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Time-Domain Travelling-Wave Model for Quantum
Dot Passively Mode-Locked Lasers

Mattia Rossetti, Paolo Bardella, and Ivo Montrosset, Member, IEEE

Abstract— We present a time-domain travelling-wave model
for the simulation of passive mode-locking in quantum dot (QD)
lasers; accurate expressions for the time varying QD optical
susceptibility and the QD spontaneous emission noise source
are introduced in the 1-D wave equations and numerically
described using a set of infinite-impulse response filters. The
inhomogeneous broadening of the density of states of the whole
QD ensemble as well as the homogeneous linewidth of each QD
interband transition are properly taken into account in the model.
Population dynamics in the QD, quantum well, and barrier states
under both forward and reverse bias conditions are modeled via
proper sets of multi-population rate equations coupled with the
field propagation equations. The model is first applied to the
study of gain and absorption recovery in a QD semiconductor
optical amplifier under both forward and reverse bias conditions.
Simulations of passive mode-locking in a two-section QD laser are
then performed as a function of the bias parameters. Gain and
absorption dynamics leading to the generation of mode-locking
pulses is described. The onset of a trailing-edge instability at low
currents is observed and fully explained in the framework of the
described model.

Index Terms— Mode-locked lasers, modeling, quantum dots,
semiconductor optical amplifiers.

I. INTRODUCTION

PASSIVELY mode-locked (ML) lasers based on self-
assembled semiconductor quantum dots (QD) have shown

superior properties compared to their bulk and quantum-well
(QW) counterparts due to the peculiar properties of the QD
active medium: thanks to the inhomogeneous gain broadening
induced by the QD size dispersion, a broad gain bandwidth
can be achieved [1]. Also, QD-based devices show large gain
saturation energies and large differential absorption due to the
small density of states of the whole QD ensemble. Moreover,
ultrafast gain recovery induced by efficient carrier capture and
relaxation in the QD states as well as fast absorption recovery
obtained in reverse-biased QD structures have been measured
via differential transmission spectroscopy (DTS) experiments
[2], [3].

Such properties significantly contribute to the efficient gen-
eration of picosecond and subpicosecond pulses at elevated
bit rates in two-section passively ML lasers with the active
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region consisting of several layers of InAs QDs emitting
around 1.3 μm [4]–[7]. These devices show small sensitivity to
Q-switching instability [8], low chirp, as well as low amplitude
noise and low timing jitter [9].

In past years, different approaches have been used to model
the ML regimes in QD lasers: models based on delayed
differential equations [10] have been proved to be a powerful
method to study the stability and evolution of the ML regimes
as a function of the applied bias conditions [8]. In [11], a
frequency domain approach has been applied to study active
ML in a QD laser, considering a detailed description of
the optical response of the inhomogeneously broadened QD
active medium.

In this paper, we present an alternative approach to the
analysis of passive ML in QD lasers based on a time-
domain travelling-wave model [12]. Within this approach,
the propagation equations describing the spatiotemporal field
dynamics in the laser cavity are directly solved numerically,
using a finite-difference scheme. Compared to the models
described in [10] and [11], no assumption on the geometry
of the laser cavity or on the strength of gain/absorption
modulation governing the ML regimes are required. Moreover,
with respect to existing time-domain travelling-wave models
[12], a detailed description of the QD optical susceptibility,
spontaneous emission noise, and population dynamics in the
QD states is fully included in the model, allowing a complete
study of the peculiar QD optical properties governing the
dynamics of multisection QD ML lasers.

The paper is organized as follows. In Section II, the
implemented numerical model is presented. In Section III,
simulations of DTS experiments in forward- and reverse-
biased semiconductor optical amplifiers (SOAs) are shown;
these results allowed gaining insights into the peculiar
properties of QD gain and absorption dynamics. Moreover,
comparison with published experimental results allowed vali-
dation of the chosen model parameters. In Section IV, passive
mode-locking in a two-section QD laser is then investigated
as a function of both reverse voltage and gain current.
The regime of stable ML is outlined, gain and absorp-
tion dynamics governing the generation of the ML pulses
is studied, and the onset of a trailing edge instability
at low currents is observed and explained. Finally, in
Section V a brief conclusion is drawn.

II. NUMERICAL MODEL

The longitudinal propagation of the transverse-electric
guided mode in the laser cavity can be described by the
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second-order differential equation as follows:

∂2 E (z, t)

∂z2 − 1

c2

∂2

∂ t2

(
η2 E (z, t)

)

= μ0
∂2 P (z, t)

∂ t2 + μ0
∂ JS (z, t)

∂ t

(1)

where E(z, t) is the mode amplitude, η is the background
effective refractive index of the guided mode, μ0 is the vac-
uum magnetic permeability, P(z, t) is the electric polarization
induced by the QD active medium, and J (z, t) is an effective
current density accounting for the spontaneous emission noise
source from the QDs.

In the following paragraphs, suitable expressions for the
QD polarization and spontaneous emission noise are defined
and equations for the interband and intraband dynamics of
carrier populations in the QDs are described. Finally, the
approximations introduced in (1) and the numerical solution
via a finite-difference approach are outlined.

A. QD Optical Susceptibility and Spontaneous Emission Rate

Throughout this paper, multilayered structures composed
by InAs QD layers embedded in InGaAs/GaAs QWs (dot-in-
a-well) and emitting at around 1.3 μm will be considered.
A schematic of the related energy diagram is shown in
Fig. 1(a) and (b). Confined states for carriers in the QDs
are supposed to consist of a two-fold degenerate ground state
(GS) and two excited states (ES1 and ES2), with degener-
acy equal to 4 and 6, respectively. At higher energies, a
continuum of states belonging to the QW and 3-D states
in the GaAs separate-confinement heterostructure (SCH) are
considered.

Due to the self-assembling growth process, a dispersion in
the QD sizes occurs, inducing an inhomogeneous broadening
of the density of states of the whole QD system [1]. In order to
account for this property, in the model the whole QD ensemble
is subdivided in N populations; QDs belonging to the same
population are assumed to be identical, having therefore the
same characteristic interband transition energies h̄ωim and car-
rier occupation probabilities in the confined states ρim , where
index i = 1, . . . , N (N odd) refers to the ith QD population
whereas index m = GS, ES1, ES2 refers to the mth QD con-
fined state. The QD size dispersion and therefore the inhomo-
geneous broadening of the QD density of states are assumed
to follow a Gaussian distribution function. The existence
probability of the ith QD population will be therefore [11]

Gi = 1

Z
exp

(
−4 ln 2 ×

(
h̄ωi,GS − h̄ω(N+1)/2,GS

)2

�E2

)
(2)

where �E is the Gaussian full-width at half-maximum
(FWHM) and Z is a constant such that �i Gi = 1.

