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Abstract 

 

This paper aims to extend the field of application of the pressure rise technique, from freeze-

drying of pharmaceutical or biological products in vials to freeze-drying of liquids or 

foodstuff in trays. The proposed method, that is based on DPE+ algorithm, has been adapted 

to monitor the drying of liquids in trays and of Individually Quick Frozen products. Examples 

of results obtained in a small-scale plant wherein such method was used for monitoring the 

freeze-drying of spinach samples and solutions of sucrose and lactose are presented. Since in 

bulk freeze-drying the radiant energy coming from the upper shelf might be not negligible, the 

effectiveness of this method has been tested in presence of different radiating contributions. A 

more sophisticated algorithm to interpret the pressure rise curve, which uses a mathematical 

model accounting for both conduction heat transfer from the bottom and radiant energy 

coming from the upper shelf and including heat accumulation into the dried layer, is proposed 

and experimentally tested. 

 

Keywords: freeze-drying, monitoring, pressure rise technique, primary drying, food 

drying 
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Introduction 

 
In food processing, freeze-drying can be used to preserve highly valuable products whose 

organoleptic properties can be damaged by the high processing temperature of traditional 

drying processes, or to make them more convenient for storage and transport. In fact, as the 

process is carried out at very low temperature, and there is no capillary transport of solutes to 

the surface, the freeze-dried food retains the aroma, taste and texture of its fresh counterpart, 

and its porous structure allows fast and good reconstitution. 

Products typically processed by freeze-drying can be classified by their original 

physical state into three basic categories: liquids (like coffee, tea and juices), Individually 

Quick Frozen (IQF) products (like segments of fruit, vegetables, seafood and meat) and 

combined ones (like soup blocks, rice dishes and baby foods).[1] 

Fundamentally, whichever is the product, the process consists in freezing the material, 

removing the frozen water by sublimation (primary drying phase) and, finally, further 

warming of the product to promote moisture desorption.[2] 

During freezing, the material is cooled below its triple point. In this step, most of 

water, that is called “free” water, crystallizes as ice, while the reaming fraction is incorporated 

into the concentrated solution as “bound” water. A proper design of the freezing stage is 

fundamental to optimize the successive drying steps, as freezing conditions determine the 

shape and the size of ice crystals and, thus, the resistance to vapour flow through the dried 

layer.[3-5] Treatments like annealing (in which product temperature is cycled up and down) can 

be introduced to get larger ice crystals and, thus, shorten the sublimation step. Size and 

structure of ice crystals can be also modified, even if only within a limited extent, controlling 

the cooling and freezing rate, or better, controlling directly the nucleation temperature.[4] 

Recently, various authors[6-7] proposed alternative methods to induce and control ice 

nucleation. However, it must be said that the choice of the optimal freezing conditions 

depends upon product characteristics. For example, large ice crystals are well-liked in case of 

liquids like coffee extract, since a highly porous matrix, and thus a faster drying and a smaller 

reconstitution time, is obtained. On the contrary, solid products like food, or objects with 

formerly-living cells, can be damaged because of cell walls breaking, which results in a poor 

texture of the rehydrated product. 

After freezing, ice is removed as vapour reducing the surrounding pressure and 

supplying enough heat to allow ice sublimation. During this phase product damages can 

occurs; thus, it is fundamental to design the process to meet product requirements. In recent 
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years, the concept of Quality by Design has been applied to pharmaceutical manufacturing[8], 

but its principles can be also implemented to the drying of food. The application of the 

concept “Quality by Design” to the primary drying phase often requires coupling opposite 

needs. For example, product temperature has to be maintained below a specific value to avoid 

loose of the macroscopic structure, that occurs in case of melting, shrinkage or collapse of the 

solid matrix.[9] On the contrary, the sublimation rate, and hence product temperature at the 

moving front, should be maximized to achieve the most cost effective cycle.  

In industrial practice, a freeze-drying cycle is specified by means of a recipe, that is 

the definition of time and processing conditions (i.e. chamber pressure and temperature of the 

heating shelf) of a sequence of steps. An extended experimental campaign (based on trials and 

errors) may be required to design this recipe, even if various authors have recently proposed 

new methods to get it off-line (for example using the design space[10]) or in-line.[11-13] It must 

be said that these methods were developed for pharmaceutical manufacturing, but can be 

easily extended to food processing. 

The use of a fixed recipe does not guarantee the repeatability of freezing and drying 

conditions, but, on the other hand, the in-line optimization of the manufacturing process is 

still limited as the parameters of interest (i.e. product temperature and residual water content) 

are hardly measurable. However, process constraints are less demanding at laboratory or pilot 

scale, where a certain margin of freedom is given, allowing the manual insertion of sensors or 

the introduction of disturbs to identify the process. 

In recent years, US Food and Drugs Administration encouraged pharmaceutical 

manufacturers to use advanced process monitoring techniques.[14] In this context, the design 

of in-line and non-intrusive tools for process monitoring has received a lot of interest in the 

literature[15-16] and has been recently reviewed by Refs.[17-18] As methods for recipe 

developments, these techniques were designed for pharmaceutical manufacturing, since 

product quality requirements for pharmaceuticals are much more stringent, but there is an 

increasing interest in extending their use to the drying of food. 

