POLITECNICO DI TORINO Repository ISTITUZIONALE

Weakly uniform rank two vector bundles on multiprojective spaces

Original

Weakly uniform rank two vector bundles on multiprojective spaces / Ballico, E.; Malaspina, Francesco. - In: BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY. - ISSN 0004-9727. - STAMPA. - 84:2(2011), pp. 255-260. [10.1017/S0004972711002243]

Availability: This version is available at: 11583/2440866 since: 2015-12-16T16:30:06Z

Publisher: Cambridge University press

Published DOI:10.1017/S0004972711002243

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)

Weakly uniform rank two vector bundles on multiprojective spaces

Edoardo Ballico and Francesco Malaspina

Università di Trento 38123 Povo (TN), Italy e-mail: ballico@science.unitn.it

Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino, Italy e-mail: francesco.malaspina@polito.it

Abstract

Here we classify the weakly uniform rank two vector bundles on multiprojective spaces. Moreover we show that every rank r > 2 weakly uniform vector bundle with splitting type $a_{1,1} = \cdots = a_{r,s} = 0$ is trivial and every rank r > 2 uniform vector bundle with splitting type $a_1 > \cdots > a_r$, splits.

1 Introduction

We denote by \mathbb{P}^n the *n*-dimensional projective space aver an algebraic field of characteristic zero. A rank *r* vector bundle *E* on \mathbb{P}^n is said to be it uniform if there is a sequence of integers (a_1, \ldots, a_r) with $a_1 \geq \cdots \geq a_r$ such that for every line *L* on \mathbb{P}^n , $E_{|L} \cong \bigoplus_{i=1}^r \mathcal{O}(a_i)$. The sequence (a_1, \ldots, a_r) is called the splitting type of *E*.

The classification of these bundles is known in many cases: rank $E \leq n$ with $n \geq 2$ (see [10], [9], [4]); rank E = n + 1 for n = 2 and n = 3 (see [3], [5]); rank E = 5 for n = 3 (see [1]). Nevertheless there are uniform vector bundles (of rank 2n) which are not homogeneous (see [7]).

In [2] the authors gave the notion of weakly uniform bundle on $\mathbb{P}^1 \times \mathbb{P}^1$. For the study of rank two weakly uniform vector bundles on $(\mathbb{P}^1)^s$, see [11], [6] and [2].

Here we are interested on vector bundles on multiprojective spaces. Fix integers $s \ge 2$ and $n_i \ge 1$. Let $X := \mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_s}$ be a multiprojective space. Let

$$u_i: X \to \mathbb{P}^n$$

be the projection on the *i*-th factor. For all 1 < i < j let

$$u_{ij}: X \to \mathbb{P}^{n_i} \times \mathbb{P}^{n_j}$$

Mathematics Subject Classification 2010: 14F05, 14J60.

keywords: uniform vector bundles, splitting type, multiprojective spaces

denote the projection onto the product of the *i*-th factor and the *j*-th factor. Set $\mathcal{O} := \mathcal{O}_X$. For all integers b_1, \ldots, b_s set $\mathcal{O}(b_1, \ldots, b_s) := \bigotimes_{i=1}^s u_i^*(\mathcal{O}_{\mathbb{P}^n_i}(b_i))$. We recall that every line bundle on X is isomorphic to a unique line bundle $\mathcal{O}(b_1, \ldots, b_s)$. Set $X_i := \prod_{i \neq i} \mathbb{P}^{n_j}$. Let

