
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Functional Verification of DMA Controllers / Grosso, Michelangelo; Perez, H. W. J.; Ravotto, Danilo; SANCHEZ
SANCHEZ, EDGAR ERNESTO; SONZA REORDA, Matteo; Tonda, ALBERTO PAOLO; Velasco Medina, J.. - In:
JOURNAL OF ELECTRONIC TESTING. - ISSN 0923-8174. - STAMPA. - 27:4(2011), pp. 505-516. [10.1007/s10836-
011-5219-6]

Original

Functional Verification of DMA Controllers

Publisher:

Published
DOI:10.1007/s10836-011-5219-6

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2413924 since:

Springer

Functional Verification of DMA Controllers

Michelangelo Grosso & Wilson Javier Perez Holguin & Danilo Ravotto &

Ernesto Sanchez & Matteo Sonza Reorda & Alberto Tonda & Jaime Velasco Medina

Abstract Today’s SoCs are composed of a wide variety of
modules, such as microprocessor cores, memories, periph-
erals, and customized blocks directly related to the targeted
application. To effectively perform simulation-based design
verification of peripheral cores, it is necessary to stimulate

the description in a broad range of behavior possibilities,
checking the produced results. Different strategies for
generating suitable stimuli have been proposed by the
research community to functionally verify these modules
and their interconnection when embedded in a SoC:
however, their verification often remains a largely
manual and unstructured operation. In this paper we
describe a general approach to develop concise and
effective sets of inputs by modeling the configuration
modes of a peripheral with a graph, and creating paths
able to cover all of its nodes: proper stimuli for the
device are then directly derived from the paths. The
resulting inputs sequences are aimed at design verifica-
tion of system peripherals such as DMA controllers, and
can be applied via simulation by means of dedicated
testbenches or by setting up an environment including a
processor, which executes a proper test priogram. In the
latter case, the developed programs can be exploited in
later stages for testing, by adding suitable observability
features. Experimental results demonstrating the method
effectiveness are reported.

Keywords Design verification . Test program .

Set stimuli generation . DMA Controller

1 Introduction

Most Systems on Chip (SoCs) integrate at least one
processor core, some peripheral devices, different logic
modules, and a variable number of memory cores.
Although the SoC design paradigm may simplify the
design phase, it also increases the complexity of the
validation, verification and testing (VV&T) process, by
combining modules from different sources, design styles,
and test characteristics.

M. Grosso :D. Ravotto : E. Sanchez (*) :M. S. Reorda :
A. Tonda
Dipartimento di Informatica e Automatica, Politecnico di Torino,
Torino, Italy
e-mail: ernesto.sanchez@polito.it

M. Grosso
e-mail: michelangelo.grosso@polito.it

D. Ravotto
e-mail: danilo.ravotto@polito.it

M. S. Reorda
e-mail: matteo.sonzareorda@polito.it

A. Tonda
e-mail: alberto.tonda@polito.it

W. J. Perez Holguin : J. V. Medina
Bionanoelectronics Group, Universidad del Valle Cali,
Cali, Colombia

W. J. Perez Holguin
e-mail: wjperezh@univalle.edu.co

W. J. Perez Holguin
e-mail: wilson.perez@uptc.edu.co

J. V. Medina
e-mail: jvelasco@univalle.edu.co

W. J. Perez Holguin
GIRA Group, Universidad Pedagógica y Tecnológica
de Colombia,
Sogamoso, Colombia

1

Responsible Editor: F. Vargas

Until now, the research community has devoted
considerable efforts to VV&T processes for processors,
while integrated peripherals have been less investigated.
Naturally, processor cores have focused the research
attention due to their area occupation and their primary
role in computation and management tasks within the
SoC. However, it must be noted that the increasing
number and complexity of embedded peripherals strongly
characterizes most of the current SoCs.

In general, design verification is the process of verifying
that all modeled behaviors of a design are consistent with a
reference model. The reference model may represent a set
of properties that the system needs to fulfill, and usually it
is described at a higher abstraction level [14]. In synthesis,
verification is defined as the process that aims at guaran-
teeing the correct translation of the model delivered at a
certain abstraction level to its successive, less abstract,
model.

Design verification methodologies have been developed
in a broad spectrum, ranging from manual verification to
formal verification techniques, and including, for example,
random and semi-random approaches. Formal verification
uses mathematical techniques to prove the correctness of
the design, but it frequently involves counting on enormous
computational resources [8], even for some simplified
models. On the other hand, despite the simulation-based
methods can never guarantee the complete conformance to
specification of formal methods, they are widely used due
to the reasonable amount of computational resources
required, the grade of details of the circuit behavior that
can be simulated and their potential to detect and diagnose
design and implementation errors in different stages of the
device VV&T processes [8, 16].

In the simulation-based context, it is possible to state that
a verifying strategy implies to follow a simulation-based
procedure in which input data (called set of stimuli) are
applied to a model of the device under evaluation (called
device under test or DUT). Subsequently, the observed and
expected behaviors are compared by means of a response
checker that generates pass/fail information regarding the
outcome of the comparison [16].

Simulation-based methodologies aim at uncovering
design errors by thoroughly exciting the current model of
the circuit using suitable sets of stimuli [16], which can be
randomly, manually or automatically generated. In any
case, the objective is to fully excite all functions of the
DUT by employing a reduced number of appropriate
stimuli. This issue is a crucial point of the whole
methodology, since it strongly affects the cost of the
whole VV&T process, and because the simulation of an
exhaustive set of stimuli is generally far too expensive
[8]. However, determining the appropriate stimuli set
is a problem-dependent and non-trivial task.