The measurement of the moving front temperature and position is only possible with 

advanced systems. For this purpose, valuable alternatives to the use of thermocouples, like 

model-based algorithms, have been proposed. 

Velardi et al.[19-20] proposed the use of an observer, which combines a priori 

knowledge of the physical system (mathematical model) with experimental data (e.g. 

temperature measurements), to provide an almost continuous estimation of the desired 

variables. Its application in food processing is, however, limited to liquid products, as 
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thermocouples cannot be easily inserted in pre-frozen products. 

Process identification techniques (e.g. the Pressure Rise Test (PRT) technique) can be 

also used to recover the unknown parameters. These methods are based on the use of a 

mathematical model to interpret the experimental response of the system (i.e. the pressure rise 

curve) to a short perturbation, i.e. shut-off of the valve separating the drying and condenser 

chamber. Among others, the Dynamic Parameters Estimation (DPE), or its upgrade (DPE+), is 

one of the tools that have been proposed to monitor the process using the pressure rise 

curve.[21-22] The monitored variables (i.e. product temperature, heat and mass transfer 

coefficients and the residual amount of ice) can be then used for closing the loop, enabling an 

in-line control with a predictive action.[11] 

Such devices, however, were designed for monitoring and managing the freeze-drying 

of pharmaceuticals, mainly liquids in vials. Freeze-drying of foodstuff is, instead, less 

demanding in terms of control, but during the operation care must still be paid to keep the 

product temperature lower than its critical value; on the other hand, in case of food 

processing, it is particularly important to optimize the cycle to reduce its duration and thus the 

energy consumption, to make it energetically sustainable. 

This paper aims to extend the field of application of the PRT technique, from freeze-

drying of pharmaceutical and biological products in vials to freeze-drying of liquids and 

foodstuff in trays. For this purpose, the DPE+ algorithm (with some upgrades) is used. It will 

be proven, that, if radiation is limited, the model used in the DPE+ algorithm can reliably 

describe the system dynamics, and account for the heat flux due to radiation by considering an 

effective value for the overall heat transfer coefficient. Instead, if heat is mainly transferred by 

radiation, the operating principle remains the same, but a different model must be used for the 

response interpretation: the radiant energy coming from the upper shelf, and the heat 

accumulation in the dried layer, must be considered in this case. 

In the following sections a general description of the pressure rise test technique and 

of DPE+ algorithm is given. A particular attention has been reserved to a modified version of 

DPE+ algorithm (i.e. DPE++), which also account for the contribution of radiation coming 

from the upper shelf. Results obtained in a small industrial plant are presented to demonstrate 

the effectiveness of the proposed approach to monitor and control the freeze-drying of liquids 

in bulk. The same technique is then used for monitoring the batch freeze-drying of IQF 

products. The last part of the study instead aims at investigating – by means of numerical 

simulations and experimental cycles run on purpose– the performances of DPE+ and DPE++ 

algorithms in presence of different radiating contributions. 
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Pressure Rise Test technique 

 
The transient pressure response is a process identification technique. In early studies, it was 

used to determine the completion of ice sublimation[23-24] or, coupled to a relationship for the 

ice vapour pressure, to estimate the temperature of the product at the moving interface.[25-26] 

This method was, then, modified by Ref.[27], who proposed to calculate the interface 

temperature from the value of pressure measured in correspondence of the maximum of the 

first derivative of the pressure rise curve. In recent years, various authors[21-22, 28-30] proposed 

to use a mathematical model of the process to estimate the product temperature, as well as 

other parameters of the system, on the basis of pressure rise data. The various algorithms 

mainly differ in the type of mathematical model used and parameters estimated. 

All these methods do not consider the radiant energy coming from the upper shelf and 

chamber walls. However, if heat transfer by radiation from walls is limited, it can be 

accounted simply considering an effective heat transfer coefficient.[22] On the other hand, 

concerning the radiant energy coming from the upper shelf and the heat accumulation in the 

dried layer, the relevance of its contribution depends upon the configuration used.[31] This 

term can be neglected in case of freeze-drying of liquids in vials, where the rubber stopper 

acts as a shield from radiation. Nevertheless, this assumption is not always acceptable, mainly 

when liquids are processed in bulk or in containers without stoppers. In this case, as already 

stated in the introduction, the model used for interpreting the pressure response should be 

reformulated so that radiation contribution from the upper shelf can be included in the energy 

balance of the system. In the following sections, the DPE+ algorithm, and its modification 

(DPE++) to include also the radiant contribution, is described in details. 