 $\pi_i: X \to X_i$

be the projection. Hence $\pi_i^{-1}(P) \cong \mathbb{P}^{n_i}$ for each $P \in X_i$. Let E be a rank r vector bundle on X. We say that E is weakly uniform with splitting type $(a_{h,i}), 1 \leq h \leq r, 1 \leq i \leq s$, if for all $i \in \{1, \ldots, s\}$, every $P \in X_i$ and every line $D \subseteq \pi_i^{-1}(P)$ the vector bundle E|Don $D \cong \mathbb{P}^1$ has splitting type $a_{1,i} \geq \cdots \geq a_{r,i}$. A weakly uniform vector bundle E on X is called uniform if there is a line bundles (a_1, \ldots, a_s) such that the splitting types of $E(a_1, \ldots, a_s)$ with respect to all π_i are the same. In this case a splitting type of E is the splitting type $c_1 \geq \cdots \geq c_r$, $r := \operatorname{rank}(E)$, of $E(a_1, \ldots, a_s)$. Notice that the r-ple of integers (c_1, \ldots, c_r) is not uniquely determined by E, but that the (s-1)-ple $(c_1 - c_2, \ldots, c_{s-1} - c_s)$ depends only from E. Indeed, a rank r weakly uniform vector bundle E of splitting type $(a_{h,i}), 1 \leq h \leq r, 1 \leq i \leq s$, is uniform if and only if there are s-1 integers $d_j, 2 \leq j \leq s$, such that $a_{h,i} = a_{h,1} + d_i$ for all $i \in \{2, \ldots, s\}$. If E is uniform, then the r-ples $(a_{1,1} + y, \ldots, a_{r,1} + y), y \in \mathbb{Z}$, are exactly the splitting types of E. If E is uniform it is usually better to consider $E(0, a_{1,2} - a_{1,1}, \ldots, a_{1,s} - a_{1,s})$ instead of E, because all the splitting types of $E(0, a_{1,2} - a_{1,1}, \ldots, a_{1,s} - a_{1,s})$ instead of E, because all the splitting types

In this paper we prove the following result:

Theorem 1.1. Let E be a rank 2 vector bundle on X. E is weakly uniform if and only if there are $L \in Pic(X)$, indices $1 \le i < j \le s$ and a rank 2 weakly uniform vector bundle Gon $\mathbb{P}^{n_i} \times \mathbb{P}^{n_j}$ such that $E \otimes L \cong u_{ij}^*(G)$. E splits if either $n_i \ge 3$ or $n_j \ge 3$. If $1 \le n_1 \le 2$, $1 \le n_2 \le 2$ and $(n_1, n_2) \ne (1, 1)$, then E splits unless there is $h \in \{1, 2\}$ such that $n_h = 2$ and $E \otimes L \cong u_h^*(T\mathbb{P}^2)$ for some $L \in Pic(X)$.

Moreover we discuss the case of higher rank. We show that every rank r > 2 weakly uniform vector bundle with splitting type $a_{1,1} = \cdots = a_{r,s} = 0$ is trivial and every rank r > 2uniform vector bundle with splitting type $a_1 > \cdots > a_r$, splits. Our methods did not allowed us to attack other splitting types.

2 Weakly uniform rank two vector bundles

In order to prove Theorem 1.1 we need a few lemmas. We first consider the case s = 2.

Lemma 2.1. Assume s = 2, $n_1 = 1$ and $n_2 = 2$. Let E be a rank 2 vector bundle on $\mathbb{P}^1 \times \mathbb{P}^2$. E is weakly uniform if and only if either E splits as the direct sum of 2 line bundles or there is a line bundle L on $\mathbb{P}^1 \times \mathbb{P}^2$ such that $E \cong L \otimes \pi_2^*(T\mathbb{P}^2)$.