The QD polarization P(z, t) can be expressed via the optical
susceptibility of the QD active medium as follows:

P
(
z, t

) = ε0

t∫

−∞
χ
({

ρim
}
, t − τ

)
E
(
z, τ

)
dτ (3)
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Fig. 1. (a) Schematic of the energy diagram of the dot-in-a-well layers
under forward bias condition; numerical values indicate energy differences
between confined states for the QD group with highest existence probability.
(b) Schematic of the energy diagram in a reverse bias condition, symbol
� denotes tunneling processes. (c–d) Comparison between the theoretical
QD absorption and related refractive index spectra at zero bias (black) and
the response of the numerical filters for a time step �t = 10 fs (gray);
dashed lines indicate the reference frequency for the slowly varying envelope
approximation (f0) and GS (fGS) and ES (fES) absorption peaks, respectively.

where ε0 is the vacuum electric permittivity. The QD suscepti-
bility χ({ρim}, t) depends on the carrier occupation probabili-
ties {ρim} of the confined states in the whole ensemble of QDs
and, as already pointed out, it is inhomogeneously broadened
due to the QD size dispersion.

With these assumptions, the Fourier transform of the QD
susceptibility appearing in (3) can be written as the superposi-
tion of single Lorentzian contributions representing the homo-
geneous line broadening of the interband transitions from the
QD GS and ES1 of each QD population [1], [11] as follows:

χ
({

ρim
}
, ω
)

= F
{
χ
({

ρim
}
, t
)} =

N∑
i=1

∑
m=
GS,E S1

χim
(
ρim , ω

)

= �xy

hW
ND

N∑
i=1

∑
m=
GS,E S1

Gi Dm Am
j

h̄ π

1

� + j
(
ω − ωim

)(2ρim −1
)

(4)

where 1/� represents the characteristic dephasing time of
the interband transition, Am is a coefficient containing the
interband transition matrix element for the mth transition
(m = GS, ES1), Dm is the degeneracy of the mth QD state,
ND is the QD surface density, �xy is the field confinement
factor in the QD layers, and hW is the QW width.

Contributions from the upper QD excited (ES2), WL, and
SCH states to the optical susceptibility (4) have been ne-
glected, being considerably detuned with respect to the lasing
frequencies. On the contrary, contributions from the first ES of
each QD group have been properly described since refractive
index changes induced by the ES population dynamics are
expected to be the main cause for a nonzero frequency chirp
of the ML pulses [13].
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One must point out that the carrier distribution in the
QD states depends on time: ρim = ρim (z, t). However, it
is reasonable to assume that population dynamics in the
QDs is much slower than the characteristic dephasing time
1/�, |ρ−1

im ∂ρim/∂ t| � �. In such a case, the temporal
changes in the optical polarization induced by the popula-
tion dynamics in the QD states can be treated within an
adiabatic approximation. Time-dependent gain and refractive
index spectra induced by the QDs are therefore defined as
g(z, t, ω) = (ω/cη)Im χ({ρim(z, t)}, ω) and �η(z, t, ω) =
(1/2η)Re χ({ρim (z, t)}, ω), respectively.

The density of spontaneously emitted power per unit volume
coupled with the guided mode can then be written [11]
as follows:
∣∣S(z, ω)∣∣2 =

N∑
i=1

∑
m=
GS,E S1

∣∣Sim
(
z, ω

)∣∣2

=βsp
ND Nl

hW

N∑
i=1

∑
m=
GS,E S1

Gi Dm
ρim

(
z, t

)

τ
sp
m

�

π

h̄ωim

�2 + (
ω − ωim

)2

(5)

where τ
sp
m is the spontaneous emission characteristic time,

which can be directly related to the coefficient Am

[14], Nl represents the number of QD layers, and βsp

is the spontaneous emission factor describing the cou-
pling between the spontaneously emitted radiation and the
waveguide mode.

Equations (3)–(5) represent therefore a complete description
of the linear optical properties of the QD active medium.

The dynamics of exciton populations in the QDs, however,
induces significant nonlinearities in the polarization. In order
to properly describe population dynamics in the QDs, a set
of multi-population rate equations [13] will be considered and
described in Sections II-C and II-D.

B. Travelling-Wave Equations

In order to numerically solve the wave (1) taking into
account the expressions for the QD polarization (3) and (4),
suitable approximations must be introduced.

Following a common approach, the slowly varying envelope
approximation is introduced. The mode amplitude E(z, t)
is decomposed in forward- and backward-propagating field
envelopes E±(z, t), according to

E
(
z, t

) =
√

μ0ω0

k0

(
E+(z, t

)
e−jk0z + E−(z, t

)
e+jk0z

)
e+jω0t

(6)

where ω0 is a reference frequency and k0 = ω0η/c is the
corresponding reference wave number. A proper normalization
has been introduced such that |E+(z, t)|2 and |E−(z, t)|2
simply give the total power flowing forward and backward
in a given longitudinal section of the device.

Replacing (6) in (1), assuming, |∂2 E±/∂ t2| � |ω0 ∂ E±/∂ t|
and |∂2 E±/∂z2| � |k0∂ E±/∂z|, one obtains [12]

η

c

∂ E±

∂ t
± ∂ E±

∂z
= − αi

2
E±(z, t

)+ S±(z, t
)− j

ω0

2cη

×
t∫

−∞
χ̃
({

ρim
(
z, t

)}
, t − τ

)
E±(z, τ )dτ

(7)

where we explicitly took into account the intrinsic waveguide
losses αi ; χ̃, S± are modified expressions for the QD optical
susceptibility and spontaneous emission noise source

χ̃ = χ × e−jω0t (8)

S± = 1

2

√
μ0ω0

k0
JS × e−jω0t . (9)

In the case of a simple Fabry–Pérot cavity, boundary con-
ditions for (7) can be simply written as follows:

E+ (0, t) = r0 E− (0, t) (10)

E− (L, t) = rL E+ (L, t) (11)

where L is the total cavity length and r0, rL are the
modal reflectivities at the left and right facet of the device,
respectively.