 
 
DPE+ algorithm 

 

The DPE+ algorithm[32] describes the heat transfer and the local evolution of the product 

temperature in the frozen layer ( frozT ) during the PRT by means of the following equations: 

2
froz froz froz

2
froz ,frozp

T k T
t c zρ

∂ ∂
=

∂ ∂
 for 0 dried tot,t t L z L> ≤ ≤    (1) 

sub
froz ,0 ice ,00

froz
i wt

p

HzT T p p
k R=

∆ ⎡ ⎤= + −⎣ ⎦  for dried totL z L≤ ≤    (2) 
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[ ]
dried

froz sub
froz ice w

pz L

T Hk p p
z R

=

∂ ∆
= −

∂
 for 0 dried,t t z L≥ =    (3) 

( )
tot

froz
froz S B

z L

Tk h T T
z

=

∂
= −

∂
 for 0 , tott t z L≥ =    (4) 

where z  is the axial coordinates (z = 0 corresponds to the upper surface of the dried product), 

dried
frozi z L

T T
=

= , froz =
=B z L

T T
tot

 and icep  is the equilibrium pressure between ice and vapour. 

The definition of all the symbols is given in the section at the end of the paper, while a sketch 

of the physical system (in case of liquid products in tray) is given in Figure 1. The interface of 

sublimation (at z=Ldried) is assumed to be planar and the origin of the z axis is at the product 

top. 

During a pressure rise test, the heat fluxes at driedz L=  and at totz L=  are not equal, 

because of accumulation in the frozen layer, but in the beginning they are the same because of 

the pseudo-stationary hypothesis. Thanks to this assumption, the expression for the heat 

transfer coefficient, h , can be derived by equating the boundary conditions (3) and (4) at 

0t t= : 
( )

-1
,0 froz

sub froz
ice ,0

S i

w
p

T T Lh H kp p
R

−⎡ ⎤
= −⎢ ⎥∆
⎢ ⎥−
⎢ ⎥⎣ ⎦

       (5) 

where froz tot driedL L L= − . To calculate the equilibrium vapour pressure, that is a function of the 

interface temperature, it has been used the equation proposed by Ref.[33], which is 

recommended by the World Meteorological Organization[34] and whose results are in good 

agreement with data reported by the International Association for the Properties of Steam[35] 

and with experimental data reported by Ref.[36] 

The dynamics of the water vapour pressure rise is described by the material balance 

equation for the vapour flowing into the chamber environment. The mass flow rate is 

expressed as a function of pressure driving force between the product interface and the 

chamber; thus, applying the ideal gas law, we have: 

( )sub gas
ice

w
w

DC w p

A RTdp p p
dt V M R

= −     (6) 

Finally, to calculate the total chamber pressure, the constant leakage in the drying chamber 

( leakF ) and the initial partial pressure of inert gases ( ,0inp ) has to be known: 

leak ,0DC w in w inP p p p F t p= + = + ⋅ +  for 0t t>    (7) 
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,0 ,00w DC int
p P p

=
= −  for 0t t>    (8) 

The actual thickness of the frozen layer is determined through a material balance 

written across the moving interface, which is solved together with the previous equations. 

Integrating the material balance at the interface between the previous and the current PRT, it 

follows: 

( ) ( )
( )

0

1
0

1
froz froz ice

ice dried

1 1t

w
pt

L L p p dt
Rρ ρ −

−= − −
− ∫      (9) 

Once the pressure rise curve has been acquired, the sublimation rate (at the time jt  during a 

PRT) can be calculated without using any model, but only evaluating the slope of the  

pressure rise curve[21, 37]: 

sub gasj
j

DC w w
w t t

t t

V M dpJ
A RT dt=

=

=  for 0t t>    (10) 

To calculate the first derivative of the pressure rise curve at jt t= , a natural cubic 

spline is used for fitting the experimental data and the first derivative of the interpolated 

function is approximated with the first derivative of the spline. Then, the flow rate of water 

vapour can be calculated, provided that the value of gasT  is known. If the temperature of the 

chamber gas is not available, it can be substituted with the value of the product temperature at 

the moving front, usually committing a small error.[21] 

Combining Equations (6) and (10), the resistance to mass transfer can be expressed as 

a function of the initial slope of the curve of pressure rise, gasT  and iT , as shown in the 

following: 

( )
0

1

sub gas
ice ,0

w
p w

DC w t t

A RT dpR p p
V M dt

−

=

⎛ ⎞⎛ ⎞
⎜ ⎟= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

   (11) 

According to Equation (11), once the pressure rise curve has been acquired and its initial 

slope has been calculated, the value of pR  depends only on ,0iT . Hence, if the value of the 

front temperature is somehow estimated, the value of pR  is known. Thus ,0iT  is the only 

model parameter that must be estimated for interpreting the pressure response. The steps of 

the optimization procedure are summarized below: 

(1) initial guess of ,0iT ; 

(2) calculation of the first derivative of the pressure rise curve at 0t t=  and, then, of pR  
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using Equation (11); 

(3) calculation of frozL  according to Equation (9); 

(4) determination of the effective overall heat transfer coefficient h  and of the initial 

temperature profile using Equation (2) and (5); 

(5) integration of the system of algebraic and differential equations that describes the 

pressure rise in the interval ( 0t , ft ), thus calculating DCP ; 

(6) determination of the optimal value of ,0iT  that best fits the simulated chamber pressure 

and the measured values. 