Proof. Since the "if" part is obvious, it is sufficient to prove the "only if" part. Let $(a_{h,i})$, $1 \leq h \leq 2, 1 \leq i \leq s$, be the splitting type of E. Up to a twist by a line bundle we may assume $a_{1,1} = a_{1,2} = 0$. By rigidity or looking at the Chern classes $c_i(E|\{Q\} \times \mathbb{P}^2), i = 1, 2,$ it is easy to see that if one of these two cases occurs for some Q, then it occurs for all Q. First assume $a_{2,2} = 0$. Since the trivial line bundle on \mathbb{P}^1 is spanned, the theorem of changing basis implies that $F := \pi_{2*}(E)$ is a rank 2 vector bundle on \mathbb{P}^2 and that the natural map $\pi_2^*(F) \to E$ is an isomorphism ([8], p. 11). Since E is weakly uniform, F is uniform. The

classification of all rank 2 uniform vector bundles on \mathbb{P}^2 shows that either F splits or it is isomorphic to a twist of $T\mathbb{P}^2$ (see [4]), concluding the proof in the case $a_{2,2} = 0$. Similarly, if $a_{2,1} = 0$, there is a rank 2 vector bundle G on \mathbb{P}^1 such that $\pi_1^*(G) \cong E$. Since every vector bundle on \mathbb{P}^1 splits, we have that also E splits. Now we may assume $a_{2,2} < 0$ and $a_{2,1} < 0$. Since $a_{2,2} < 0$, the base-change theorem gives that $\pi_{2*}(E)$ is a line bundle, say of degree b_2 , and that the natural map $\pi_2^*\pi_{2*}(E) \to E$ has locally free cokernel ([8], p. 11). Thus in this case E fits in an exact sequence

$$0 \to \mathcal{O}(0, b_2) \to E \to \mathcal{O}(a_{2,1}, -b_2 - a_{2,2}) \to 0 \tag{1}$$

The term $a_{2,1}$ in the last line bundle of (1) comes from $c_1(E)$. If (1) splits, then we are done. Since $a_{2,1} \leq 1$, Künneth's formula gives $H^1(\mathbb{P}^1 \times \mathbb{P}^2, \mathcal{O}(-a_{2,1}, 2b_2 + a_{2,2})) = 0$. Hence (1) splits.

Lemma 2.2. Assume s = 2, $n_1 = 1$ and $n_2 \ge 3$. Then every rank two weakly uniform vector bundle on X is the direct sum of two line bundles.

Proof. We copy the proof of Lemma 2.1. Every rank 2 uniform vector bundle on \mathbb{P}^m , $m \ge 3$, splits. Hence E splits even in the case $a_{2,2} = 0$.

Lemma 2.3. Assume s = 2 and $n_1 = n_2 = 2$. Let E be a rank 2 indecomposable weakly uniform vector bundle on X. Then either $E \cong u_1^*(T\mathbb{P}^2)(u, v)$ or $E \cong u_2^*(T\mathbb{P}^2)(u, v)$.

Proof. Let $(a_{h,i})$ be the splitting type of E. Up to a twist by a line bundle we may assume $a_{1,1} = a_{1,2} = 0$. As in the proof of Lemma 2.1 the theorem of changing basis gives that either $E \cong u_1^*(T\mathbb{P}^2(-2))$ or E splits if $a_{2,1} = 0$ and that $E \cong u_2^*(T\mathbb{P}^2(-2))$ or E splits if $a_{2,2} = 0$. If $a_{2,1} < 0$ and $a_{2,2} < 0$, then we apply π_{2*} and get an exact sequence (1). Here Künneth's formula gives that (1) splits, without using any information on the integer $a_{2,2}$.

Lemma 2.4. Assume s = 2, $n_1 \ge 3$ and $n_2 = 2$. Let E be a rank 2 weakly uniform vector bundle on X. Then either E splits or $E \cong u_2^*(T\mathbb{P}^2)(u, v)$ for some integers u, v.

Proof. Let (a_{hi}) be the splitting type of E. Up to a twist by a line bundle we may assume $a_{1,1} = a_{1,2} = 0$. As in the proof of Lemma 2.1 the theorem of changing basis gives that $E \cong u_1^*(T\mathbb{P}^2(-2))$ or E splits if $a_{2,1} = 0$ and that E splits in the case $a_{1,2} < 0$, because (1) splits by Künneth's formula.