In order to quantify the verification progress, it is
possible to determine the quality of the stimuli set by
measuring the coverage obtained by the stimuli on the
DUT. Usually, code coverage metrics, as detailed in [20],
represent a good indicator of the stimuli set goodness.
These metrics [13] can be classified as
implicit, i f i n h e r e n t in the representation of the
abstraction level from which the metric is taken, as in
Register-Transfer Level (RTL) code coverage, or explicit,
if defined by the verification engineer. Another
classification can be introduced on the metric source,
which can relate to implementation or specification.

Once a suitable set of stimuli has been obtained, the test
set can be applied to the device through a testbench: this
term usually refers to simulation code used to feed a
predetermined input sequence to a design and to observe
the response [4]. A testbench is commonly described using
some Hardware Description Language (HDL) or Hardware
Verification Language (HVL), but it may also include
external data files or routines.

When dealing with peripherals designed to heavily
interact with a processor, a common practice consists in
creating a simulation environment modeling a small
system, often including a processor and a memory, besides
the target peripheral: in this case the testbench includes
specially crafted programs that, when executed by the
processor, produce the desired stimuli at the inputs of the
DUT. In this way the readability of the testbench is
increased, while the cost for creating and debugging it is
reduced, since it is not necessary to create from scratch a
dedicated testbench able to handle communication proto-
cols. Additionally, when peripherals are included into a
SoC, the correct connection and interaction between
different modules must be verified as well; thus, some
parts of the mentioned test programs could also be re-used
to cope with these purposes. This approach shares many
similarities with the technique known as Software-Based
Self-Test or SBST [15], whose key idea is to exploit on-chip
programmable resources to run test programs that suitably
stimulate the processor itself and/or other devices accessible
by it. A verification program for system peripherals may
also constitute an effective starting point for developing a
manufacturing test suite in later development phases: as a
matter of fact, testbench-like stimuli cannot in general be
easily applied to the input/output ports of a deeply
embedded core.

This paper aims at providing verification engineers with
a structured approach to generate stimuli for the verification
of DMA controllers. This type of peripherals, called system
peripherals, are in charge of providing system services, in
contrast with peripherals devoted to communications
services, called I/O peripherals. The group also includes
the interrupt controllers, and timers, for example.

2

In particular, this paper presents a method for the
generation of suitable stimuli able to thoroughly excite the
different functionalities implemented by a typical DMA
controller, starting from its functional description, only. The
effectiveness of the generated stimuli can be evaluated
using code or functional coverage metrics on the available
device description. The resulting stimuli can be effectively
used for the validation and verification of the core design,
and later, they may represent an effective starting point for
the development of a manufacturing test set. When
compared to other approaches like [18], it is interesting to
notice that the proposed methodology does not need a HDL
description of the device or an abstraction procedure, which
may cause loss of information. Additionally, the proposed
methodology performs better than [11] due to improve-
ments in one of the involved algorithms.

The rest of the paper is organized as follows: Section 2
provides some significant background material in the area
of peripheral verification, as well as on the metrics used for
evaluating the effectiveness of generated stimuli, and
outlines the main features of typical DMA controllers.
Section 3 describes the method that we propose for
generating proper stimuli for DMA controller verification.
A case study is presented in Section 4, whereas Section 5
reports some preliminary experimental results gathered on a
representative test case. Finally, Section 6 draws some
conclusions, and summarizes future research activities in
the area.

2 Peripheral Verification and Test

2.1 Background

As the design complexity of single cores and whole SoCs
increases, activities of logic inspection and verification are
becoming more and more difficult, especially the latter,
which is often regarded as a major bottleneck in the whole
design cycle [21]. Because of the broad application of
Intellectual Property (IP), the increasing work efficiency of
IP core simulation and verification will obviously reduce
design risk and complexity. In this context, functional
verification is applied to determine whether the design
respects the initial specifications.

Functional verification can be accomplished using three
complementary approaches: black-box, white-box, and
grey-box methods [4]. Black-box verification does not
depend on the specific implementation of the DUT, but it
makes it difficult to control and observe specific features. A
white-box approach has full visibility and controllability of
the internal structure of the design being verified: it lets
verification engineers configure test inputs rapidly and
efficiently isolate functions, but it has poor portability and

the design needs to be described in great detail. Grey-box is
a hybrid method which controls and observes a design
through its top-level interfaces, but it is meant to excite
implementation-specific features.

In order to precisely excite parts of a SoC, suitable and
compact stimuli sets must be devised. In literature, several
approaches have been proposed to reach this objective. In
[17], for example, Rosenberg presents a manual stimuli
generation technique based on coverage analysis, where the
testbench completeness is achieved by the identification of
the less stimulated coverage aspects and, then, indicating
the manner of changing the stimuli generation pattern.
An automated approach is presented by Bose et al. in [6],
where a genetic algorithm automatically generates biases
which are then used for a biased random instruction
generator applied to a PowerPC. Braun et al. show
that even Bayesian networks and data mining techniques
can be used to improve direct random simulation with an
automatic feedback loop [7], reaching interesting results.

A suitable set of stimuli needs not only to
be comprehensive enough, but its execution length has to
be taken into account as well. In [19], Strum et al.
compare two testbench techniques, and use filtering of
redundant stimuli to reduce testbench execution times.

It is interesting to note that most of the available works
developed by the research community on VV&T issues
mainly tackle processor cores. These methodologies often
resort to functional approaches based on exercising
specific functions and resources of the processor [18].
Verification stimuli generation for embedded processors is
also tackled by SBST techniques, where the processor is
stimulated by making itself run specifically generated
verification programs. In [15] Psarakis et al. present a
comprehensive study about the potential role of software-
b a s e d s e l f - t e s t i n g i n t h e m i croprocessor
VV&T process, as well as its supplementary role in other
classic functional-and structural-test methods.
Additionally, the authors propose a well structured
taxonomy for different SBST methodologies according
to their test program develop-ment philosophy.