The reference frequency ω0 is usually chosen close to
the lasing frequency. As already pointed out, however, the
important role played by the ES contributions to the QD
optical susceptibility requires that a large bandwidth, cov-
ering both GS and ES characteristic transition energies, is
considered. The reference frequency is therefore chosen as
the central frequency between the GS and the ES transition
of the QD population with the highest existence probabil-
ity: ω0 = (ω(N+1)/2,E S1 + ω(N+1)/2,GS)/2, as depicted in
Fig. 1(c) and (d). Within this choice, the validity of (7) must be
verified: InAs QDs emitting at 1.3 μm have energy differences
between GS and ES interband transitions of about 60 meV [7];
assuming GS lasing and with the chosen reference frequency,
the detuning �ω between the lasing frequency and ω0 would
be about 7.5 THz whereas ω0 would be about 249 THz. The
ratio �ω/ω0 ≈ 3% � 1 ensures that the slowly varying
envelope approximation can still be applied, preserving a good
accuracy of the final solution.

Equation (7) can be solved numerically via a finite dif-
ference scheme. �z being the unit step of a longitudinal
discretization of the laser cavity and defining ω̃ = ω − ω0,
the solution of (7) in frequency domain can be approximated
as follows:

E±(z ± �z, ω̃
) ∼= exp

(
−jη

ω̃

c
�z

)

×
{

1 − j
ω0

2cη
χ̃
(
ω̃, z

)
�z

}
E±(ω̃, z

)+ �zS±(ω̃, z
)
.

(12)

Coming back in time-domain, we obtain

E±(z ± �z, t + �t
)

∼= E±(z, t
)− jP±(z, t

)
�z + S±(z, t

)
�z − αi

2
E±(z, t

)
�z

(13)
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where �t = �z η/c is the simulation time step and where we
defined a new slowly varying effective polarization

P± (z, t) = ω0

2cη

t∫

−∞
χ̃ (z, t − τ ) E± (τ, z) dτ . (14)

The convolution integral in (14) must be evaluated numer-
ically. Using (4) and (8), an explicit expression for χ̃(z, t) in
time-domain can be found. Introducing it in (14), P±(z, t)
can finally be expressed as the sum of single GS and ES
contributions from each QD population

P±(z, t
) =

N∑
i=1

∑
m=
GS,E S1

p±
im

(
z, t

)
(15)

where each contribution p±
im is written in time-domain as

p±
im

(
z, t

) = j

h̄

ω0

2π cη

�xy

hW
ND Gi Am Dm

(
2ρim

(
z, t

)− 1
)

× I±
im

(
z, t

) (16)

with

I±
im

(
z, t

) =
t∫

−∞
ej
(
ωim −ω0

)
(t−τ )e−�(t−τ) E±(z, τ ) dτ . (17)

In expressions (16) and (17), the dynamics of the carrier
occupation probability ρim has been treated adiabatically. In
order to numerically compute the convolution integral (17), a
closed form can be found as follows:

I±
im

(
z, t

) = ej
(
ωim−ω0

)
�t e−��t I±

im

(
z, t − �t

)

+ 1

2
�t
[

E±(z, t
)+ ej

(
ωim−ω0

)
�t e−��t E±(z, t − �t

)]
.

(18)

Finally, a suitable expression for the spontaneous emission
noise source S±(z, t)�z appearing in (13) must be considered.
This term can be represented as a random process having a
power spectral density per unit volume given by (5). Following
an approach similar to the one described in [15], a realization
of this random process can be obtained via the expression as
follows:

S±(z, t
)
�z =

N∑
i=1

∑
m=
GS,E S1

⎡
⎣�

√
h̄ωim

π ��t

βsp Nim
(
z, t

)

2τ
sp
m

I sp±
im

(
z, t

)
⎤
⎦

(19)
with

I sp±
im

(
z, t

) =
t∫

−∞
ej
(
ωim−ω0

)
(t−τ)e−�(t−τ )ejϕim (z,τ)dτ (20)

where ϕim(z, t) is a set of independent random phase contribu-
tions uniformly distributed between 0 and 2π and completely
uncorrelated both in time and space.

In (19), Nim (z, t) represents the total number of carriers
occupying the mth state in QDs belonging to the ith pop-
ulation and lying within the longitudinal slice of the cavity
[z − �z/2, z + �z/2]

Nim (z, t) = Nl ND Gi Dmρim (z, t)W�z (21)

where W is the ridge width.

The convolution integral (20) can be evaluated numerically
in the same way as (18) where the modal field amplitude is
substituted with the random phase term ejϕim (t,z) as follows:

I sp±
im

(
z, t

) = ej
(
ωim−ω0

)
�t e−��t I sp±

im

(
z, t − �t

)

+ 1

2
�t
[
e jϕim(z,t) + ej

(
ωim−ω0

)
�t e−��t e jϕim(z,t−�t)

]
.

(22)

Equations (13) and (15)–(22), together with boundary con-
ditions (10) and (11) can therefore completely describe the
field propagation in the cavity provided that the coupled tem-
poral dynamics of the carrier occupation probabilities in the
QD states is determined in each longitudinal slice. The model
must therefore be able to properly describe carrier dynamics
in each longitudinal section of the waveguide. Dedicated rate
equation systems for carrier dynamics in forward-biased gain
sections and reverse-biased saturable absorber sections will be
therefore considered and separately described in the following
paragraphs.

C. Carrier Dynamics in Gain Sections

The set of rate equations to be solved in each forward-biased
longitudinal slice of the device consists of one equation for
each QD confined state of each QD group, an equation for
the total number of carriers in the 2-D QW states, and one for
the total number of carriers in the SCH states.