Lemma 2.5. Assume s = 2, $n_1 \ge 3$ and $n_2 \ge 3$. Let E be a rank 2 weakly uniform vector bundle on X. Then E splits.

Proof. Let (a_{hi}) be the splitting type of E. Up to a twist by a line bundle we may assume $a_{1,1} = a_{1,2} = 0$. If $a_{2,2} = 0$, then base change gives $E \cong u_2^*(F)$ for some uniform vector bundle on \mathbb{P}^2 . Thus we may assume $a_{2,2} < 0$. We have again the extension (1). Here again (1) splits by Künneth's formula.

Now we are ready to prove the main theorem:

Proof of Theorem 1.1. First assume s = 2. Theorem 1.1 says nothing in the case $n_1 = n_2 = 1$ for which a full classification is not known ([2] shows that moduli arises). Lemmas 2.1, 2.2, 2.3, 2.4 and 2.5 cover all cases with s = 2. Hence we may assume $s \ge 3$ and use induction on s. If $n_i = 1$ for all i, then we may apply [2], Theorem 4. For arbitrary n_i the proof of [2], Theorem 4, works verbatim, but for reader's sake we repeat that proof. Let (a_{hi})

be the splitting type of E. Up to a twist by a line bundle we may assume $a_{1i} = 0$ for all i. If $a_{2i} = 0$ for some i, then the base-change theorem gives $E \cong \pi_i^*(F)$ for some weakly uniform vector bundle F on X_i . If s = 3, then we are done. In the general case we reduce to the case s' := s - 1. Thus to complete the proof it is sufficient either to obtain a contradiction or to get that E splits under the additional condition that $a_{2i} < 0$ for all i and $s \ge 3$. Applying the base-change theorem to π_{1*} we get that E fits in the following extension

$$0 \to \mathcal{O}(0, c_2, \dots, c_s) \to E \to \mathcal{O}(a_{1,2}, d_2, \dots, d_s) \to 0$$
⁽²⁾

Since $-a_{1,2} \ge 0$, Künneth's formula shows that (2) splits unless $n_i = 1$ for all $i \ge 2$. Using π_{2*} instead of π_{1*} we get that E splits, unless $n_1 = 1$.

3 Higher rank weakly uniform vector bundles

Now we consider higher rank weakly uniform vector bundles.

Proposition 3.1. Let E be a rank r weakly uniform vector bundle on X with splitting type $(0, \ldots, 0)$. Then E is trivial.

Proof. The case s = 1 is true by [8], Theorem 3.2.1. Hence we may assume $s \ge 2$ and use induction on s. By the inductive assumption $E|\pi_1^{-1}(P)$ is trivial for each $P \in \mathbb{P}^{n_1}$. By the base-change theorem $F := \pi_{1*}(E)$ is a rank r vector bundle on X_1 and the natural map $\pi_1^*(F) \to E$ is an isomorphism. This isomorphism implies that F is uniform of splitting type $(0, \ldots, 0)$. Hence the inductive assumption gives that F is trivial. Thus E is trivial. \Box

In order to study uniform vector bundles with $a_1 > \cdots > a_r$ we need the following lemmas:

Lemma 3.2. Fix an integer $r \ge 2$ and a rank r vector bundle on X. Assume the existence of an integer $i \in \{1, \ldots, s\}$ such that $E|\pi_i^{-1}(P)$ is the direct sum of line bundles for all $P \in X_i$. If $n_i = 1$ assume that the splitting type of $E|\pi_i^{-1}(P)$ is the same for all $P \in X_i$. Let $(a_1, \ldots, a_r) = (b_1^{m_1}, \ldots, b_k^{m_k}), b_1 > \cdots > b_k, m_1 + \cdots + m_k = r$, be the splitting type of $E|\pi^{-1}(P)$ for any $P \in X_i$. Then there are k vector bundles F_1, \ldots, F_k on X_i and k vector bundles E_1, \ldots, E_k on X such that $\operatorname{rank}(F_i) = m_i, E_k = E, E_{i-1}$ is a subbundle of E_i and $E_i/E_{i-1} \cong \pi_i^*(F_i)(-b_i)$ (with the convention $E_0 = 0$).