Concerning system peripherals, Dushina et al. [18]
introduce a semi-formal based methodology to generate
test sets targeting corner cases of the device under test. The
device is modeled in a simplified manner and translated
into a Finite State Machine (FSM). Each FSM state
corresponds to a combination of the coverage variables.
Then, a set of abstract tests containing a sequence of states
for every case is obtained via a coverage-driven test
generator. Finally, every single abstract sequence of states
is translated to the real test set. This methodology was used
for the verification of a DMA controller embedded in a
RISC-based microcontroller, achieving about 87% of
statement coverage and 75% of branch coverage.

3

Two newer approaches were presented in [11] and [12]
by Grosso et al. aimed to system peripherals verification
and test. These works propose a method to develop
functional tests for DMA controllers, and form the basis
for the approach presented herein. Some preliminary
experimental results for an 8237-compliant DMA controller
core were reported to demonstrate the method effectiveness.

Other approaches can be found in literature related to
VV&T issues for I/O peripherals. For example, Bolzani et
al. in [5] propose a fully automated methodology for the
generation of test programs for peripheral cores (PIA,
UART) embedded in a SoC. The methodology is based on
the exploitation of the correlation between high-level
metrics (Toggle, Expression, Condition, Branch and
Statement) and the gate-level fault coverage. Apostolakis
et al. [3] present a generic deterministic flow for the
application of processor-based testing to communication
peripheral cores. In this approach, the test sets for the
individual subcomponents of the communication
peripheral core are pre-computed and pre-generated. In [2]
the authors propose a combination of the approaches
presented in [5] and [3] and define a new automatic
methodology that has been evaluated on a SoC with three
popular communication peripherals such as UART,
HDLC and Ethernet. In these cases, the verification
stimuli are often applied by simulating a complete system
including the DUT.
2.2 Test Generation and Coverage Metrics

Coverage metrics were firstly defined in software testing as
the measure of how thoroughly exercised a given piece of
code is by a test set; this goal can be achieved by
quantifying the capacity of a given set of input stimuli to
activate specific features of the model [10]. Similarly,
borrowing the idea from software testing [20], it is possible
to state that the adequacy of a set of stimuli can be
measured using well defined coverage metrics (e.g., the
percentage of statements in the circuit description which are
activated during the testbench simulation, or statement
coverage) when dealing with digital circuit validation,
verification or testing procedures. In addition, if the
coverage metrics are employed in a generation process,
the collected information can be exploited as a useful test
criterion [14].

The selection of the most suitable coverage metric to be
used for evaluating the outcome of the generation process
depends on the characteristics of the considered model.
Both code coverage and functional metrics, defined below,
can be used for this purpose:

▪ Code coverage metrics derive directly from metrics used
in software testing. These metrics identify which code
structures belonging to the circuit design described in

HDL are exercised by the set of stimuli, and whether the
control flow graph corresponding to the code description
is thoroughly traversed. The structures exploited by code
coverage metrics range from a single line of code to if-
then-else constructs.

▪ Functional coverage metrics target design functionalities
during the validation, verification and test processes. These
metrics correspond to a set of specific operative modes that
exercise the design in well defined or restricted situations,
guaranteeing that the design under evaluation complies
with the design functionalities as described in the
specifications. Often, the functionalities to be covered are
summarized in a check table.

2.3 Direct Memory Access Controller Description

A Direct Memory Access (DMA) Controller, or DMAC, is
designed to allow large blocks of data being transferred
between memory and peripherals (or between two memo-
ries) without the intervention of the microprocessor. Once
the DMA registers are programmed by the processor, a
transfer can be started in order to either relocate data from a
memory location to another or write data to/from a
peripheral depending on the application requirements. The
inclusion of a DMAC into a system reduces the micropro-
cessor workload, since different devices are able to transfer
data without requiring the microprocessor’s intervention.
During data transfers, the microprocessor is allowed to
perform other tasks; sometimes, the data transfer is also
faster when executed by a DMAC.

Although their size is normally not huge, DMACs may
exhibit a significant complexity. Features supported by
DMACs include, among others: different data transfer
modes, management of several peripheral channels, pro-
grammable arbitration mechanisms to manage multiple data
transfers. In fact, the latter point is particularly difficult to
handle, since it requires taking into account several specific
situations, coming from different arbitration mechanisms
and different sequences of DMA requests from peripherals.

Figure 1 sketches the architecture of a generic DMAC.
Roughly speaking, a multichannel DMAC is composed of a
set of configuration and status registers, a set of transfer
channels, a priority arbiter, and a DMA engine which
includes a state machine and a logic block. The configuration
registers provide the whole device with the operation settings,
including the necessary information to properly perform all
the DMA operations. Configuration and status registers can
be accessed by the processor through a system bus. Depend-
ing on the application, it is possible to activate a micropro-
cessor interrupt at the end of a DMA channel transfer.

Every single channel counts on a particular set of
registers that allow the channel to perform independent
data transfers. The elements involved in a data transfer are:

4

a source address, a destination address, the number and
dimension of the data words to transfer, and finally, the
transmission mode selected.

Making use of the DMA arbiter it is possible to
implement different priority modes when different transfers
are required at the same time: two of the most commonly
adopted are fixed priority and round robin.

3 Proposed Approach

When tackling embedded system peripherals, devising a
stimuli generation technique based on a purely functional
approach is a non-trivial task. For instance, setting every
channel of a DMAC and checking its correct behavior in all
possible configurations would create a set of stimuli of
prohibitive dimensions. Furthermore, once the device is
configured, there is also a large number of possibilities for
the data and the dimension of the blocks to be transmitted.
While a good verification set for the device must be able to
thoroughly excite it, it should also contain a limited number
of configuration sets in order to be applicable in real
scenarios.

