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Evaluation of Hierarchical Vector Basis Functions for Quadrilateral Cells
Andrew F. Peterson�, Fellow, IEEE, and Roberto D. Graglia�, Fellow, IEEE

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0250 USA
Dipartimento di Elettronica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

New hierarchical vector basis functions for quadrilateral cells are introduced, and the matrix condition numbers associated with their
use are compared to those of existing vector basis families to assess the relative linear independence of the functions. Scale factors are
employed to improve the condition numbers. In addition, the proper use of subsets of these families to transition from one order to
another (as needed for adaptive -refinement) without exciting spurious modes is considered.

Index Terms—Boundary elements, Helmholtz equation, hierarchical basis functions, vector finite elements.

I. INTRODUCTION

V ARIOUS hierarchical vector basis functions have been
proposed for use with the finite-element (FE) analysis

of electromagnetic field problems. The present contribution fo-
cuses on curl-conforming bases for quadrilateral-cell discretiza-
tions of the vector Helmholtz equation

(1)

References [1]–[5] present several families of existing functions
of this type. The th order basis set from each family spans
the identical mixed-order space of Nedelec [6], but hierarchical
functions usually suffer from a loss of linear independence as
their order increases. Thus, one family might be superior to an-
other in that regard.

In this study, we assess the relative linear independence of this
type of basis by comparing the matrix condition numbers arising
from the element and global systems associated with entries of
the form

(2)

where denotes a vector basis function. Our recent research
suggests that this condition number usually correlates with
the conditioning of the overall system arising from the FE
discretization of the Helmholtz equation and with the perfor-
mance of iterative algorithms often used to solve those systems.
However, such a comparison is misleading because most of
the published families of basis functions do not incorporate
scale factors, and the use of such factors can greatly improve
the conditioning. Thus, we first identify suitable scale factors
in an attempt to make a fair comparison between the various
families. A similar study was recently completed for trian-
gular-cell vector bases [7], and demonstrated that scale factors
can improve the matrix conditioning by many orders of magni-
tude. The introduction of scale factors has an effect similar to
diagonal matrix preconditioning prior to iterative solution.

We include in our comparison a new set of hierarchical vector
bases designed for linear independence [8], [9].
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Generally, hierarchical basis functions are intended for use
within an adaptive -refinement algorithm. Such an implemen-
tation requires the transition between low-order representations
over some part of the domain and higher order representations
over some other region. However, poorly constructed transition
schemes can excite spurious eigenvalues and eigenfunctions.
The proper construction of transition functions is discussed.

II. NEW BASES FOR QUADRILATERAL CELLS

All the basis families in [1]–[5] and [8], [9] employ the same
polynomial degrees of freedom, but each family uses a different
specific realization. The new functions are constructed from Le-
gendre and Jacobi polynomials, defined

(3)

(4)

and satisfying the recurrences

(5)

(6)

Using these polynomials, we define

(7)

(8)

On a reference cell in coordinates, where , ,
edge based functions of order have the form

(9)

while the face-based (or cell-based) functions have the form

(10)

The edge-based functions straddle adjacent cells and maintain
tangential-vector continuity between cells; the face-based func-
tions are entirely local to a given cell. Each successive order
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uses four additional edge functions and additional face func-
tions. The motivation behind the development of these bases is
described in a forthcoming publication [9].

