemma 2.2. Assume s =2, n1 =1 and no > 3. Then every rank two weakly uniform vector
bundle on X is the direct sum of two line bundles.

Proof. We copy the proof of Lemma 2.1. Every rank 2 uniform vector bundle on P™, m > 3,
splits. Hence E splits even in the case az2 = 0. O

Lemma 2.3. Assume s = 2 and n1 = no = 2. Let E be a rank 2 indecomposable weakly
uniform vector bundle on X. Then either E = u}(TP?)(u,v) or E = u}(TP?)(u,v).

Proof. Let (ap,;) be the splitting type of E. Up to a twist by a line bundle we may assume
a1,1 = a1 2 = 0. As in the proof of Lemma 2.1 the theorem of changing basis gives that either
E = u}(TP?*(—2)) or E splits if as; = 0 and that E = u3(TP?(—2)) or E splits if ags = 0.
If az; < 0 and a2 < 0, then we apply 72, and get an exact sequence (1). Here Kiinneth’s
formula gives that (1) splits, without using any information on the integer as 2. O

Lemma 2.4. Assume s =2, ny > 3 and no = 2. Let E be a rank 2 weakly uniform vector
bundle on X. Then either E splits or E = u}(TP?)(u,v) for some integers u,v.

Proof. Let (ap;) be the splitting type of E. Up to a twist by a line bundle we may assume
aiq = a;2 = 0. As in the proof of Lemma 2.1 the theorem of changing basis gives that
E = u}(TP%*(—2)) or E splits if az; = 0 and that E splits in the case a1 2 < 0, because (1)
splits by Kiinneth’s formula. O

Lemma 2.5. Assume s =2, n1 > 3 and ny > 3. Let E be a rank 2 weakly uniform vector
bundle on X. Then E splits.

Proof. Let (ap;) be the splitting type of E. Up to a twist by a line bundle we may assume
a1n = a1 = 0. If agp = 0, then base change gives E = uj(F) for some uniform vector
bundle on P2. Thus we may assume az2 < 0. We have again the extension (1). Here again
(1) splits by Kiinneth’s formula. O

Now we are ready to prove the main theorem:

Proof of Theorem 1.1. First assume s = 2. Theorem 1.1 says nothing in the case
ny = ng = 1 for which a full classification is not known ([2] shows that moduli arises).
Lemmas 2.1, 2.2, 2.3, 2.4 and 2.5 cover all cases with s = 2. Hence we may assume s > 3 and
use induction on s. If n; = 1 for all ¢, then we may apply [2], Theorem 4. For arbitrary n; the
proof of [2], Theorem 4, works verbatim, but for reader’s sake we repeat that proof. Let (ap;)



be the splitting type of E. Up to a twist by a line bundle we may assume ay; = 0 for all . If
az; = 0 for some i, then the base-change theorem gives E = 7 (F) for some weakly uniform
vector bundle F' on X;. If s = 3, then we are done. In the general case we reduce to the case
s’ := s — 1. Thus to complete the proof it is sufficient either to obtain a contradiction or to
get that E splits under the additional condition that as; < 0 for all ¢ and s > 3. Applying

the base-change theorem to w1, we get that F fits in the following extension
0—>O(O,02,...,cs)—>E—>(9(a1’2,d2,...,ds)—>0 (2)

Since —ay2 > 0, Kiinneth’s formula shows that (2) splits unless n; = 1 for all ¢ > 2. Using
o, instead of w1, we get that E splits, unless ny = 1. O

3 Higher rank weakly uniform vector bundles

Now we consider higher rank weakly uniform vector bundles.

Proposition 3.1. Let E be a rank r weakly uniform vector bundle on X with splitting type
(0,...,0). Then E is trivial.

Proof. The case s = 1 is true by [8], Theorem 3.2.1. Hence we may assume s > 2 and use
induction on s. By the inductive assumption F|r;*(P) is trivial for each P € P™. By the
base-change theorem F' := m.(FE) is a rank r vector bundle on X; and the natural map
7j(F) — E is an isomorphism. This isomorphism implies that F' is uniform of splitting type
(0,...,0). Hence the inductive assumption gives that F' is trivial. Thus E is trivial. O

In order to study uniform vector bundles with a; > - -- > a, we need the following lemmas:

Lemma 3.2. Fix an integer r > 2 and a rank v vector bundle on X. Assume the existence
of an integer i € {1,...,s} such that E|m; '(P) is the direct sum of line bundles for all
P € X;. Ifn; = 1 assume that the splitting type of E|m; '(P) is the same for all P € X;.
Let (a1,...,ar) = (b7, ..., 00™), by > -+ > by, mi +---+my =r, be the splitting type of
E|x=Y(P) for any P € X;. Then there are k vector bundles Fy,...,F, on X; and k vector
bundles F1, ..., E, on X such that rank(F;) = m;, By, = E, E;_1 is a subbundle of E; and
Ei/E;_1 = 7} (F;)(—b;) (with the convention Ey =0).