We propose a structured methodology for the develop-
ment of an effective and compact verification stimuli set for
system peripherals, focusing our attention mainly on DMA
controllers, based on the analysis of a high-level description
of the addressed devices, and providing an operative
strategy to verification engineers. Figure 2 reports a schema
of the approach that aims at reducing the complexity of the
produced verification set, guaranteeing at the same time its
ability to thoroughly excite the DUT. Coverage metrics are
collected at the end of the stimuli generation process, and
these are employed to assess the efficacy of the generated
stimuli set.

The first step of this methodology concerns the analysis
of the description of the peripheral core, and has two main
objectives: firstly, it allows to identify the main elements
devoted to the configuration of the device, e.g., the
configuration registers; and secondly, it leads to identify,
depending on the available description of the DUT, the
most suitable metrics to evaluate the completeness of the
generated stimuli set.

The second step is devoted to identify shared and
unshared resources within the peripheral under test. A
shared resource corresponds to some circuitry which is
exploited during the management and usage of different
channels, while an unshared one participates in the
elaboration related to a single channel, only. A shared
resource can be either control shared or elaboration shared:

▪ Control shared resources are mainly devoted to drive
and coordinate the operation of internal peripheral
modules;

▪ Elaboration shared resources perform specific tasks
during data elaboration, and are unique along the data
path. These modules may receive or send data to one of
a set of internal sub modules (unshared) that implement
an identical function.

Unshared resources, on the other hand, are mainly
involved in the data path as elaboration resources, and are
usually present as a set of different modules able to carry
out the same function described by the same HDL code,
often in order to introduce parallelism.

The labeling of resources as shared or unshared can be
easily performed on the basis of a high-level description of
the DUT. In Fig. 1, for example, the DMA timing & control
module would be labeled as elaboration shared because
every channel uses functionalities performed by it to
complete data transfers, while, on the other hand, the

AOUT

DBOUT

DBIN

AINPriority
Logic

Bus interface

Status, Command,
Mode, Mask, Request &

Temporary Registers

Timing
&

Control

State
Machine

Ch 3
Ch 2
Ch 1
Ch 0

Read/Write
Count & Address

Registers

Fig. 1 DMAC generic architecture

Start

Peripheral analysis

Identification of shared and
unshared resources

Configuration generation

Generation of verification
sequences for shared and

unshared resources

Logic simulation on the DUT

End

Fig. 2 Proposed methodology flow description

5

priority arbiter would be labeled as control shared, for its
control functions. In any case, it is enough to label both
modules as shared in order to complete the next steps of the
methodology. All channel modules, on the other hand, are
clearly unshared.

In the third step, all possible configurations of the DUT
are subsequently represented by a configuration graph: the
main goal of this graph is to provide the methodology with
a well organized structure that allows reducing the number
of configurations of the device whereas avoiding unneces-
sary replications. This step provides the user with a reduced
set of device configurations that is intended to support the
creation of verification stimuli sequences. The actual stimuli
generation is performed in the fourth step, considering for
every sequence the whole device configuration, as well as
special requirements for each configuration path.

Conceptually, the configuration graph is a directed
graph, whose nodes are grouped in levels, where all nodes
in the same level correspond to the same group of
configuration bits that control a certain functional charac-
teristic of some device resource; each node in a group
represents a value that the group can assume. An arc in the
graph from node A to node B that belong to two different
levels, exists iff the device can functionally be configured
assigning to the groups of configuration bits the values
represented by nodes A and B. Several consecutive levels
represent all possibilities in the configuration register of a
given resource. It is important to notice that a path in the
configuration graph can touch only one node in each level,
since nodes in each level represent mutually exclusive
configurations of a specific device resource. A valid path in
the graph starts at the first level and ends in the final one,
and represents a legal configuration setting for the device.
Figure 3 reports a schematic view of a configuration graph
of a shared module and two unshared modules. Nodes in
each level represent alternative settings of configuration
bits driving the same functionality: for example SM [14,
16] together set the device in three different modes,
because one of their possible configurations is prohibited.
Grey arrows show all possible arcs in the graph, while
black arrows identify a specific configuration path for the
device.

Reducing the number of considered paths is a priority
objective during stimuli generation, to avoid the explosion
of the number of configurations needed and consequently
the size of the stimuli set.

A first reduction of the configuration graph is performed
exploiting information gathered in the previous steps. The
maximum number of different configurations available for
the device can be determined by analyzing the configura-
tion registers: usually, the upper bound consists of 2n

possibilities, where n is the number of bits contained in all
the configuration registers. Not all the 2n configurations,

though, are actually useful or valid, and in some cases there
are incompatibilities to consider. Impossible configurations
do not appear in the configuration graph of the device, but
this reduction alone is usually not significant.

Labeling modules as shared and unshared is then used to
further reduce the number of paths needed to cover the
entire configuration graph: since sets of unshared modules
perform the same functions in the DUT, it is not necessary
to excite all configurations of all the shared and unshared
modules in a set with regards to the objective of maximizing
code coverage.

Theoretically, to verify all combinations of the DUT
configurations, at least each arc of the graph should be
covered by one path; experimental evidence, however,
suggests that it is sufficient to cover all nodes to obtain a
satisfactory coverage on the chosen metrics guaranteeing
the stimuli set capacity, as it will be shown in Section 5.
This constraint alone considerably reduces the number of
paths needed to thoroughly excite the device. An intuitive
reason to justify experimental data could be the following:
consider two independent options with two possible
settings each, for example priority (which can be either
fixed or rotating) and timing (which can be either normal or
compressed). Covering the nodes corresponding to each
setting generates two paths, while covering the arcs
between them creates four: since the two options are
independent, the latter approach originates two more paths
that do not provide any coverage information with respect
to the first two.