The set of 24 quadratic-tangential/cubic-normal (QT/CuN)
bases is given as follows. The four constant-tangential, linear-
normal (CT/LN) base vectors (order 0) are

(11)

(12)

(13)

(14)

To expand the space to the next order, we first consider four
bilinear edge-based functions given by

(15)

(16)

(17)

(18)

To reach Nedelec’s mixed order 1, four additional face-based
functions are required. These have the form

(19)

(20)

(21)

(22)

The preceding set of 12 functions spans the linear-tangential,
quadratic normal (LT/QN) space, here denoted order 1. To ex-
pand the space to order 2, or QT/CuN, we add the four edge-
based functions

(23)

(24)

(25)

(26)

and augment this set with eight face-based functions

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

This set of 24 functions spans the QT/CuN space for quadri-
lateral cells. These functions will maintain curl-conforming
properties on arbitrary quadrilateral or curved cells defined
by mappings , if they are mapped using the
transformation

(35)

III. CONDITION NUMBER COMPARISON

To evaluate the relative linear independence associated with
the various basis families, the condition number of the global
Gram matrix in (2) was evaluated for a variety of quadrilat-
eral-cell models. Since individual members of each hierarchical
family can be scaled in an almost arbitrary way, and most au-
thors present their bases without scale factors, to ensure a fairer
comparison we introduce scale factors that improve the matrix
condition numbers for each family.

As in [7], a relatively coarse scaling was developed, as
follows. The four base vectors (order 0) were not scaled, other
than to ensure tangential-vector continuity between cells. The
next four edge-based functions were scaled with a single,
common factor. The factor was real-valued and chosen to
minimize the 8 by 8 element matrix condition number for a
square cell. The remaining four face-based functions needed
to obtain an order-one representation were also scaled with a
single common factor, obtained to minimize the matrix con-
dition number for the 12 by 12 element matrix. This process
was continued as the element order increased, yielding a single
scale factor for the four additional edge bases of each order and
a single scale factor for the group of face bases of each order.
The bases of Jorgensen et al. [4] and the new bases presented
above contain built-in scale factors; the additional scale factors
are multiplied with those factors. For the basis families under
consideration, our coarse scaling was always able to improve
the element matrix conditioning over the original form of the
published basis functions. However, when applied to actual
quadrilateral-cell meshes, in some cases the original bases
outperformed the scaled set.

The scale factors obtained by this process are clearly not the
best possible factors for a general mesh. Furthermore, one could
assign an independent factor to each basis function and employ
a more sophisticated optimization; for simplicity, we do not in-
vestigate such an approach here. We also point out that in the
comparison shown below, the Ainsworth bases [1] and the Jor-
gensen bases [4] involve the identical functions up to QT/CuN
order, except for the scale factors introduced by Jorgensen, yet
the resulting condition numbers are substantially different.

As a representative example, Table I shows the matrix condi-
tion numbers arising from an 18-cell model of a 2:1 rectangular
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TABLE I
CONDITION NUMBER COMPARISON

cavity, constructed from a 6 by 3 model with interior nodes ir-
regularly located to produce skewed quadrilateral cells. This ex-
ample used the set of 24 QT/CuN bases from each family. Con-
dition numbers for the original or “unscaled” bases and those
obtained with the coarse scaling described above are presented.
Results from the interpolatory bases of [10] are also shown for
comparison. All basis families were also tested to ensure that
they produce identical results for cavity eigenvalues, and there-
fore are correctly implemented.

Table I suggests that the basis functions of Jorgensen et al.
[4] and the new basis set proposed above outperform the other
hierarchical families in terms of condition number, and this was
always the case in the tests we conducted on a variety of meshes.
It is perhaps significant that these are the two basis families that
were originally proposed with specific scale factors.

IV. TRANSITIONING STRATEGY

Hierarchical bases are intended for use in adaptive -refine-
ment schemes, where the basis order is varied across the mesh
to compensate for varying error levels due to the presence of
sources, geometrical features, material density changes, etc.
However, since one of the major issues with the vector FE
method is the appearance of spurious modes, the transition
from one polynomial order to another must be done with care
to avoid this problem.