 
 
DPE++ algorithm 

 

To monitor the primary drying phase in presence of high radiation, the mathematical model 

used to describe process dynamics during a pressure rise test has to account for the radiant 

energy coming from the upper shelf and the heat accumulation in the dried layer. For this 

purpose, the mathematical model has to include the energy balance equation for the dried 

layer, besides the balance for the frozen product (see Equations (1) and (4)). 

The dried layer (that is comprised of the solid product and gas flowing through it) is 

considered as a pseudo-homogenous system and is described by effective properties that 

account for the contribution of the two phases. The evolution of product temperature along 

the dried layer ( driedT ) is, thus, described by the following equations: 

2
,gasdried,dried dried dried

2
dried, ,dried, dried, ,dried,

p we

e p e e p e

c JkT T T
t c z c zρ ρ

∂ ∂ ∂
= −

∂ ∂ ∂
 for 0 dried, 0t t z L> ≤ ≤    (12) 

,gas

dried,e,gas
dried dried,00 0

dried,

1
p wc J

z
kp w

t z
e

c J
T T z e

k= =

⎛ ⎞
= × − ×⎜ ⎟⎜ ⎟

⎝ ⎠
 for dried0 z L≤ ≤    (13) 

( )44dried
dried, dried 0

0
e S z

z

Tk F T T
z

σε
=

=

∂
− = −

∂
 for 0 , 0t t z≥ =    (14) 

( )
dried dried

froz dried sub
froz dried, icee w

pz L z L

T T Hk k p p
z z R

= =

∂ ∂ ∆
− = −

∂ ∂
 for 0 dried,t t z L≥ =    (15) 

To get Equation (12), we have assumed that the gas flow rate along the dried layer is constant 

and equal to wJ . Equation (13), instead, is obtained by Equation (12) assuming steady-state 

conditions. In addition, the initial condition of Equation (2) and the boundary condition of 



 
 

9

Equation (3) have to be modified: 

( ) ( )44sub
froz ,0 ice,0 ,0 dried,00 0

froz
i w St z

p

HzT T p p F T T
k R

σε
= =

⎡ ⎤∆
= + − − −⎢ ⎥

⎢ ⎥⎣ ⎦
 

 for dried totL z L< ≤    (16) 

( ) ( )
dried

44froz sub
froz ice dried,0 0i w S z

pz L

T Hk p T p F T T
z R

σε
=

=

∂ ∆ ⎡ ⎤= − − −⎣ ⎦∂
 

 for 0 dried,t t z L≥ =    (17) 

Furthermore, Equation (5) that gives the overall heat transfer coefficient h , which compares 

in Equation (4), is substituted by: 

( )( ) ( )
-1

,0 froz
44sub froz

ice ,0 ,0 dried,0 0

S i

i w S z
p

T T Lh H kp T p F T T
R

σε
=

−⎡ ⎤
= −⎢ ⎥∆
⎢ ⎥− − −
⎢ ⎥⎣ ⎦

   (18) 

The transient pressure rise curve is still described by Equations (6), (7) and (8); however, in 

this case the model parameter that must be estimated for interpreting the pressure response is 

the product temperature at the top surface, that is 
0dried z

T
=

, thus the optimization procedure 

has to be modified as described in the following: 

(1) initial guess of dried 0z
T

=
; 

(2) calculation of the first derivative of the pressure rise curve at 0t t=  and of wJ  using 

Equation (10); 

(3) calculation of ,0iT  using Equations (13) and (16) and, then, of pR  using Equation (11); 

(4) calculation of frozL  according to Equation (9); 

(5) determination of the effective overall heat transfer coefficient h  using Equation (18); 

(6) integration of the system of algebraic and differential equations that describes the 

pressure rise in the interval ( 0t , ft ), thus calculating DCP ; 

(7) determination of the optimal value of dried 0z
T

=
 that best fits the simulated chamber 

pressure and the measured values. 
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Material and Methods 

 

Equipment and Instrumentation 

Results discussed in this paper have been obtained in a small-size industrial apparatus 

(LyoBeta 25TM by Telstar, Terrassa, Spain) with a chamber volume of 0.2 m3 and equipped 

with T-type miniature thermocouples (by Tersid S.p.A., Milano, Italy), capacitance (Baratron 

type 626A, by MKS Instruments, Andover, MA, USA) and thermal conductivity (Pirani type 

PSG-101-S, by Inficon, Bad Ragaz, Switzerland) gauges. The pressure in the drying chamber 

is regulated by bleeding of inert gas, whose flow rate is measured through a mass flow meter 

(type MB100, BY MKS Instruments, Andover, MA, USA). Of course, the controlled leakage 

valve is closed during a pressure rise test. The apparatus is equipped with LyoMonitor[17], a 

system that allows for process monitoring using various devices, and LyoDriver[11] for process 

control. 

 

Materials 

Experiments were carried out using aqueous solution of sucrose (Riedel de Haën) and lactose 

(Ardetfarma). All reagents were analytical grade and used as received. Solutions were 

prepared using ultra-pure water (Milli-Q RG, Millipore, Billerica, MA) and poured into 

stainless steel trays. A further test was carried out using pre-frozen bleached spinach samples 

pressed in cubes with a weight of about 60 g each. 