Proof. Notice that even in the case $n_i \ge 2$ the splitting type of $E|\pi^{-1}(P)$ does not depend from the choice of $P \in X_i$ (e.g. use Chern classes or local rigidity of direct sums of line bundles). Thus $E|\pi_i^{-1}(P) \cong \bigoplus_{j=1}^k \mathcal{O}_{\pi_i^{-1}(P)}(b_j)^{\oplus m_j}$ for all $P \in X_i$.

Set $F_1 := \pi_{i*}(E(0, \dots, -b_1, \dots, 0))$. By the base-change theorem F_1 is a rank m_1 vector bundle on X_i and the natural map $\rho : \pi_i^*(F_1)(0, \dots, b_1, \dots) \to E$ is a vector bundle embedding, i.e. either ρ is an isomorphism (case $r = m_1$) or Coker (ρ) is a rank $r - m_1$ vector bundle on X. If $m_1 = r$, then k = 1 and we are won. Now assume $k \ge 2$, i.e. $m_1 < r$. Fix any $P \in X_i$. By definition Coker (ρ) fits in an exact sequence of vector bundles on X:

$$0 \to \pi_i^*(F_1)(0, \dots, b_1, \dots 0) \to E \to \operatorname{Coker}(\rho) \to 0$$
(3)

and the restriction to $\pi_i^{-1}(P)$ of the injective map of (3) induces an embedding of vector bundles $j_P : \mathcal{O}_{\pi_i^{-1}(P)}(b_1)^{\oplus m_1} \to \bigoplus_{j=1}^k \mathcal{O}_{\pi_i^{-1}(P)}(b_j)^{\oplus m_j}$. Since $b_1 > b_j$ for all j > 1, we get $\operatorname{Coker}(j_P) \cong \bigoplus_{j=2}^k \mathcal{O}_{\pi_i^{-1}(P)}(b_j)^{\oplus m_j}$. We apply to $\operatorname{Coker}(\rho)$ the inductive assumption on k. \Box **Lemma 3.3.** Assume s = 2 and $n_1 \ge 2$, $n_2 \ge 3$. Fix an integer r such that $3 \le r \le n_2$ and a rank r uniform vector bundle E with splitting type $a_1 > \cdots > a_r$. Then E is isomorphic to a direct sum of r line bundles.

Proof. Since $r \ge 3$, we have $a_r \le a_1 - 2$. Thus the classification of uniform vector bundles on \mathbb{P}^{n_2} with rank $r \le n_2$, gives $E|\pi_1^{-1}(P) \cong \bigoplus_{i=1}^r \mathcal{O}_{\pi_1^{-1}(P)}(a_i)$ for all $P \in \mathbb{P}^{n_1}$. Apply Lemma 3.2 with respect to the integers i = 1 and k = r and let $F_i, E_i, 1 \le i \le r$, be the vector bundles given by the lemma. Since $E_r = E$, it is sufficient to prove that each E_i is a direct sum of i line bundles. Since rank $(E_i) = i$, the latter assertion is obvious if i = 1. Fix an integer i such that $1 \le i < r$ and assume that E_i is isomorphic to a direct sum of i line bundles. Lemma 3.2 gives an extension

$$0 \to E_i \to E_{i+1} \to L \to 0$$

with L a line bundle on $\mathbb{P}^{n_1} \times \mathbb{P}^{n_2}$. Since $n_1 \geq 2$ and $n_2 \geq 2$, Künneth's formula gives that any extension of two line bundles on $\mathbb{P}^{n_1} \times \mathbb{P}^{n_2}$ splits. Thus E_{i+1} is a direct sum of i+1 line bundles.