Although it is implied in the literature that any combination
of hierarchical basis functions can be used within a particular
cell, such an approach is unlikely to avoid spurious modes. In-
stead, we consider two fairly restrictive approaches for transi-
tioning in 2D. These make use of the fact that the basis func-
tions are either edge-based functions that straddle two adjacent
cells, or are face-based functions that are entirely confined to
a single quadrilateral cell. In both approaches, it is assumed
that the order of the edge-based functions can vary from edge
to edge (perhaps with some constraints, such as a limit of two
consecutive orders per cell). In the first approach (scheme 1),
the cell-based functions in each cell are assigned to be com-
plete to the lowest order of the surrounding edges. (Here, we
use the term complete in the context of Nedelec’s mixed-order
reduced-gradient spaces [6].) In other words, if a cell has two

TABLE II
EIGENVALUE COMPARISON

edges that are assigned to order and two edges that are as-
signed to order , the full set of cell-based functions of
order are used in that cell. The alternate approach (scheme
2) is to employ cell-based functions of the highest order of the
surrounding edges in each cell (in the preceding illustration, the
full set of order cell-based bases would be used).

As a numerical illustration of this issue, consider a 2:1 rectan-
gular cavity represented by 18 uniform rectangular cells (three
rows and six columns). All the edges surrounding the six cells
in columns 3 and 4 of the rectangular domain are set to a higher
order than the other edges. We consider transitioning from an
order-zero representation on the sides to an order-one represen-
tation in the center cells (“0-1-0”), as well as a transition from
an order-one representation on the sides to an order-two repre-
sentation in the center cells (“1-2-1”). To implement scheme 1,
the cell-based bases in the six middle cells are set to the higher
order. To implement scheme 2, the cell-based functions in the
cells immediately adjacent to those are also raised to that higher
order.

Table II shows the lowest nonzero eigenvalues obtained from
a solution of the curl-curl form of the vector Helmholtz equa-
tion for the magnetic field, with PEC boundaries (homogeneous
Neumann boundary conditions), for the two schemes outlined
above, and the Graglia and Peterson basis functions of Section II
(all the other families produce the same results, except for the
Zaglmayr family). These eigenvalues are the cutoff wavenum-
bers for the cavity, and the exact values are shown for com-
parison. It is immediately observed that scheme 1 produces six
spurious eigenvalues for this mesh (flagged with an asterisk),
while scheme 2 does not. (It was verified that the nullspace of
the system was reduced in dimension by exactly six.) It appears
that there is one spurious eigenvalue for each edge basis that
protrudes into a cell of lower internal order. Apparently, the
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face-based functions of order provide the proper representa-
tion within a cell even in the absence of one or more edge-based
functions, but an edge-based function of order protruding into
a cell of lower order excites a spurious mode.

We further observe that, with the exception of the Zaglmayr
bases, none of the basis families considered above use explicit
gradient functions as edge-based functions. (This is in contrast
to the typical bases proposed for triangular or tetrahedral cells,
where most of the proposed hierarchical edge-based bases are
gradient functions.) The use of explicit gradients eliminates the
spurious mode problem arising from protruding edge bases; for
instance, our tests confirmed that the Zaglmayr bases can be
used with either scheme 1 or scheme 2 without producing spu-
rious modes. As an alternative, most of the other families’ edge
functions can be easily converted into gradients if desired.

V. CONCLUSION

A new set of hierarchical vector basis functions for quadrilat-
eral cells is proposed. These basis functions compare favorably
to other families in terms of their linear independence, as evalu-
ated by a comparison of matrix condition numbers. The impact
of scale factors on matrix conditioning was illustrated by ex-
ample. Finally, procedures for transitioning from one order to
another, as within a -refinement implementation, were evalu-
ated. For most of the quadrilateral-cell basis families, allowing
an edge basis to protrude into a cell of lower order will lead to
spurious modes. To avoid spurious modes, the face-based func-
tions within each cell should be complete to the highest order of
that cell’s edge-based functions.

The condition number is one characteristic of a basis; further
testing of the new basis functions is necessary to explore other
aspects of their performance (such as the convergence rate of
iterative solvers) for realistic problems.
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