 

Experimental Planning 

In case of bulk freeze-drying of liquids, the freezing phase was carried out at 223 K for about 

5 h. During the primary drying phase, chamber pressure was reduced to 10 or 20 Pa, while a 

different value of shelf temperature ( ST ) was set for the various tests to study the 

effectiveness of DPE+ algorithms to monitor systems with a different contribution of the 

radiative heat coming from the upper shelf. Thus, the following tests were carried out: 

(1) Bulk freeze-drying of a liquid solution of sucrose (10% by weight) in case of moderate 

upper shelf radiation ( ST =253 K, DCP =20 Pa); 

(2) Bulk freeze-drying of a liquid solution of lactose (5% by weight) in case of stronger 

radiation ( ST =273 K, DCP =10 Pa); 

(3) Bulk freeze-drying of an IQF product (e.g. spinaches) in case of moderate upper shelf 

radiation ( ST =263 K, DCP =10 Pa). 
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Protocol of validation 

The adequacy of the model-based tool (DPE+) to monitor the dynamics of the product was 

tested considering the total drying time and product temperature response. In particular, the 

completion of the sublimation was determined monitoring the following process parameters: 

• The frozen layer thickness; 

• The product temperature that can be continuously monitored by thermocouples; 

• The composition of chamber gas that is estimated by comparison between pressure 

signals supplied by Baratron and Pirani sensors. 

On the other hand, the time evolution of the product temperature – at the bottom – predicted 

by DPE+ and DPE++ algorithms is validated upon comparison with experimental values 

obtained through miniature thermocouples, at least until their readings are reliable (as it will 

be discussed afterwards, the insertion of probes into the product can alter its drying kinetics). 

 

 

Results 

 

An example of freeze-drying cycle where the pressure rise technique, coupled with DPE+ 

algorithm, is used for monitoring the primary drying stage of a liquid (i.e. a 10% by weight 

sucrose solution) in trays is illustrated in Figure 2. The drying was carried out at constant 

chamber pressure and shelf temperature. Operating conditions were chosen so that the 

contribution of the radiative energy (coming from the upper shelf) is much smaller than the 

heat transferred by conduction from the lower shelf: approximately the radiant heat was 15% 

of the total heat transferred to the product. In particular, the drying was carried out at low ST  

(=253 K) and a relatively high value of DCP  (=20 Pa). 

The adequacy of the DPE+ method to describe the dynamics of the product was tested 

upon two process parameters: the product temperature at the container bottom and the 

duration of the primary drying. Concerning the former, DPE+ estimations were compared with 

values measured through various thermocouples, which were inserted into the product and in 

close contact with the bottom of the container. It must be remarked that DPE+ can estimate the 

entire temperature profile along the frozen layer; nevertheless, to facilitate the positioning of 

temperature sensors, the comparison between the product temperature estimated by DPE+ 

algorithm and measured by thermocouples is limited to the value observed at the container 

bottom. Figure 2 (upper graph) shows a good agreement between experimental measurements 
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and DPE+ estimations, at least until ice was still present nearby the probe. In fact, at the end of 

the primary drying product temperature sharply increases, because the heat supplied by the 

shelf is no longer used to sublimate ice, but to heat the product. Nevertheless, thermocouples 

can alter the process of nucleation and ice crystals growth in the zone around the sensor 

probe, which can be also responsible for an increased heat transfer, determining a lower 

resistance to vapour flow and, thus, a higher drying rate. It follows that, if the drying time is 

derived from the product temperature response, the result can be misleading.[24] A more 

reliable way to detect the completion of ice sublimation is monitoring the gas composition in 

the drying chamber, for example comparing the pressure reading obtained by a capacitance 

and a thermal conductivity manometer.[38] In fact, the concentration of water in the drying 

chamber becomes very low when the drying finishes, thus Pirani and Baratron sensors 

measure almost the same value of pressure and their ratio becomes equal to one. In this study, 

the completion of the sublimation was associated with the starting point of the decreasing part 

of the pressure ratio curve. In fact, the time required by the system to pass from high water 

content to only inert gas depends on the operating conditions considered and batch 

properties.[39-40] The consequence is that the evolution of chamber gas composition nearby the 

endpoint can vary with the cycle set-up, loading and product type. 

Beside product temperature, the DPE+ algorithm can also estimate the position of the 

moving front and, hence, the thickness of the frozen layer. This information can be used to 

estimate the end of the sublimation as the time at which frozL  is equal to zero. Figure 2 (lower 

graph) shows a good agreement between the drying time experimentally measured by 

pressure ratio and estimated by DPE+. Figure 2 also compares the values of BT  and frozL  vs. 

time estimated by DPE+ and DPE++ algorithms. As the cycle is carried out under moderate 

radiation from the environment, the outcomes of the two algorithms are in good agreement. 

Once it has been proved that DPE+ and DPE++ can reliably monitor the drying of 

liquids in bulk, the algorithms were used for monitoring the freeze-drying of IQF products. 