The complete system of equations for a given longitudinal
slice of the waveguide under current injection [13], [16] reads
as follows:

d NSC H

dt
= ηi

J

e
�zW − NSC H

τ SC H
r

− NSC H

τ W
c

+ NW

τ W
e

(23a)

d NW

dt
= NSC H

τ W
c

− NW

τ W
e

− NW

τ W
r

−
N∑

i=1

Gi

τ E S2
c

NW
(
1 − ρi E S2

)+
N∑

i=1

Ni E S2

τ E S2
e

(23b)

d Ni E S2

dt
= Gi

τ E S2
c

NW
(
1 − ρi E S2

)− Ni E S2

τ i E S2
e

− Ni E S2

τ E S2
s

− Ni E S2ρi E S2

τ E S2
Au

− Ni E S2

τ E S1
c

(
1 − ρi E S1

)

+ Ni E S1

τ i E S1
e

(
1 − ρi E S2

)
(23c)

d Ni E S1

dt
= Ni E S2

τ
E S1
c

(
1 − ρi E S1

)− Ni E S1

τ
i E S1
e

(
1 − ρi E S2

)

− Ni E S1ρi E S1

τ E S1
Au

− Ni E S1

τ GS
c

(1 − ρi GS)

+ Ni GS

τ i GS
e

(
1 − ρi E S1

)− Ni E S1

τ
E S1
s

− j�z

h̄ω̄i E S1

[(
E+ p+

i E S1

∗ − E+∗
p+

i E S1

)

+
(

E− p−
i E S1

∗ − E−∗
p−

i E S1

)]
(23d)

Rettangolo



ROSSETTI et al.: TIME-DOMAIN TRAVELLING-WAVE MODEL FOR QUANTUM DOT PASSIVELY MODE-LOCKED LASERS 143

d Ni GS

dt
= Ni E S1

τ GS
c

(1 − ρi GS) − Ni GS

τ i GS
e

(
1 − ρi E S1

)

− Ni GS

τ GS
s

− Ni GSρi GS

τ GS
Au

− j�z

h̄ω̄i GS

[(
E+ p+

i GS
∗ − E+∗

p+
i GS

)

+
(

E− p−
i GS

∗ − E−∗
p−

i GS

)]
(23e)

where the total number of electron–hole pairs Nim in the
mth QD state of the ith QD population is related to the
corresponding occupation probability via (21), J is the applied
current density, ηi is the internal quantum efficiency, and,
finally, NSC H and NW are the total number of carriers in the
SCH and QW.

The characteristic capture times τ W
c and τ

E S2
c describe the

carrier relaxation from the SCH states to the QW states and
from the QW to the upper QD ES, respectively. In the case
of a forward-biased section, the value of τ W

c is chosen as the
sum of the characteristic time for carrier diffusion across the
SCH region and the carrier capture time in the QW states. The
characteristics times τm

c with m = GS, ES1 describe carrier
relaxation within the QDs. Finally, τm

Au with m = GS, ES1,
ES2 represent the characteristic Auger recombination times
from the QD states.

To guarantee the recovery of a quasi equilibrium energy
distribution under no external perturbations, the escape times
are calculated from capture and relaxation times [13] as
follows:

τ W
e = τ W

c
DOSW Nl

DOSSC H hSC H
exp

(
�ESC H−W

kB T

)
(24a)

τ i E S2
e = τ i E S2

c
μE S2 ND

DOSW
exp

(
�EW−i E S2

kB T

)
(24b)

τ i E S1
e = τ i E S1

c
DE S1

DE S2

exp

(
h̄ω̄i E S2 − h̄ω̄i E S1

kB T

)
(24c)

τ i GS
e = τ i GS

c
DGS

DE S1

exp

(
h̄ω̄i E S1 − h̄ω̄i GS

kB T

)
(24d)

where �ESC H-W is the energy difference between SCH and
QW band edges and �EW–i E S2 are the energy difference
between the QW band edge and the highest energy confined
states in the various QD groups; hSC H is the SCH width, and
DOSW and DOSSC H are the effective density of states in the
QW and in the SCH, respectively [13] as follows:

DOSSC H = 2

(
2
πm∗

SCH kB T

h̄2

) 3
2

(25a)

DOSW = m∗
W kB T

π h̄2 (25b)

where m∗
SC H and m∗

W are the exciton effective masses in the
GaAs SCH and InGaAs QW, respectively.

Equations (23a)–(23e) represent therefore the complete set
of equations to be solved to determine the carrier dynamics
in each section of the cavity under current injection. Coupling
with the field propagation is given in (23d) and (23e) by the
stimulated emission terms involving polarizations p±

im .

D. Carrier Dynamics in Saturable Absorber Sections

In order to properly take into account the effects of a
static transverse electric field on the carrier dynamics in a
reverse-biased saturable absorber section, a dedicated set of
rate equations must be solved.

Enhanced thermionic escape rates from the QD states to the
WL and SCH states due to barrier reduction and additional
escape paths due to tunneling processes toward the SCH
were found to be the main effects influencing the carrier
dynamics under an applied electric field [3], [17]. A weak
quantum confinement Stark effect in QD structures has been
also observed when compared with QW structures [17]. This
latter effect is therefore neglected in the model, whereas the
influence of the applied field on both thermionic and tunneling
escape processes will be properly introduced using simple
approaches.

An expression for the tunneling escape rates from the QD
states and the QW to the 3-D states in the SCH can be
estimated using the Wentzel–Kramer–Brillouin approximation
for a triangular well [3] as follows:

Rk
tun = f k

tune

⎛
⎝− 4

3

√
2m∗

SC H(�ESC H−k)
3
2

eh̄
hSC H
V +Vbi

⎞
⎠

Nk (26)

where index k = {im}, W runs over the complete set of QD
states and the QW, �ESC H-k is the energy difference between
the SCH band edge and the kth confined state, f k

tun is the
characteristic barrier collision frequency for carriers in the
QDs and QW, V ≥ 0 is the reverse voltage applied across the
p-i-n junction and Vbi is the built-in potential of the junction
(a constant electric field (V + Vbi )/hSCH in the active region
has been assumed).

The enhanced thermionic escape rate from the QD states
to the QW and from the QW to the SCH states, due to a
linear barrier reduction induced by the applied electric field,
can then be simply modeled via modified expressions for the
characteristic escape times [3] as follows:

τ i E S2
e (V ) = τ i E S2

e exp

(
− V + Vbi

kB T

hW

2hSC H

)
(27a)

τ W
e (V ) = τ W

e exp

(
− V + Vbi

kB T

hW

2hSC H

)
(27b)

where τ W
e , τ

i E S2
e are the escape times calculated at zero

electric field via expressions (24a) and (24b).
Finally, for reverse-biased saturable absorber sections, we

introduce a modified rate equation for carriers in the SCH as
follows:

d NSC H

dt
= − μd NSC H

V + Vbi

h2
SC H

− NSC H

τ SC H
nr

− NSC H

τ W
c

+ NW

τ W
e

+
∑

k={im},W
Rk

tun

(28)

where the first term on the right-hand side represents the
electron drift current, μd being the GaAs electron mobility.
Adding the expressions for the tunneling escape rates (26) in
(23b)–(23e), introducing the field-dependent escape rates (27a)
and (27b) in (23b) and (23c), and replacing (23a) with (28),
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one obtains therefore a complete set of equations describing
the carrier dynamics in a QD saturable absorber section.