Shared Module

Unshared Module 1

Unshared Module 2

B
its

ofa
configuration

register
represented

in
each

level

Unused
configuration

SM[0]

SM[1,2]

SM[3]

UM1[0,1]

UM1[2]

UM2[0,1]

UM2[2]

Fig. 3 A sample path in a configuration graph. On the right, the bits
of the configuration register represented in each level are reported.
Grey arrows depict all the possible paths/configurations, while black
arrows illustrate a sample path/configuration. Corresponding nodes in
unshared modules are shown with the same shades of grey

6

Let us, for example, refer to Fig. 1: as stated above, the
priority logic is labeled as shared, while channel modules
are unshared. To exhaustively excite the DUT, it is
important to stimulate all configurations of the DMA
engine, but is not necessary to use every channel in every
priority logic configuration.

Once the aforementioned operations are carried out, a list
of configuration paths must be obtained, following a
suitable algorithm to efficiently visit the nodes. The goal
of the algorithm is to include each node of the graph in at
least one path while keeping the total number of paths as low
as possible. In addition, there could be both compulsory paths
specified by the verification engineers and prohibited
configurations inherent to the DUT.

Compulsory paths represent specific corner cases or
configurations with great relevance, which may correspond
to specific operative modes defined in functional coverage
metrics, and whose resulting behavior the verification
engineers desire to check. Thus, they are always included
in the list of paths, regardless of the algorithm used to visit
the nodes. For example, while tackling a DMAC, a
verification expert could be interested in performing a
memory-to-memory transfer while enabling the channel 0
address hold.

Prohibited configurations are expressed as rules that
prevent specific nodes in different levels from being part of
the same path, and they must be taken into account each
time the algorithm chooses a node included in one of those
rules. For example, if the memory-to-memory option is
enabled in the command register of a DMAC, the
compressed timing option cannot be activated, since the
memory bus cannot be used at the same time for reading
and writing.

Figure 4 outlines the algorithm exploited to identify
the set of configuration paths. In this algorithm, Pt is the
set of configuration paths, whereas p is the path under
construction.

Initially, all nodes in the graph are labeled as unvisited,
and every arc is tagged with a 0 weight. Compulsory paths
are firstly identified (line 1) by making use of graph
information gathered before; nodes belonging to them are
marked as visited.

Then, if there are still unvisited nodes in the graph, for
every available level in the graph, a node is selected, and

included in the current path. In order to correctly select
nodes that may be included in the current path p, the
function choose_node(graph) (line 5) evaluates prohibited
conditions, and updates nodes and arcs weights. If more
than one node is available in each level, the function
chooses one of the possibilities, taking into account graph
constraints and graph information. When compared to [11],
the current algorithm exploits weights associated to each
node to visit the graph more efficiently, reducing the
number of configuration paths needed to obtain better
coverage figures.

In the fourth step, the actual test algorithms are defined.
Such algorithms are based on the main functionalities of
each module that have to be identified:

▪ Firstly, shared modules are analyzed. For example, the
priority logic module is devoted to schedule different
channels transfer activity following the configuration
settings. However, as a shared device, the priority
arbiter performs its handling activities on the complete
set of DMA channels regardless of the specific mode of
operation of every one;

▪ Secondly, unshared modules are considered. For exam-
ple, the main activity of the hardware involved in every
channel module of the DMAC is to count a series of
words to transfer, in increasing or decreasing order,
bounded by the limits previously defined in the channel
internal registers. A counter can be thoroughly excited
quite easily, making it operate in increasing and
decreasing order alternatively. This directly descends
from the paths derived in the previous step.

The verification algorithms defined for unshared
modules may require specific restrictions regarding the
configuration of the complete device: not all tests devised
for an unshared module may be applied if a shared module
forces it to operate in a specific mode. Usually, however,
these test algorithms may be flexibly adapted to comply
with different global device configurations, as in the case
of the DMAC. Input stimuli sequences and expected
results are hence developed. Each stimuli sequence
originates from a path in the graph, and is composed of
a configuration part and an operation part. The former
directly descends from the configuration described in the
path, and mainly consists in writing configuration registers
of the addressed system peripheral. The latter part is aimed
at activating the device under verification with a suitable
set of data patterns, which must comply with the selected
configuration and must be vast and varied enough to
thoroughly excite the components. The operation part can
include data to be preloaded in memory models, values to
be written into registers and direct peripheral stimuli.
Since each configuration is given in specific terms through
the paths derived from the previous step, this task is

1 Pt compulsory_paths(graph);
2 If (unvisited_nodes)
3 p null;
4 foreach(level)
5 p choose_node(graph);
6 end;
7 Pt p;
8 endif;

Fig. 4 Paths compilation algorithm

7

relatively straightforward and easy to implement, relying
on the functional specification of the addressed device.

The peripheral stimuli are usually applied resorting to a
dedicated HDL testbench that applies the required logic
values to the input ports of the addressed module,
emulating suitable protocols, and checks the values pro-
duced on the output ports. In this case the input stimuli
sequence can be described using the constructs and
abstractions of the selected HDL or VDL. Alternatively,
programmable components belonging to a more complex
simulation environment can be used to drive the peripheral
ports similarly to what would happen during normal
operations once the peripheral core is embedded in a
system, at the expense of longer simulation time. In the
case of the DMA controller, a segment code or test program
can be written to be run by the system processor to interact
with the addressed module and perform the sequence of
operations as derived from the configurations and algo-
rithms defined in the previous steps.

In the fifth step (Fig. 2), a logic simulation is performed:
its aim is to assess the correctness of the generated stimuli
sequences and evaluate the coverage metrics selected in the
first step of the workflow. Code coverage figures are
usually made available by commercial HDL simulation
tools. Conversely, functional coverage metrics are usually
evaluated manually: the verification engineer checks in the
functional verification list if every one of the expected
operative modes is activated by the obtained stimuli set.
Interestingly, it is possible that a configuration path, derived
from the configuration graph, covers more than one of the
desired functionalities, for example when two channels are
configured at the same time in two different operation
modes.