Even in this case, the operating conditions were chosen so that radiation from the upper shelf 

is not very relevant (about 15% of the total heat transferred to the product). Figure 3 shows 

the results that can be obtained in a freeze-drying cycle, wherein spinach samples were 

considered as test product. The operating conditions used for the primary drying phase are 

displayed in graph (a). The temperature of the product was measured – at various positions 

inside the sample, but always at the bottom of the product – through miniature thermocouples 

(see Figure 3, graph c) and regularly estimated through DPE+ and DPE++ algorithms. As far as 
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measurements obtained through thermocouples are concerned, a good agreement with 

DPE+/DPE++ predictions is obtained in terms of temperature at the bottom of the product 

cube. Nevertheless, it must be evidenced that temperature measurements can be considered 

reliable only in the first part of the drying (until 10 hours), then they suddenly increased up to 

the shelf value: this is an indication that ice surrounding the probe was sublimated. These data 

confirm that the portion of the product in contact with the temperature sensors underwent a 

faster drying kinetics. This behaviour might be due to the fact that the insertion of the sensor 

probe in pre-frozen product is quite invasive and can create preferential paths for the vapour 

flow. The evolution of pressure ratio is illustrated in graph (a). Graph (b) instead, displays the 

value of frozL  vs. time estimated by DPE+/DPE++ algorithm. As indicated by the change of the 

composition in the chamber (see pressure ratio curve in graph a), the sublimation step was 

completed after about 135 hours, and this was confirmed by pressure rise test results: the 

frozen layer thickness is, in fact, reduced to almost zero nearby such time. It is worth noticing 

that the very long drying time is a consequence of samples size and process conditions 

selected to reduce radiating effects. 

The last part of this study aims at investigating the performances of DPE+ algorithm to 

monitor a process in bulk, but in presence of different radiating contributions. Results 

obtained using DPE+ and DPE++ are also compared. 

As first attempt, we have used a detailed model of the process to predict the process 

dynamics, in case of bulk freeze-drying of liquids, when the drying is carried out using 

different values of shelf temperature. For this purpose, the detailed mathematical model 

proposed by Ref.[41] has been used; the mono-dimensional one, without the effect of the 

container wall, is well suited for the case of bulk freeze-drying of liquids in trays. In this 

manner, we can study the effectiveness of DPE+ tool to monitor the drying when different 

contributions of the upper shelf radiation to the heat balance are involved, without introducing 

other sources of variability. Regular pressure rise curves (one every 30 minutes) were also 

simulated and a sampling frequency of 10 Hz is assumed. The case study that is analyzed is 

the freeze-drying of a generic solution (10% by weight solute content), processed in a metal 

tray with an internal diameter of 229 mm ( totL =10.3 mm, DCP =10 Pa and DCV =0.175 m3). 

The product structure is assumed to be homogeneous (constant porosity along the dried layer 

and no crust formation), thus a linear dependence of pR  upon the thickness of the dried layer 

can be used. Side-radiation coming from chamber walls is not considered, so the role of only 

upper shelf radiation on DPE+ performances can be better investigated. 
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An example of product dynamics that can be obtained considering two different 

temperatures of the heating shelves is given in Figure 4 and 5. Figure 4 compares the system 

dynamics – in terms of product temperature and front position – simulated by the detailed 

model and estimated by DPE+ algorithm in case of moderate product heating ( ST =243 K). It 

can be observed that DPE+ can accurately estimate both the temperature at the interface and at 

the product bottom, as well as the state of progress of the drying. 

When the product is processed at a higher temperature of the shelf (see Figure 5), 

DPE+ algorithm accounts for the higher heat flux due to radiation by considering an effective 

heat transfer coefficient and, thus, overestimated the parameter h : the estimated value was 20 

W m-2 K-1, while the value used to carry out the simulation was 15 W m-2 K-1. Besides that, 

the algorithm slightly underestimated the temperature of the frozen product. Nevertheless, 

even if the contribution of the radiating heat from the upper shelf is much more significant, 

DPE+ can still estimate satisfactorily the duration of the drying (see Figure 5). It follows that 

DPE+ algorithm can effectively be used to monitor the state of progress of the drying even in 

presence of a high radiating heat from the upper shelf, conditions that are common in food 

processing, but caution must be paid on the estimation of all the other parameters, e.g. the 

temperature of the frozen product. 

It must be remarked that if the heat is mainly transferred by radiating the product from 

the upper shelf, the temperature profile along the product might be reversed: the temperature 

at the moving interface is higher than that at the bottom because of heat accumulation in the 

dried layer. In such conditions, it is fundamental including the enthalpy balance of the dried 

cake in the formulation of the algorithm. Figure 6 shows an example of results that can be 

obtained in case the heat is mainly transferred by radiation from the upper shelf. Such results 

have been obtained assuming a very high resistance to heat transfer at product bottom. In this 

case, as expected, the product temperature along the frozen layer is reversed: the value of 

temperature is higher at the interface than at the bottom (see graph b). However, even if DPE+ 

significantly underestimates the product temperature (see graph c), it can be still used for 

monitoring the state of progress of the sublimation: a good agreement between the drying 

time estimated by DPE+ algorithm and calculated by the model can be observed (see graph a). 

