
23 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

NERD: A Framework for Evaluating Named Entity Recognition Tools in the Web of Data / Rizzo, Giuseppe; Troncy, R.. -
ELETTRONICO. - (2011), pp. 1-4. (Intervento presentato al  convegno International Semantic Web Conference 2011
(ISWC'11) tenutosi a Bonn, Germany nel October).

Original

NERD: A Framework for Evaluating Named Entity Recognition Tools in the Web of Data

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2440794 since:



NERD: A Framework for Evaluating Named
Entity Recognition Tools in the Web of Data

Giuseppe Rizzo1,2 and Raphaël Troncy1

1 EURECOM, Sophia Antipolis, France, <raphael.troncy@eurecom.fr>
2 Politecnico di Torino, Torino, Italy, <giuseppe.rizzo@polito.it>

Abstract. In this paper, we present NERD, an evaluation framework we
have developed that records and analyzes ratings of Named Entity (NE)
extraction and disambiguation tools working on English plain text arti-
cles performed by human beings. NERD enables the comparison of dif-
ferent popular Linked Data entity extractors which expose APIs such as
AlchemyAPI, DBPedia Spotlight, Extractiv, OpenCalais and Zemanta.
Given an article and a particular tool, a user can assess the precision of
the named entities extracted, their typing and linked data URI provided
for disambiguation and their subjective relevance for the text. All user
interactions are stored in a database. We propose the NERD ontology
that defines mappings between the types detected by the different NE
extractors. The NERD framework enables then to visualize the compar-
ative performance of these tools with respect to human assessment.

Key words: Entity extraction, Linked Data, Natural Language Pro-
cessing, Evaluation of Linked Data entity extraction tools

1 Introduction

The Web has become a large data space, where millions of semi-structured texts
such as scientific, medical or news articles as well as forum and archived mailing
list threads or (micro-)blog posts are available. These documents often contain
rich semantics which is hidden to computing machinery. Natural Language Pro-
cessing (NLP) and information extractors play a key role to extract information
from unstructured or semi-structured text. Recently, Linked Data entity extrac-
tors have emerged for providing a URI that uniquely identifies named entities in
the Web of Data in addition to their type.

Tools such as AlchemyAPI3, DBpedia Spotlight4, Extractiv5, OpenCalais6

and Zemanta7 offer a clear opportunity for the Semantic Web community to
increase the volume of interconnected data. Although these tools share the same
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purpose – extracting semantic units from text – they make use of different al-
gorithms and training data. They generally provide a similar output composed
of a set of extracted named entities, their type and potentially a URI disam-
biguating each named entities (o = (NE, type, URI)). These services have their
own strengths and shortcomings but to the best of our knowledge, no thorough
comparison of them have ever been published in the scientific literature. This
demonstration is our attempt to provide an actionable framework for performing
such a comparison. In the following, we briefly describe the architecture of the
NERD framework and we present an evaluation test scenario.

2 NERD Framework

NERD (Named Entity Recognition and Disambiguation)8 is a web application
plugged on top of various NE extractors. It allows a user to analyze any textual
resource published on the web and accessible with a URI, and to extract from
the text the named entities detected, typed and disambiguated by various NE
extractor APIs. It provides a user interface for assessing the performance of each
of those tools according to the pattern (NE, type, URI). All user interactions are
collected and stored in a database. The framework can finally generate analysis
reports and comparison of tools using the NERD ontology.

The NERD system architecture is composed of a front-end web interface
and a back-end coupled with a SQL database. The user interface is developed in
HTML/Javascript and enables a user to analyze and assess the extraction results
of several NE extractors. Through asynchronous calls, the user evaluation is sent
to the back-end when the client asks to store the data. The application contains a
help page that provides guidance and details about the whole evaluation process.
The landing page of the application includes doodles that remind the user the
three important steps for conducting an evaluation.