E. Choice of the Simulation Time Step

Some further comments must be made on the choice of the
simulation time step �t . The unit step must guarantee a good
accuracy when performing the numerical solution of the wave
equation (13) via the calculation of the polarization terms
(15)–(18). The unit step must therefore be small enough so that
the whole spectrum of the QD optical susceptibility involving
both GS and ES transitions is properly resolved. Moreover,
the Lorentzian filters describing the QD optical susceptibility
may have tails which are beyond the Nyquist frequency;
these contributions introduce aliasing within the simulated
bandwidth, which mainly affects the description of the real
part of the susceptibility. For the GS–ES separation we are
assuming, a time step �t = 10 fs has been therefore chosen.
In Fig. 1, we compared the theoretical QD gain and refractive
index spectra at zero-bias condition with the spectra obtained
from the response of the numerical filters. A good agree-
ment between theoretical and numerically computed spectra
is achieved, proving that the chosen time step guarantees a
good accuracy within a sufficiently large bandwidth.

We must point out that the chosen time step steeply in-
creases the computational time required by the simulations.
An exploited alternative to relax the condition on the required
time step is to limit the investigated spectral bandwidth over
the GS interband transitions, setting ω0 = ω(N+1)/2,GS and
considering the residual contributions to the QD gain and
refractive index spectra at frequencies around ω0 induced
by the ES populations as frequency-independent contributions
χi E S1(ρi E S1 , ω0). Simulations performed with this approach
have shown rather good agreement with the results obtained by
properly resolving both the GS and ES interband transitions.
Using this approach, however, no control over the onset of
ES lasing or simultaneous GS and ES lasing can be achieved.
Moreover, this approximation may lead to less accurate results
when simulating ML lasers exhibiting very short subpicosec-
ond optical pulses.

F. Numerical Model Implementation

In conclusion, in the implemented numerical model, at first a
proper discretization of the time axis with unit step �t is con-
sidered; the waveguide is then discretized in its longitudinal
direction (z-axis) with unit step �z. Each longitudinal slice of
the cavity is assumed to be either forward- or reverse-biased;
in this way, devices with different electrically isolated sections
acting as gain sections or saturable absorbers can be properly
considered. Once the device structure has been defined, all
the model variables are initialized and at each time step the
following procedure is performed:

1) multi-population rate equations described in Sections II-
C and II-D are solved in each longitudinal slice with a
first-order finite difference approximation, to obtain the
occupation probabilities in the QD states at the current
time instant t;

2) the polarization terms P±(z, t) are computed according
to (15), (16), and (18);

3) values for the spontaneous emission noise sources
S±(z, t)�z are generated according to (19) and (20);

4) forward and backward travelling fields at the next time
step t +�t are then calculated in each slice of the cavity
according to (13) and boundary conditions (10) and (11).

The above steps are iteratively repeated to compute the field
and carrier dynamics over the whole time interval.

III. FORWARD- AND REVERSE-BIASED QD SOA

Simulations of gain/absorption recovery in QD SOAs at
different bias conditions were performed. A comparison with
published results of DTS experiments [2], [3] and [17] allowed
us a first validation of the model parameters.

A single-mode ridge waveguide SOA with 500-μm total
length and 6-μm ridge width is considered. The active region
consists of five InGaAs dot-in-a-well layers embedded in
a p-i-n heterostructure where an intrinsic GaAs SCH layer
between two AlGaAs cladding layers guarantees the optical
confinement along the growth direction. Device facets are
assumed to be tilted and antireflection (AR) coated, allowing
us to consider ideal zero facet reflectivities. The main material
and device parameters are summarized in Table I.

In DTS experiments, the gain changes induced by a pump
pulse are measured by monitoring the transmission of weak
probe pulses with variable delay times relative to the pump.
The probe pulse energy is assumed to be small enough such
that the gain dynamics is not significantly perturbed. Within
this assumption, considering a reference framework moving
with the pulse, the single-pass gain experienced by the weak
probe pulse can be simply approximated as

G (τ, ω) = exp

(∫ L

0
g
(
z, τ + z

/
vg, ω

)
dz − αi L

)
(29)

where vg is the group velocity of the pulse, L is the waveguide
length, g is the net modal gain calculated from the QD optical
susceptibility (4), and τ is the time delay between pump
and probe pulses. Gain/absorption dynamics induced by the
propagation of a pump pulse in a QD SOA under both forward
and reverse polarization is studied as a function of the applied
bias conditions. In the results presented below, we always con-
sidered probe pulses with the same frequency as the frequency
of the pump pulse ωp . Neglecting spectral artifacts related to
the finite bandwidth of the probe pulse, the changes in the
probe single-pass gain induced by the pump are simply written
as �G(τ, ωp) = G(τ, ωp) − G0(ωp) [dB], where G0(ωp) is
the single-pass gain experienced by the probe pulse in absence
of the pump-induced perturbation (expressed in dB).

An unchirped Gaussian pump pulse with 250 fs width and
1.28 pJ pulse energy, resonant with the GS transition (h̄ωp =
0.99 eV) is considered.