In fact, the calculation of the mass flow rate of water vapour is obtained from the initial slope 

of the pressure rise curve, thus is less affected by model assumptions concerning the enthalpy 

balance. Furthermore, even if its calculation involves the DPE+ estimation of iT  (see 

Equation (11)), a large uncertainty upon the product temperature (e.g. 10 K) has a small effect 
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on the final value of wJ  (<5%). In this case, to get a reliable and effective estimation of the 

product temperature, DPE++ algorithm has to be used: in graphs (a) and (c), a good agreement 

between model predictions and DPE++ estimations, in terms of position and temperature of the 

moving interface, can be observed for the entire primary drying phase. 

A final issue concerns the role of side-walls radiation. It can affect the heat flux to the 

samples, increase the sublimation rate and hence modify the temperature profile along the 

frozen layer, which cannot be assumed linear anymore; the direct consequence of this is the 

reduction of the sublimating area towards the end of the main drying stage. Despite that, if 

radiating heat is limited, also in this case it can be accounted for by simply defining an 

effective heat transfer coefficient[22] and, since only a small fraction of product is radiated, 

which is the part located laterally, DPE+ algorithm can compensate this lack of the model 

estimating an average state of the system. On the contrary, if the radiating heat is significant, 

deviations in temperature profile become relevant and DPE+ results might be not 

representative of the real product dynamics. 

It follows that if heat is mainly transferred by radiation, whichever is the source, DPE+ 

cannot predict correctly the temperature of the product, and a more complex model that also 

takes into account heat accumulation in the dried layer must be used. Figure 7 shows an 

example of freeze-drying cycle where the pressure rise technique, coupled with DPE+/DPE++ 

algorithms, is used for monitoring the primary drying stage of a liquid in trays (i.e. a 10% by 

weight lactose solution) in case the contribution of radiative energy coming from the upper 

shelf ( ST =273 K) is much more relevant (about 30% of the total heat transferred to the 

product). The temperature of the product estimated by pressure rise technique and measured 

through thermocouples is displayed in graph a. As a further confirmation of previous 

discussion based on model simulations, DPE+ algorithm did not estimate correctly the value 

of BT . On the contrary, the estimation of product temperature obtained by DPE++ algorithm, 

which is based on a mathematical model accounting for radiant energy coming from the upper 

shelf and heat accumulation in the dried layer, fairly agreed with experimental evidences. 

Unfortunately, thermocouples allows monitoring only the product temperature in a fixed 

point, usually at the bottom or at the centre of the sample, while the temperature profile along 

the entire frozen layer is not given. In some cases, in particular when the radiation from the 

upper shelf is very relevant, the temperature of the product is higher at the moving front, not 

at the bottom as typically happens when heat is supplied only through the shelf. In this case 

information supplied by thermocouples is not exhaustive since the position of the sublimation 
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front changes during the drying and hence thermocouples cannot measure its temperature. 

However, it is worth restating that, unlike product temperature estimation, both algorithms 

could predict correctly the evolution of wJ  vs. time (see Figure 7, lower graph). In particular, 

in correspondence of the primary drying end-point, that was detected by pressure ratio 

analysis, the value of vapour flow estimated by pressure rise technique tends to zero. 

 

 

Conclusions 

 

The feasibility of using the DPE+ algorithm for monitoring the sublimation step of a freeze-

drying cycle applied to liquids or IQF products in trays has been discussed. In particular, it 

has been proved that the pressure rise technique, coupled with DPE+ algorithm, can be 

effectively used for monitoring both the product temperature and the state of progress of the 

drying only if the radiant energy coming from the upper shelf is limited. However, it has been 

observed that, even in presence of significant radiation from the upper shelf, DPE+ can be still 

used to evaluate the mass flow rate of water vapour and hence the completion of the 

sublimation step. 

In case the PRT technique is used for monitoring the primary drying phase in presence 

of high radiation, the model used has to account for the radiant energy coming from the upper 

shelf and the heat accumulation in the dried layer. For this purpose, a modified algorithm to 

interpret the pressure rise curve, that is DPE++ algorithm, has been here proposed and 

validated. It has been proven that DPE++ can be effectively used for monitoring the bulk 

freeze-drying of foodstuff even in case the radiant heat coming from the upper shelf is 

relevant. However, in this work all the tests were carried out in trays loaded on heating 

shelves, where the heat is mainly transferred by conduction from the lower shelf. On the 

contrary, the case wherein the heat transferred by radiation is predominant (e.g. let consider 

the case wherein the tray is suspended between the lower and upper shelves) needs a further 

investigation. 

It must be said that it is not possible to identify a cutoff value over which DPE+ results 

are misleading. Nevertheless, in this study it has been observed that DPE+ algorithm can 

effectively monitor the product temperature if the radiative heat contribution is lower than 

15% of the total heat transferred to the product. Beyond this limit, the estimation of product 

temperature worsen, as the fraction of heat transferred by radiation increases, and the use 
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DPE++ algorithm is strongly recommended. 