Proposition 3.4. Fix an integer $r \geq 3$ and a rank r uniform vector bundle on X with splitting type $a_1 > \cdots > a_r$. Assume $s \geq 2$, $n_2 \geq r$ and $n_i \geq 2$ for all $i \neq 2$. Then E is isomorphic to a direct sum of r line bundles.

Proof. The case s = 2 is Lemma 3.3. Thus we may assume $s \ge 3$ and that the proposition is true for $\mathbb{P}^{n_1} \times \cdots \times \mathbb{P}^{n_{s-1}}$. By the inductive assumption $E|u_s^{-1}(P) \cong \bigoplus_{i=1}^r \mathcal{O}_{u_s^{-1}(P)}(a_i, \ldots, a_i)$ for all $P \in \mathbb{P}^{n_s}$. As in the proof of Lemma 3.2 taking instead of π_i the projection $u_i : X \to \mathbb{P}^{n_i}$ we get line bundles $L_i, 1 \le i \le r$ of \mathbb{P}^{n_s} , (i.e. line bundles $u_i^*(L) \cong \mathcal{O}(0, \ldots, 0, c_i, 0, \cdots, 0)$ on X) and subbundles $E_1 \subset E_2 \subset \cdots \in E_r = E$ such that $E_i/E_{i-1} \cong \mathcal{O}_X(a_{i-1}, \ldots, a_{i-1}, c_i)$ (with the convention $E_0 = 0$). It is sufficient to prove that each E_i is isomorphic to a direct sum of i line bundles. Since this is obvious for i = 1, we may use induction on i. Fix an integer $i \in \{2, \ldots, r\}$. Our assumption on X implies that the extension of any two line bundles splits. Hence $E_i \cong E_{i-1} \oplus \mathcal{O}_X(a_{i-1}, \ldots, a_{i-1}, c_i)$.

References

- E. Ballico and P. Ellia, Fibrés uniformes de rang 5 sur P³. Bull. Soc. Math. France 111 (1983), 59–87.
- [2] E. Ballico and P. E. Newstead, Uniform bundles on quadric surfaces and some related varieties. J. London Math. Soc. (2) 31 (1985), no. 2, 211–223.
- [3] G. Elencwajg, Les fibres uniformes de rang 3 sur $\mathbf{P}_2(\mathbf{C})$ sont homegénes. Math. Ann. 231 (1978), 217–227.
- [4] G. Elencwajg, A. Hirschowitz and M. Schneider, Les fibres uniformes de rang au plus n sur $\mathbf{P}_n(\mathbf{C})$ sont ceux qu'on croit. Vector bundles and differential equations (Proc. Conf., Nice, 1979), pp. 37–63, Progress in Math. 7, Birkhäuser, Boston, Mass., 1980.
- [5] P. Ellia, Fibrés uniformes de rang n + 1 sur \mathbb{P}^n . Mem. Soc. Math. France 7 (1982).
- [6] P. E. Newstead and R. L. E. Schwarzenberger, Reducible vector bundles on a quadric surface. Proc. Cambridge Philos. Soc. 60 (1964), 421–424.

- [7] J. M. Drezet, Example de fibrés uniformes non omogenés. C. R. Acad. Sci. Paris Sér A 291 (1980), 125–128.
- [8] Ch. Okonek, M. Schneider and H. Spindler, Vector bundles on complex projective spaces. Progress in Math. 3, Birkhäuser, Boston, Mass., 1980.
- [9] E. Sato, Uniform vector bundles on a projective space. J. Math. Soc. Japan. 28 (1976), 123–132.
- [10] A. Van de Ven, On uniform vector bundles. Math. Ann. 195 (1972), 245–248.
- [11] R. L. E. Schwarzenberger, Reducible vector bundles on a quadric surface, Proc. Cambridge Philos. Soc. 58 (1962), 209–216.