Net modal gain spectra for various values of injected current
I computed in absence of external optical excitation are shown
in Fig. 2(a). The pump-induced changes in the single-pass gain
experienced by the probe pulse as a function of the delay time
relative to the pump pulse, �G(τ, ωp), are shown in Fig. 2(b)
for the same bias currents.
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TABLE I

MAIN MODEL PARAMETERS

Symbol Description Values

Material parameters

hw QW width 5 nm
η Effective refractive index 3.3445
Nl Number of QD layers 5

ND QD surface density 2.85 × 1010cm2

N Number of QD groups 7
Dm State degeneracy m = E S2, E S1, GS 6, 4, 2
h̄� Homogeneous linewidth 10 meV
�E FWHM of the inhomogeneous gain broadening 34 meV

Am Dipole matrix element m = E SI , GS 5.82 × 10−21, 6.03 × 10−21cm3eV
τm

c Relaxation times m = W, E S2, E S1, GS (24.5 + 0.3), 0.4, 0.3, 0.4 ps
τm
r Interband recombination times from m = SC H, W 100, 100 ps

τm
s Spontaneous emission recombination times from m = E S2, E S1, GS 2, 2, 2 ns

τm
Au Auger recombination times from m = E S2, E S1, GS 110, 275, 660 ps

βsp Spontaneous emission coupling factor 1 × 10−4

h̄ωim Interband transition energies for i = (N + 1)/2; m = E S2, E S1, GS 1.1060, 1.0597, 0.9904 eV

αi Intrinsic waveguide losses 1.5 cm−1

Vbi Built-in potential 0.8 V

Device parameters
SOA ML LASER

W Ridge width 6 μm 6 μm
hSC H SCH width 439 nm 439 nm

r2
0 SA side power reflectivity 0% 99%

r2
L Gain section side power reflectivity 0% 10%
L Total device length 500 μm 2 mm

Labs Absorber length − 350 μm

In the gain regime, the pump pulse strongly depletes carrier
populations in the QD GSs resonant with the pulse frequency,
leading to a significant gain compression. The maximum gain
compression induced by the pump increases significantly with
the applied current. Gain dynamics then shows a dominant
ultrafast recovery completed in a picosecond time scale,
followed by long-lasting changes occurring on a time scale
of hundreds of picoseconds and leading to a clear offset in
the gain curves within the investigated time interval. This
offset significantly reduces with the applied current and it is
attributed to changes in the total carrier density in the active
region, limited by carrier diffusion across the SCH (τ W

c ).
According to the experimental results shown in [2], the

dominant ultrafast gain recovery can be well fitted with a
double exponential function �G(τ ) = A0 + A f ast e−τ/τ f ast +
Aslowe−τ/τslow , where τ f ast and τslow are the characteristic
time constants, A f ast and Aslow are the corresponding am-
plitudes relative to the total gain compression, and A0 is
an offset accounting for the slow dynamics discussed above.
An example of the obtained fitting is shown in the inset of
Fig. 2(b). Consistently with DTS experiments published in
[2], gain recovery is characterized by an ultrafast time constant
τ f ast in the range between 300 and 150 fs, and by a slower
recovery time τslow of about 1 ps, both decreasing with
increasing current.

We now consider the same device under reverse bias con-
dition, acting therefore as a saturable absorber. We apply a
voltage ranging from 0 V (short circuit) to 10 V. The obtained

absorption dynamics is shown in Fig. 2(c) for the different bias
values. The absorption of the strong pump pulse causes the
generation of carriers in the QD GSs, leading to a significant
absorption bleaching. The maximum absorption bleaching
induced by the pump pulse decreases slightly with the applied
bias, but it is always much larger than the maximum gain
compression in the forward-biased SOA, consistently with the
expected difference in the differential gain and absorption in
forward- and reverse-bias conditions, respectively.

The subsequent absorption recovery can again be well fitted
using a double exponential function. At low applied voltages,
an initial ultrafast absorption recovery time τ f ast ranging from
400 to 300 fs is obtained; this dynamics is associated with
the efficient excitation of the photogenerated GS carriers to
the higher energy states ES1 and ES2. The amplitude of this
ultrafast recovery A f ast is, however, significantly smaller than
that of the ultrafast component in the SOA gain recovery and
decreases further when the applied voltage is increased. The
absorption recovery is instead dominated by a slower time
constant τslow, strongly dependent on the applied reverse bias,
decreasing from 41 ps at 0 V down to 2.5 ps at 10 V as
presented in Fig. 2(d). Simulations show that, at low applied
voltages, the dominant time constant τslow is mainly due to
thermionic escape from the QD confined states to the QW
states, which allows carrier thermalization among the various
QD groups, guaranteeing, in a time scale of tens of picosec-
onds, the recovery of a quasi-equilibrium energy distribution of
carriers in the whole QD ensemble. The absorption recovery
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Fig. 2. (a) Gain spectra for the forward-biased QD SOA for current I = 5, 8, 15, 40 mA; red vertical line shows the central frequency of the pump pulse.
(b) Corresponding gain dynamics induced by the pump pulse, inset: fitting with a double exponential function. (c) Absorption dynamics in the reverse-biased
SOA for voltage ranging from 0 V up to 10 V in step of 2 V, time axis is displayed in linear scale up to 2 ps and in logarithmic scale from 2 ps to 90 ps
for clarity, bold red line shows fitting with a double exponential for V = 4 V. (d) Characteristic time constant of the slow absorption recovery contribution
and corresponding amplitude as a function of the applied voltage.

is then completed thanks to nonradiative recombination and
spontaneous emission processes occurring on a time scale of
hundreds of picoseconds.

On increasing the applied voltage, thermionic escape is
enhanced according to (27a) and (27b) but for voltages larger
than 5 V, tunneling processes from the QD states toward
the 3-D SCH states become the dominant contribution to the
absorption recovery, leading to a significant reduction in the
recovery time constant τslow. The described behavior is in
good agreement with the absorption recovery measured from
DTS experiments [3], [17].

The preliminary study presented in this section and the
comparison of the simulation results with published DTS
experiments allowed validation of the chosen set of model
parameters and gaining insights into the peculiar properties of
the QD gain and absorption dynamics, governing the pulse
generation in two-section QD passively ML lasers. In the next
section, simulations of passive mode-locking in a two-section
device with the same active region as the previously simulated
SOA will therefore be presented.

IV. PASSIVE MODE-LOCKING

The model is now applied to the simulation of passive mode-
locking in a two-section edge-emitting QD laser with 2 mm to-
tal length and the same structure as the previously investigated
SOA. The laser cavity consists of a 350-μm long reverse-
biased saturable absorber (SA) section and a 1650-μm long

p-contacts

N
l
 layers of

InGaAs QD

n-contact
h

sch

n-GaAs substrate
n-AIGaAs
p-AIGaAs

p-GaAsI
W

V+
L-L

abs

L
abs

Fig. 3. Schematic of the simulated two-section QD ML laser.

forward-biased gain section. High-reflection (HR) coatings are
applied at the absorber facet, leading to a power reflectivity
of 99%, while the reflectivity at the output facet is reduced
down to 10% by the application of AR coatings. A schematic
of such a device is presented in Fig. 3.