At the end of the flow, if the results did not reach
satisfactory levels, a new test case could be generated by
taking into account previously discarded paths of the
configuration graph or inserting new compulsory paths that
cover the missing elements unveiled by coverage analysis. For
example, when considering functional coverage metrics, a
new compulsory path in the configuration graph can be set by
the verification engineer to activate a specific operating mode.
This need, however, never arose during the experiments
described in the next sections.

4 Case Study

In order to assess its effectiveness, the proposed approach
has been tested on the implementation of an 8237-
compliant DMA controller. The addressed module provides
four independently programmable transfer channels. DMA
requests can be activated via hardware or software. The
device allows to control memory-to-memory, memory-to-

peripheral and peripheral-to-memory data transfers, and
provides block memory initialization capability. Addition-
ally, it offers static read/write or handshake modes, and
includes direct bit set/reset capabilities.

Table 1 reports the main characteristics of the RTL
description of the DMA controller. The configuration of the
DMA controller channels is accomplished by setting each
of the bits in the mode register, partially depicted in Fig. 5.

To effectively visit the configuration graph, a weighted
pseudo-random algorithm is chosen to leverage non-
deterministic selection of the paths, following the indica-
tions given in the previous section. Each node is associated
with a weight which is initially set to 0 and incremented
each time the node becomes part of a path. While creating a
path in the configuration graph, a node will be visited if it
has the lowest weight value among all nodes in the same
level. If two or more nodes in the level share the same
value, the node will be chosen randomly with equal
probability among those with the lower weight value. The
algorithm takes into account both compulsory paths and
prohibited configurations.

The algorithm was implemented in about 350 lines of
Java code, while the configuration files describing available
configuration registers, compulsory path and prohibited
configurations were written in extended markup language
(XML) and, in this case, occupy about 4.73 KBytes of
memory.

The stimuli application phase has been put into practice
using two different approaches:

▪ In the first, a dedicated VHDL testbench has been
developed to directly apply the required set of stimuli to
the considered DMAC. The developed testbench, be-
sides the DUT, includes the behavioral description of a
memory core, and ad hoc functions that emulate the
peripheral communications that would take place in a
complete system.

▪ In the second, a verification environment has been setup,
where the DMAC has been integrated into a simple
microprocessor-based system, with the verification

DMAC

Files 22

Instances 38

VHDL code lines 3,600

Statements 2,144

Branches 628

Conditions 180

Fec conditions 250

Expressions 7

Fec expressions 10

Toggle nodes 746

Table 1 DMA controller
description at RT-Level

8

stimuli being applied by the microprocessor itself, while
the complete process is supported by other peripherals
interacting with the DMAC.

The system used in the second experiment is depicted in
Fig. 6. It contains an 8051 compatible IP core [1], a RAM
block, a program ROM, and other peripherals with DMA
transfer capability, labeled as P1-P4 in the same figure. To
connect the processor core to the system bus and provide
the DMA module with the proper bus control signals, a

simple logic module was interposed between the 8051
external memory port and the data bus. The module
includes the required three-state buffers and it filters
the addresses generated by the processor core, relying
on the fact that the employed processor outputs address
0×00000000 when not requiring the control of the data
bus.

5 Experimental Results

Making use of the described methodology a compact
verification stimuli set for the DMA controller has been
generated. Firstly, the configuration registers, such as the
command register and mode register, are identified;
secondly, coverage metrics are chosen. Considering the
available DMAC model, described in VHDL at RTL, the
most important code coverage metrics are statement,
condition, and branch coverage. Additionally, a list of
corner cases corresponding to operative modes derived
from the device specifications is compiled and included in a
functional coverage check table. Such table includes,
among others, the following modes:

▪ activation of the four channels in rotating priority mode;
▪ activation of peripheral-to-memory transfer on at least

one channel with introduction of wait states;
▪ channel 0 and 1 performing a memory-to-memory

transfer while enabling the channel 0 address hold.

In the following step, the shared and unshared resources
within the controller are labeled and the configuration
graph is built from DMAC specifications. The main shared
resource is the DMA engine, followed by the general
registers, the internal buses and the priority arbiter. The
unshared resources are mainly related to the channel
control, such as address registers, word count registers
and channel mode registers.

By discarding the invalid configurations, we obtained a
configuration graph composed of 44 nodes, organized on 24
levels. Considering the shared resources in the DMA descrip-

SoC
RAM P1 P3

Processor
core

DMA
controller

P2 P4

Internal Bus

ROM

Fig. 6 Microprocessor-based environment used in simulation for
verification purposes

Memory to memory
enable/disable

Channel 0 address hold
enable/disable

Controller
enable/disable

Timing
Normal/Compressed

Priority
Fixed/Rotating

Write
Late/Extended

dreq active
high/low

dack active
high/low

Control register
(shared)

Channel 1
(unshared)

Mode
Illegal/Read/Write/Verify

Initialization
Auto / No Auto

Address
Inc / Dec

Transfer
Unused/Block/Single/Demand

Channel 2
(unshared)

Mode
Illegal/Read/Write/Verify

Initialization
Auto / No Auto

Address
Inc / Dec

Transfer
Unused/Block/Single/Demand

Fig. 5 Part of the configuration graph, representing the modules of an
8237 compliant DMAC. Nodes on the same level represent alternative
configurations related to the same functionality. The Control Register
is a shared module, while Channels 1 to 4 are unshared. Some of the
configurations are prohibited, so the corresponding nodes are not
reachable

9

tion, the data transfer control performed by the DMA priority
logic is not directly related to the chosen channel, neither
to the address increment or decrement. Thus, each of the
transfer modes is linked to only one of the other resources.
This is directly mapped on the configuration graph.