The back-end is developed in Java and runs on an Apache-Tomcat application
server. We adopted a modular implementation that is easily extensible composed
of seven modules: authentication, scraping, extraction, ontology matching, store,
statistics, web. The authentication takes as input the FOAF profile of a user and
links the ratings with the user who performs them. We consider implementing
WebID in the future. The scraping module takes as input the URI of an arti-
cle and extracts all its raw text. Extraction is the module designed to invoke
the external service APIs and collect the results according to the pattern (NE,
type, URI). Each services provide its own taxonomy of type of named entity
it can recognize. We therefore designed the NERD ontology9 which provides
a set of mappings between these various classifications. The ontology matcher
is the module in charge of the NE type comparison using the ontology. The
store module saves all ratings according to the ER model in a MySQL database.
The statistic module enables to extract data patterns form the user interactions
stored in the database, and to compute statistical scores such as the Fleiss’
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Kappa score and precision/recall analysis. Finally, the web module manages the
client request and generates the HTML pages. We are currently developing a
RESTful API exposing all the data.

3 How to Perform an Evaluation?

3.1 Type the URI of an article and enter your FOAF identifier

In the landing page, there are two input boxes: one for a news article URI and
one for a FOAF profile. English is the only language fully supported by all NE
extractors although some of them support other languages. The user provides
a FOAF identifier in order to attach all evaluations with a profile and visualize
a history. After clicking on the “Analyze” button, NERD extracts the raw text
contained in the web document and displays a preview page.

3.2 Skim over the article and choose one extractor

In the preview page, the user briefly skims over it and chooses one extractor in
order to execute the NE extraction task. Once a particular service is clicked, the
NERD framework invokes the corresponding NE extractor API and the user is
directed to the evaluation page which shows the extraction results returned by
this service.

3.3 Evaluate the extraction results and save the evaluations

When looking at the results returned by a NE extractor, the user can still read
the content preview although the named entities are not localized in the text.
The user rates the correctness of the extraction using a “+” and “-” button in
a table composed of three columns.

– NE: assess whether the entity extracted is a named entity (“+”) or not
(“-”). By NE, we meant an entity that refers to a person, a location, an
organization, a product/brand, a date or a currency as opposed to a general
topic. By default, the “-” is selected.

– Type: assess whether the entity extracted is typed correctly in the context
of the article (“+”) or not (“-”). By default, the “-” is selected. If the type
returned by NE extractor is NULL or belongs to a general miscellaneous
category, the user is instructed to also assess it negatively.

– URI: assess whether the URI can be used as an identifier of the named entity
(“+”) or not (“-”). Some extractors, such as AlchemyAPI and Zemanta,
provide general URI relevant to the named entity while others disambiguate
the named entity with a Linked Data URI.

– Relevance: assess whether the entity extracted is important for the article
(checked) or not (unchecked). This box is also used to counter balance and
not penalize the tools that extract more than only named entities such as
general topic that can well index the article being analyzed while not being
considered as a named entity in NERD. The relevance of the NEs is later
used to assign different weights in computing precision and recall.



Figure 1 shows two different evaluations performed by AlchemyAPI and Ex-
tractiv. Some NEs are comparable in terms of the taxonomy of types of named
entity they can recognize while having some differences: e.g., AlchemyAPI re-
ports an accurate detection of the general Person type and disambiguates the NE
with a general resource URI while Extractiv provides a fine-grained taxonomy
of this type according to the person profession and disambiguates the NE with
a LOD URI. After reviewing all the rows in the table, the user saves the evalua-

(a) AlchemyAPI (b) Extractiv

Fig. 1. NE extraction results performed by AlchemyAPI and Extractiv given the same
input news article. Fields in green have been rated positively while fields in red have
been rated negatively.

tion results by clicking the “Save” button and completes the evaluation process.
When neither “+” nor “-” have been clicked for some cells, the user is alerted
with a pop up notice that the missing evaluations will be considered negatively
and is prompted to confirm or not this choice before leaving the evaluation page.
Comparison charts are then presented in the comparison page.

4 Conclusion

We presented a framework that compares popular Linked Data Named Entities
extractors. The service is oriented towards people wishing to build gold standard
annotations for comparing NLP services. We will invite ISWC guests to try the
service with a set of pre-annotated articles in order to create and improve a gold
standard and discuss the complexity of such an evaluation task.
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