The ML regime is investigated as a function of the bias
parameters. In the investigated parameter range, lasing always
occurs at GS wavelengths. Fig. 4(a) shows the behavior of
pulse width and peak power as a function of the current applied
in the gain section for a fixed 7 V reverse bias in the SA. Both
pulse width and peak power monotonically increase with the
applied current; pulse width increases from 7 ps at 200 mA
up to 12 ps at 350 mA; the increase in the average optical
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Fig. 4. (a) Pulse width (black) and peak power (gray) as a function of the
current injected in the gain section for a fixed 7 V SA voltage. (b) Pulse width
(black) and peak power (gray) as a function of the SA reverse voltage for a
fixed current I = 325 mA. (c) Average power as a function of current for a
fixed 7 V SA voltage. (d) Average power as a function of the SA voltage for
I = 325 mA. (e, f) Time traces of output ML pulse for a fixed V = 7 V in
the SA and with a current in the gain section of I = 200 mA and I = 325
mA, respectively. Trailing edge instability in the ML pulses at 200 mA is
clearly visible in the inset.

power with current [see Fig. 4(c)] completely compensates the
pulse broadening, allowing the peak power to increase almost
linearly with current. This behavior is currently observed in
QD ML lasers [4]. One must also notice that, by reducing the
current below 200 mA toward the laser threshold, the pulse
width could be significantly reduced; however, in this current
range, low-frequency modulations appear superimposed on
the ML pulses and trailing edge instability can be clearly
indentified in the time trace of the output pulses as shown in
Fig. 4(e). The onset of such instability at low current can be
well explained by the balance between the gain and absorption
dynamics as will be discussed in detail in the following.

Fig. 4(b) then shows the behavior of pulse width and
peak power as a function of the applied voltage for a fixed
gain current of 325 mA. The ML pulse width significantly
decreases with the applied voltage: for voltages close to
0 V, the laser operates in continuous-wave regime; on
increasing the reverse bias, incomplete ML is obtained where
the trailing edge instability is significantly enhanced; for
values larger than 5 V, a stable ML is instead achieved.
Pulse width decreases from 11.6 ps at 6 V down to 8 ps
at 10 V thanks to the speedup of the absorption recovery
in the SA section. The increase in the reverse voltage also
increases the stability of the ML regime against trailing-edge
instabilities.
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Fig. 5. (a) Left: temporal dynamics of the QD net modal gain spectrum at a
fixed z = 1980 μm in the gain section during the passage of a ML pulse; the
ML pulse envelope traveling in the considered section is also shown. Black
lines highlight the gain dynamics at the center pulse wavelength (1251.9 nm,
resonant with GS transitions) and the gain dynamics at the corresponding ES
wavelength. Right: Detail of the gain dynamics at the center pulse wavelength
(1251.9 nm). (b) Left: Temporal dynamics of the QD net modal absorption
spectrum at a fixed z = 20 μm in the SA section during the passage of a ML
pulse. Right: Detail of the absorption dynamics at the center pulse wavelength.

The decrease in the pulse width with the applied voltage
is accompanied by a significant reduction in the average
output power due to the weaker absorption saturation in the
SA [Fig. 4(d)]. Up to 9 V, the decrease in the pulse width
with the applied voltage is larger than the decrease in the
average power, leading to a significant increase in the pulse
peak power. On the contrary, for voltages larger than 9 V, the
decrease in the pulse width becomes weaker compared to the
corresponding reduction in the average power and the peak
power starts to decrease.

In order to gain insights into the onset of the described
ML regime, we considered two fixed longitudinal sections of
the device in the SA section, at z = 20 μm, close to the
absorber facet, and in the gain section, at z = 1980 μm,
close to the output laser facet. Fig. 5(a) and (b) shows the
temporal dynamics of the net modal gain spectrum and net
modal absorption spectrum induced by the passage of a ML
pulse in the considered sections, at 325 mA and 7 V.

As expected, the maximum absorption bleaching in the
SA induced by the ML pulse with a center wavelength of
1251.9 nm, which is resonant with the GS transitions, is
significantly larger than the maximum gain compression in
the gain section, due to the large difference between the gain
and absorption saturation energies.

In the gain section, during the pulse trailing edge, an
initial ultrafast recovery of the net modal gain at the GS
wavelength can be clearly identified; such a behavior can be
directly correlated to the subpicosecond recovery time constant
obtained from DTS experiments, as discussed in the previous
section [Fig. 2(b)], and attributed to the fast carrier energy
relaxation from the ES to the GS.
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and saturable and non-saturable losses in the cavity A(τ, f p) evaluated at the
peak frequency of the optical spectrum f p .

Such ultrafast dynamics induces also significant changes in
the ES populations, leading to a fast decrease in the net modal
gain at the corresponding ES wavelengths.

Gain dynamics at the GS wavelength is then completed with
a much slower recovery on a time scale of tens of picoseconds
which can be related to changes in the total carrier density in
the QD active layers, identified as an offset in the simulations
of DTS experiments shown in Fig. 2(b).

As shown in Fig. 5(b), the absorption recovery in the SA
section, however, does not show any initial ultrafast dynamics
during the pulse trailing edge and it is dominated by a
picosecond recovery rate mainly attributed to efficient tunnel-
ing processes from the QD states to the SCH states.

We must point out that such a difference between the initial
ultrafast gain recovery and the picosecond absorption recovery
in the SA section represents the main cause for the instability

of the ML regime appearing at low currents, as will be clarified
in the following paragraph.

In order to perform a rigorous study of the stability of
the steady-state ML regime, we calculated the round-trip gain
experienced by a ML pulse after a single round trip in the
cavity. To do so, we considered a reference framework moving
with the ML pulse so that variables (z, t) are mapped in (z′, τ )
according to the transformation as follows:{

z = z′
t = τ ± z′

vg

(30)

where vg is the group velocity of the ML pulse and the sign
change in (30) takes into account whether the pulse is traveling
in the direction +z or −z, respectively.