Proof. Notice that even in the case n; > 2 the splitting type of E|r~1(P) does not depend
from the choice of P € X; (e.g. use Chern classes or local rigidity of direct sums of line
bundles). Thus E|m; ! (P) 2 ®F_,0 -1 p)(b;)®™ for all P € X;.

Set Fy := mi(E(0,- -+, —=by,---,0). ]éy the base-change theorem F3 is a rank m; vector bun-
dle on X; and the natural map p: 7} (F1)(0,--- ,b1,...) — E is a vector bundle embedding,
i.e. either p is an isomorphism (case r = mq) or Coker(p) is a rank r — my vector bundle on
X. If my =, then kK =1 and we are won. Now assume k > 2, i.e. m; <r. Fix any P € X;.
By definition Coker(p) fits in an exact sequence of vector bundles on X:

0—>7T;k(F1)<O,...,b1,...O)—>E—>C0ker(p)—>() (3)

and the restriction to m; L(P) of the injective map of (3) induces an embedding of vector
bundles jp : O 1 (py(b1)¥™ — ®F_ 1O 1) (b;))®™. Since by > b; for all j > 1, we get
Coker(jp) = EB;?:QOW__l(P)(bj)@mJ'. We apply to Coker(p) the inductive assumption on k. [



Lemma 3.3. Assume s =2 and nq > 2, ny > 3. Fix an integer v such that 3 < r < ny and
a rank r uniform vector bundle E with splitting type ay > --- > a,. Then E is isomorphic to
a direct sum of r line bundles.

Proof. Since r > 3, we have a,, < a1 — 2. Thus the classification of uniform vector bundles on
P2 with rank r < no, gives E]Wl_l(P) = gleﬂfl(P)(ai) for all P € P". Apply Lemma 3.2
with respect to the integers i = 1 and k£ = r and let F;, E;, 1 < i < r, be the vector bundles
given by the lemma. Since E, = F, it is sufficient to prove that each E; is a direct sum of ¢
line bundles. Since rank(E;) = i, the latter assertion is obvious if ¢ = 1. Fix an integer 7 such
that 1 < i < r and assume that E; is isomorphic to a direct sum of ¢ line bundles. Lemma
3.2 gives an extension
0—-F,—-FE;y1 —-L—0

with L a line bundle on P™ x P™2. Since ny > 2 and ns > 2, Kiinneth’s formula gives that
any extension of two line bundles on P™ x P™2 splits. Thus E;11 is a direct sum of ¢ 4+ 1 line
bundles. ]

Proposition 3.4. Fiz an integer r > 3 and a rank r uniform vector bundle on X with
splitting type a1 > -+- > a,. Assume s > 2, ng > r and n; > 2 for all i # 2. Then E is
isomorphic to a direct sum of r line bundles.

Proof. The case s = 2 is Lemma 3.3. Thus we may assume s > 3 and that the proposition is
true for P™ x - .. x P%-1. By the inductive assumption F|u;!(P) = Sim10,1(py (@i, - -+, a;)
for all P € P"s. Asin the proof of Lemma 3.2 taking instead of 7; the projection u; : X — P
we get line bundles L;, 1 < i <7 of P", (i.e. line bundles u}(L) = O(0,...,0,¢;,0,---,0) on
X) and subbundles E; C Ey C -+ E, = E such that F;/E;_1 = Ox(aj-1,...,a;-1,¢;) (with
the convention Fy = 0). It is sufficient to prove that each E; is isomorphic to a direct sum
of 4 line bundles. Since this is obvious for ¢ = 1, we may use induction on i. Fix an integer

i €{2,...,r}. Our assumption on X implies that the extension of any two line bundles splits.
Hence EZ' %JEi_l @OX(ai_l,...,ai_l,ci). ]
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