Theoretically, by analyzing the device configuration
registers, it is possible to identify as many as 232 possible
device configurations, which decreases to 28∙[22(22-1)]4

considering the illegal modes. On the other side, exploiting
the proposed method, 18 configuration paths are obtained..

From each of these paths, a verification procedure is
obtained, composed of a configuration part, where the DMAC
registers are filled with suitable configuration data, and an
operation part, where the device is excited coherently with the
specified configuration by acting on its ports.

An example of verification procedure derived from a
configuration path is described in the following:

a. The command register is set with values corresponding
to: memory-to-memory disabled; channel 0 address
hold disabled; controller enabled; normal timing;
rotating priority; late write; dreq active low; dack active
high. The register controlling the four channels is set,
so that Channel 1 and Channel 4 are configured as:
write; auto initialize disabled; address increment; single
mode. Channel 2 and Channel 3 are configured as:
write; auto initialize disabled; address decrement;
demand mode.

b. The memory area where the DMA will write data from
the peripheral is cleared.

c. For each channel, the base address register and word
counter are initialized. 16 transfers are set for each
channel: channels set with address increment will
have a base address of 0×0000, while ones with
address decrement will have a base address of
0x0010. This combination of values can toggle the
first nibble of both the base address register and the
word count register. The excitation of the other
nibbles of these registers is addressed by other
stimuli sequences in the set.

d. A loop is then executed, requesting the transfer on each
channel. Control lines are driven by the testbench. In
each iteration several channels are activated at the same
time, in order to attest the correctness of the rotating
priority schedule.

e. Finally, the memory area where data has been written is
checked to ascertain the correctness of the performed
data transfer.

As mentioned before, the application of the proposed
approach left us with a verification set composed of 18 test
sequences.

In order to assess the quality of the stimuli set, we
consider functional metrics as well as code coverage ones.

Considering functional coverage metrics, a manual
analysis of the results confirms that the check table has
been completely covered. On the other hand, regarding
code coverage metrics, we prepared two different experi-
ments to apply the verification stimuli to the device under
verification in simulation: a dedicated testbench, and a
verification environment that uses a microprocessor core as
depicted in Fig. 6. Clearly, the obtained verification set is
properly translated to a set of signals, in the first case, and
to a test program suite, in the second case.

The developing process took about one week, considering
the graph construction and analysis, and the implementation
of the verification procedures.

The developed testbench applies the complete test set in
about 3,200 clock cycles, while about 7,000 clock cycles
are needed to complete the same operations relying on the
microprocessor to apply the stimuli. This is due to the fact
that for the application of each single pattern the micropro-
cessor has to execute one or more instructions. In the latter
case, the verification program set counts about 913 Bytes
on the whole.

All data about coverage metrics have been gathered at
the end of the generation process, and the experimental
evaluation was performed using Modelsim SE-64 V.6.5c by
Mentor Graphics. All the experiments were run on an Intel
core2duo processor with 2 Gb RAM.

Interestingly, the same verification coverage figures are
obtained independently on the methodology through which
the stimuli are applied (dedicated testbench or
microprocessor-based system). Table 2 reports the coverage
results obtained by the application of the complete
verification set: all chosen metrics were completely satu-
rated without the need of iterating the process. Some
percentages reported do not reach 100% only because of
dead code blocks (for example, unreachable conditional
branches).

The results in Table 2 show that the proposed method
improves both the outcomes reported in [18], due to a more

Table 2 Coverage results

Total Covered

%

Statements 2,144 2,093 97.62

Branches 628 605 96.34

Conditions 180 162 90.00

Fec Conditions 250 219 87.60

Expressions 7 7 100.00

Fec Expressions 10 10 100.00

Toggle Nodes 746 730 97.86

10

structured approach, and in [11], thanks to a more efficient
graph covering algorithm.

6 Conclusion

This paper presents a functional based approach to the
generation of stimuli for design verification of DMA
controllers. Following the proposed approach, a verification
engineer can develop in a short time an effective and compact
verification set able to saturate verification metrics, relying
only on a high-level description of the DUT.

The obtained stimuli set can be easily applied in simulation
resorting to different strategies (i.e., a dedicated testbench, or a
microprocessor based system), depending on the verification
environment available for the verification team.

Experimental results, gathered on an 8237-compliant
DMA controller, demonstrated that the proposed approach
is able to saturate the available coverage metrics, thus
assessing the quality of the stimuli set generated.

Future developments include the application of the
proposed methodology to other peripherals and using the
principles described to enhance VV&T techniques, as well
as further automation in the generation of testbench signals
and instruction sequences to stimulate the peripheral
modules.

References

1. 8051 IP Core circuit description (VHDL): Oregano Systems web
site, http://www.oregano.at/eng/

2. Apostolakis A, Gizopoulos D, Psarakis M, Ravotto D, Sonza
Reorda M (2009) “Test program generation for communication
peripherals in processor-based SoC devices,” IEEE Design & Test
of Computers vol. 26, n. 2, pp. 52–63

3. Apostolakis A, Psarakis M, Gizopoulos D, Paschalis A (2007)
“Functional processor-based testing of communication peripherals
in systems-on-Chip,” IEEE transactions on very large scale
integration (VLSI) systems, vol. 15, n. 8, pp. 971–975

4. Bergeron J (2003) Writing testbenches: functional verification of
HDL models, Second Edition. Kluwer Academic Publishers,
Norwell, Massachusetts, USA, p. 512. ISBN: 1-4020-7401-8