Finally, it must be remarked that the pressure rise technique is suitable for monitoring 

the food manufacturing in batch; in case the production plant is continuous, the process might 

be monitored by software sensors – similar to those developed for freeze-drying of liquids in 

vials – eventually coupled with wireless temperature sensors. 
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Nomenclature 

 
subA  sublimation area, m2 

pc  specific heat, J kg-1K-1 

F  view factor for radiative heat transfer 

leakF  leakage rate, Pa s-1 

h  heat transfer coefficient from the shelf to the product, W m-2 K-1 

subH∆  heat of sublimation, J kg-1 

J  sublimation flux, kg s-1 m-2 

k  thermal conductivity, W m-1 K-1 

L  product thickness, m 

wM  molar mass of water, kg kmol-1 

p  partial pressure inside the drying chamber, Pa 

icep  vapour pressure at the sublimation interface, Pa 

DCP  total pressure inside the drying chamber, Pa 

R  ideal gas constant, J K-1 mol-1 

pR  mass transfer resistance in dried layer, m s-1 

t  time, s 

T  temperature, K 

DCV  volume of the drying chamber, m3 

z  axial coordinate, m 

 

Greek letters 

ε  emissivity 

ρ  mass density, kg m-3 

σ  Boltzmann constant, W m-2K-4 

 

Subscripts and superscripts 

0  at the beginning of the PRT 

( )1−  PRT before the current one 

B  at product bottom 
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dried  dried layer 

e  effective 

f  at the end of the PRT 

froz  frozen layer 

gas  chamber gas 

i  at moving front position 

in  inert gas 

S  heating shelf 

tot  total 

w  water vapour 

 

Abbreviations 

DPE Dynamic Parameters Estimation 

IQF Individually Quick Frozen products 

PRT Pressure Rise Technique 
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List of Figures 

 

Figure 1. Sketch of a freeze-drying process during the sublimation phase. 

 

Figure 2. Freeze-drying of a sucrose solution (10% by weight) carried out in bulk, in a 

circular metal tray ( froz,0L =10.3 mm). (Upper graph): product temperature measured by some 

thermocouples (dashed line) and estimated by pressure rise technique coupled with DPE+ (○) 

and DPE++ algorithm (×). The temperature of the heating shelf (solid line) and Pirani-Baratron 

pressure ratio (solid line, right-side axis) are also displayed. (Lower graph) Estimations of the 

frozen layer thickness obtained by PRT technique. The completion of sublimation is also 

evidenced (vertical dashed line). 

 

Figure 3. Freeze-drying of spinaches: cycle run using 32 samples having an almost cubic 

shape, with a side of 44 mm, and a total weight of 1.935 kg. (Graph a): time evolution of shelf 

temperature (solid line), pressure ratio and product temperature estimated by pressure rise 

technique coupled with DPE+ (○) and DPE++ algorithm (×). (Graph b) Estimations of the 

frozen layer thickness obtained by PRT technique. (Graph c) Temperature evolution of the 

shelf (solid line) and product measured by thermocouples (dashed line) and estimated by 

pressure rise technique (symbols). The completion of sublimation is also displayed (vertical 

dashed line). 

 

Figure 4. Example of application of DPE+ algorithm for monitoring the freeze-drying of 

liquids in bulk. The primary drying phase is carried out at DCP =10 Pa and ST =243 K. (Upper 

graph): time evolution of iT  calculated by the detailed model (solid line) and estimated 

through DPE+ algorithm (○); BT : calculated by detailed model (dashed line) and estimated by 

DPE+ (▲). (Lower graph) frozen layer thickness estimated through DPE+ algorithm (○) and 

given by the model (solid line). 

 

Figure 5. Example of application of DPE+ algorithm for monitoring the freeze-drying of 

liquids in bulk. The primary drying phase is carried out at DCP =10 Pa and ST =303 K. (Upper 

graph): time evolution of iT  calculated by the detailed model (solid line) and estimated 

through DPE+ algorithm (○); BT : calculated by detailed model (dashed line) and estimated by 
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DPE+ (▲). (Lower graph): frozen layer thickness estimated through DPE+ algorithm (○) and 

given by the model (solid line). 

 

Figure 6. Example of application of DPE+ algorithm to monitor the freeze-drying of liquids in 

bulk in case the heat is mainly transferred by radiation. (Graph a): frozen layer thickness 

estimated by DPE+ algorithm (○) and calculated by the model (solid line). (Graph b): product 

temperature profile calculated by the model after 5 hours of drying. (Graph c): interface 

temperature calculated by the detailed model (solid line) and estimated through DPE+ 

algorithm (○). Results obtained by DPE++ algorithm (×) are also displayed in graph (a) and 

(c). 

 

Figure 7. Bulk freeze-drying of a lactose solution (5% by weight) carried out in metal trays 

( froz,0L =26 mm) at ST =273 K and DCP =10 Pa. (Upper graph): product temperature measured 

by thermocouples (dashed line) and estimated by pressure rise technique coupled with DPE+ 

(○) and DPE++ algorithm (×). The temperature of the heating shelf and Pirani-Baratron 

pressure ratio are also displayed. (Lower graph): Estimations of the frozen layer thickness 

obtained by PRT technique. The completion of sublimation is also evidenced (vertical dashed 

line). 
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