The gain experienced by a ML pulse during a single round
trip in the cavity, R(τ, ω), can therefore be simply written as

R (τ, ω) = r0rL exp

⎛
⎝

L∫

0

(
g+ (z, τ, ω) + g− (z, τ, ω)

)
dz

⎞
⎠

× e−αi L

(31)

where g+(z, τ, ω) and g−(z, τ, ω) are the gain experienced
by the pulse when traveling along the direction +z and −z,
respectively. The spatiotemporal evolution of such gain
spectra can be simply calculated from the dynamics of the
QD optical susceptibility (4) as outlined in Section II-A. We
can therefore write

ln R (τ, ω)

=
Labs∫

0

(
g+ (z, τ, ω) + g− (z, τ, ω)

)
dz

+
L∫

Labs

(
g+ (z, τ, ω) + g− (z, τ, ω)

)
dz − αi L − αm L

(32)

where αm = ln(1/(r0rL))/L are the mirror losses and where
we separated the contributions coming from the SA section
(0 < z < Labs) and the gain section (Labs < z < L). Finally,
we define

ln R (τ, ω)
/

L = G (τ, ω) − A (τ, ω) (33)

where

A (τ, ω) = − 1

L

Labs∫

0

(
g+ (z, τ, ω) + g− (z, τ, ω)

)
dz

+ αi + αm (34)

G (τ, ω) = 1

L

L∫

Labs

(
g+ (z, τ, ω) + g− (z, τ, ω)

)
dz (35)

so that the round trip gain experienced by the pulse can finally
be simply written as R(τ, ω) = exp((G(τ, ω) − A(τ, ω))L).

In Fig. 6(a) and (b), maps of the normalized round trip
gain ln R(τ, ω)/L = G(τ, ω) − A(τ, ω) experienced by the
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Fig. 7. Instantaneous frequency variation versus time at 7 V reverse bias
and I = 325 mA.

ML pulse during the propagation in the cavity are shown for
7 V reverse bias and gain currents of (a) 235 mA and
(b) 325 mA, respectively. In Fig. 6(a) and (b), the optical
spectrum and the time trace of the ML pulse at z = 0 are
also shown. As expected, the time trace of the ML pulse and
its corresponding optical spectrum are significantly different
from zero only in a temporal and spectral window where
ln R(τ, ω)/L ≥ 0, i.e., there is a positive net gain per round
trip.

According to New’s condition [18], a stable ML regime
could be achieved only when the net gain window is immedi-
ately closed before and after the ML pulse envelope. However,
at both bias conditions shown in Fig. 6(a) and (b), a region of
positive gain can be clearly identified also immediately after
the ML pulse. Such a condition is attributed to the initial
ultrafast component in the gain recovery described above. This
point can be further clarified by looking at the partial contri-
butions to the overall pulse round-trip gain due to the pulse
propagation in the gain section G(τ, ω) and to the saturable
and non-saturable losses in the cavity A(τ, ω), respectively.
At the bottom of each map in Fig. 6(a) and (b), superimposed
on the ML pulse envelope, partial contributions evaluated at
the peak pulse frequency f p are shown. G(τ, 2π f p) shows a
faster recovery, during the pulse trailing edge, with respect the
recovery of A(τ, 2π f p), causing the formation of a net gain
window extending beyond the pulse duration.

Under this condition, following New’s criteria, the noise
generated just after the pulse trailing edge could therefore be
amplified, leading to instabilities in the obtained ML regime.
Despite the qualitative information provided by New’s criteria,
however, the possibility to achieve a stable ML regime with
pulse width much shorter than the overall duration of the
net gain window has been demonstrated [19], [20]. As a
matter of fact, only the noise generated in the short time
window and finite spectral bandwidth corresponding to the
net gain region following the pulse can induce a trailing-edge
instability of the ML pulses; if the perturbations induced by the
spontaneous emission noise are too weak to be significantly
amplified during a round trip, a stable ML regime can be
safely preserved. Furthermore, differences between the group
velocities of the ML pulse and the background noise can
further improve the stability of the ML regime. According
to this picture, as shown in Fig. 4, stable ML can therefore

be obtained despite the existence of a region of net gain
immediately following the ML pulse.

However, as clearly shown in Fig. 6, by decreasing the gain
current, the region of net gain exceeding the pulse duration
becomes significantly larger; furthermore, also the spectral
width of the positive gain region just after the pulse tends
to significantly increase when decreasing current. For currents
smaller than 200 mA, the amplification of noise following the
pulse becomes therefore strong enough to induce the trailing
edge instabilities shown in Fig. 4(e).

One final comment must be made on the chirp of the
ML pulses. In Fig. 7, a typical behavior of the instantaneous
frequency variation of a ML pulse at 7 V and 325 mA is
shown. A positive linear chirp of the ML pulse is obtained.
The pulse chirp mainly arises from the self-phase modulation
induced by the dynamics of the ES populations in both the gain
and the SA section [13]. As a matter of fact, even though the
ES populations poorly contribute to the stimulated emission
processes responsible for pulse amplification and attenuation
in the gain and SA sections, their dynamics significantly
influences the changes in the refractive index at the lasing
wavelengths, leading to a nonzero chirp of the ML pulses, as
shown in Fig. 7.

V. CONCLUSION

We developed a finite difference time-domain traveling-
wave model including a detailed description of the QD optical
susceptibility, spontaneous emission noise, and QD population
dynamics.

Preliminary simulations of DTS experiments in forward-
and reverse-biased SOA allowed the determination of the
peculiar properties of gain and absorption dynamics in-
duced by the QD active layers. Furthermore, compari-
son with DTS experiments in similar structures allowed a
first validation of the model parameters. Consistent with
the experiments, the ultrafast gain recovery in a forward-
biased SOA was found to be characterized by two dif-
ferent characteristic time constants in the subpicosecond
and picosecond range, respectively. In the reverse-biased
SOA, absorption recovery was instead found to be domi-
nated by a picosecond recovery time, which was strongly
dependent on the applied reverse bias due to enhanced
thermionic escape rates and tunneling processes from the
QD states.

The model was then applied to investigate the ML regime
in a two-section QD laser structure as a function of the
bias parameters, i.e., saturable absorber reverse voltage and
current in the gain section. Details of the gain and absorp-
tion dynamics leading to the generation of the ML pulses
were given. The appearance of low-frequency modulation and
trailing-edge instability in the ML regime at low current was
observed. The instability was attributed to the initial ultrafast
gain recovery found in DTS experiments, leading to a net gain
window exceeding beyond the pulse duration. This observation
was fully supported by a detailed calculation of the total
amplification and losses experienced by a ML pulse during
a single round trip in the cavity.
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Finally a linear frequency chirp of the ML pulses was found
and attributed to the refractive index changes induced by the
ES population dynamics in the QDs.
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