5. Bolzani L, Sanchez E, Schillaci M, Sonza Reorda M, Squillero G
(2007) “An automated methodology for cogeneration of test
blocks for peripheral cores,” IEEE Int’l On-Line Testing Symposium
pp. 265–270

6. Bose M, Shin J and Rudnick E (2001) “A genetic approach to
automatic bias generation for biased random instruction generation”.
Evolutionary Congress Proc on pp 442–448

7. Braun M, Rosenstiel W, Schubert KD (2003) “Comparison of
Bayesian networks and data mining for coverage directed verification
category simulation-based verification,”High-Level Design Validation
and Test Workshop, Eighth IEEE International vol., no., pp. 91–95

8. Bushnell ML and Agrawal VD (2000) “Essentials of electronic
testing for digital, memory, and mixed-signal VLSI circuits”.
Springer-Verlag

9. Dushina J, Benjamin M, Geist D (2003) “Semi-formal test
generation and resolving a temporal abstraction problem in
practice: industrial application”, IEEE/ACM Design Automation
Conference pp. 699–704

10. Goodenough JB and Gerhart SL (1977) “Toward a theory of
testing: data selection criteria, current trends in programming
methodology”, vol. 2. In Yeh RT (ed.) Prentice-Hall, Englewood
Cliffs, pp. 44–79

11. Grosso M, Perez HWJ, Ravotto D, Sanchez E, Sonza Reorda M,
Medina-Velasco J (2010) “Functional test generation for DMA
controllers”, 11th Latin American Test Workshop (LATW 2010),
pp. 1–6

12. Grosso M, Perez HWJ, Ravotto D, Sanchez E, Sonza Reorda M,
Medina-Velasco J (2010) “A software-based self-test methodology
for system peripherals”, 15th IEEE European Test Symposium
(ETS’10), pp. 195–200

13. Piziali A (2004) “Functional verification coverage measurement
and analysis”, Springer

14. Pradhan Dhiraj K, Harris Ian G (2009) “Practical design
verification”, Cambridge University Press, p. 276

15. Psarakis M, Gizopoulos D, Sanchez E, Sonza Reorda M (2010)
“Microprocessor software-based self-testing”, Design & Test of
Computers, IEEE, vol. 27, no.3, pp.4–19

16. Ravotto D, Sanchez E, Sonza Reorda M, Squillero G (2009)
“Design validation of multithreaded architectures using concurrent
threads evolution”, IEEE 22nd Annual Symposium on Integrated
Circuits and System Design

17. Rosenberg S (2003) “Combined Coverage Verification Speeds
Verification”. EEdesign

18. Sosnowski J, Tupaj L (2010) “CPU testability in embedded
systems”, Proc of IEEE Int Symp Delta pp. 108–112

19. Strum M, Wang Jiang Chau, Romero EL (2005) “Comparing
two testbench methods for hierarchical functional verification
of a bluetooth baseband adaptor,” Hardware/Software Code-
sign and System Synthesis, 2005. CODES+ISSS’05. Third
IEEE/ACM/IFIP International Conference on, vol., no., pp.
327–332

20. Tasiran S and Keutzer K (2001) “Coverage metrics for functional
validation of hardware designs”, IEEE Design & Test of
Computers, vol.18: no.4 pp. 36–45

21. Wu Y, Yu L, Xue K, Zhuangr W (1998) “Functional verification
of memory controller based on the hierarchical test bench”,
Macroelectronics and computer pp. 25–28(2)

Michelangelo Grosso is a postdoctoral fellow at the Department of
Control and Computer Engineering of Politecnico di Torino (Torino,
Italy). He received the MS degree in Electronic Engineering in 2004
and the PhD degree in Computers and Systems Engineering, in 2008,
both from Politecnico di Torino. His research interests range from
verification and test to reliability of integrated circuits and systems.

Wilson Javier Perez Holguin has received a MSc from Universi-
dadNacional de Colombia and currently he is a PhD candidate at
Universidad del Valle, Colombia. He is an assistant professor at
UPTC, Sogamoso, Colombia. His research areas include Design&-
Testing of Digital Electronic Circuits and Industrial Automation.

Danilo Ravotto obtained his PhD at Politecnico di Torino, Torino,
Italy. His research interests include test and diagnosis of advanced
processors, and evolutionary algorithms. He is a student member of
the IEEE.

11

http://www.oregano.at/eng/

Ernesto Sanchez received his degree in Electronic Engineering from
Universidad Javeriana - Bogota, Colombia in 2000. In 2006, he
received his Ph.D. degree in Computer Engineering from the
Politecnico di Torino, where currently, he is an Assistant Professor
with Dipartimento di Automatica e Informatica. His main research
interests include microprocessor testing and Evolutionary Algorithms.

Matteo Sonza Reorda is a full professor in the Department of Control
and Computer Engineering at Politecnico di Torino. His research
interests include testing and fault-tolerant design of electronic circuits
and systems. He has a PhD in computer engineering from Politecnico
di Torino. He is a senior member of the IEEE.

Alberto Paolo Tonda received his M.S. degree in computer science
engineering in 2007 from Politecnico di Torino, Torino, Italy, and is
currently a Ph.D. Student of computer science engineering at the same
institution. His research interests include verification of electronic
systems and application of evolutionary techniques to industrial
problems.

Jaime Velasco-Medina received the PhD and MSc degree from
TIMA/INPG, France. Currently, he is professor of the School of
Electrical and Electronics Engineering at Universidad del Valle in
Cali, Colombia. His research interest are mixed-signal circuits test,
digital systems design and bionanoelectronics.

12

	Functional Verification of DMA Controllers
	Abstract
	Introduction
	Peripheral Verification and Test
	Background
	Test Generation and Coverage Metrics
	Direct Memory Access Controller Description

	Proposed Approach
	Case Study
	Experimental Results
	Conclusion
	References

