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Abstract—In this paper, we extend the concept of Stochastic by considering only the cacophony of the conversation, e.g.
Packet Inspection (SPI) to support TCP traffic classification. opserving the frequencies of the occurrence of symbols like
SPI is a method based on the statistical fingerprint of the «y» or “h”. or “i". In other words. statistical characterigion

application-layer headers: by characterizing the frequencies of o .
observed symbols, SPI can identify application protocol formats of application-headers lets the protocol format emergelewh

by automatically recognizing group of bits that take e.g., constan ignoring the actual semantic.

values, or random values, or are part of a counter. To correcty ~ The SPI approach has proven very effective in the classifi-

characterize symbol frequencies, SPI needs volumes of traffic cation of UDP traffic (i.e., over 98% true positive classifica

to obtain statistically significant signatures. Earlier proposed for ; : - "

UDP traffic, SPI has to be modified to cope with the connection |n_the worst C"f‘se* Wlt.h negligible false positive events]}11

oriented service offered by TCP, in which application-layer Itis therefore 'nteres“ng.to asse_s_s V\_’hether SPI could @50

headers are only found at the beginning of a TCP connection. used to handle TCP traffic classification as well. Extension o
In this paper, we extend SPI to support TCP traffic, and SPI to TCP traffic is indeed not straightforward: SPI typigal

analyze its performance on real network data. The key idea is needs volumes of traffic (e.g., several tens of packetshgbei

to move the classification target from single flows to endpoints, based on statistical characterization.

which aggregates all traffic sent/received by the same IP addrss . . .
and TCP port pair. The first few packets of flows sent from (or Recalling that UDP offers a connectionless service, each

destined to) the same endpoint are then aggregated to yield aS€gment has to carry the application-layer header. Moreove
single SPI signature. Results show that SPI is able to achieve possible message segmentation has to be handled at applica-

remarkably good results, with an average true positive rate of tion layer. As a consequence, applications relying on UDP
about 98%. have to include headers in each UDP segment, which SPI
technigues can then reliably extract and characterize.

On the contrary, TCP offers a connection oriented service,
Despite the effort devoted to the task of Internet traffiaccording to which the application stream of data may be
classification yield to significant progress in the field [1}segmented into several TCP segments, among which only the

[14], the ultimate and definitive solution is still far froneimg first ones may carry the application-layer header. Thisrastg
available. Deep Packet Inspection (DPI) is still regarded with the need for volumes of traffic to build statistically
the state of the art and deployed in practice, despite it sgnificant SPI signatures.
well known that the proliferation of proprietary and evaolyi To extend SPI to TCP traffic, we propose to shift the
protocols and the adoption of strong encryption technigues classification target from a single flow to an aggregate ofdtow
deemed to make DPI ineffective. more precisely, we consider TCP endpoint entities, thatean
Motivated by the expected raise of UDP traffic volumeniquely identified by the server IP-address and server TCP-
due the popularity of application such as P2P-VoIP and P2Bbrt pair. In this case, rather than constructing signatoxer
TV, we proposed in [11] a classification framework tailoredeveral segments of a single TCP flow, we aggregate the first
to UDP traffic, based on Stochastic Packet Inspection (SFBw segments of several flows originated from (or destined
Considering Deep Packet Inspection (DPI), typically pecito) the same server endpoint into a single SPI signature. Our
keywords are searched to identify a specific protocol. Withrasults show that TCP endpoint aggregation is an effective
human analogy, one may try to recognize the foreign languageproach that yields reliable signatures: SPI classifinati
of an overheard conversation by searching for known wordshieves remarkable results considering TCP traffic, shgpwi
from a small dictionary (e.g., “Thanks” for English langeag an average and worst-case true positive rate of 98% and 91%

I. INTRODUCTION

“Merci” for French, “Grazie” for Italian and so on). respectively considering most common applications.
At opposite, considering SPI paradigm, the packet payload
is statistically analyzed (e.g., by means of entropy messur Il. RELATED WORK

or Chi-Square tests) to automatically build protocol stgnes. Since port-based classification has become unreliableg thr
The intuition behind SPI is that an application-layer poaio coarse classes of approaches have been proposed for tnterne
can be identified by statistically characterizing the valudraffic classification [1]-[14]. Our work can be ascribed aimgo
observed in a stream of packets. Considering the prevideayload-based techniques, such as DPI [1]-[3], with an
analogy, this time we aim at recognizing the foreign languagmportant difference. DPI techniques indeed inspect packe



payload for the presence of known strings. The main idea Ckfs e, ETHERNET grotps

of SPI is to give instead a statistical characterization of | IP__(ipSrc, ipDst) .

the observed values in the payload, automatically identfy 7| TCP (prtSrc, prtDst) $
constant, random, or periodic values. SPI is also diffefremh (e (s SN
Statistical-based classifications [4]-[8], which are based onF ﬂx"ws< : ] Qi frequencies | 0 % inters
the rationale that, being services extremely diverse,(@gh <" | P fieemme Zi‘li

vs VoIP), so is the corresponding traffic (e.g., short buobts — 1P (ipSrc, ipDst) --

large packets vs regular arrivals of short packets). Thesef 7] TCP (prtsrc, prtDst)

the classification can be based on statistical charactieniza [|2A2L3) (e X=[X;, X5, X5, - Xg]
of e.g. packet sizes, or inter-packet-gap, while compfetel - ‘ g SPI signature

. h . . b bits x G groups = N bytes <

ignoring actual payload values. Finallgehavioral-based F-P = Cpkts) > 5:2°

classification [9], [10], [12] targets a coarse-grainedsifica-

tion of Internet hosts on the basis of the transport laydfitra Fig. 1. SPI signatures of TCP trafficG groups ofb-bits long chunks are
extracted from the first? packets ofF different flows (withC' = F' - P)

patterns they generate. For example, a Peer—tp-Peer amxprhc originated from (or destined) to the same endp@if, p).
generates and receives lot of connections, while an enitcl
typically contacts only a single server, and a web clienenev

receives connections. . . . . '
For the time being, let us consider a single traffic stream.

More precisely, consider an arbitrary payload chunlof b

consecutive bits, and observe the values taken by the chunk

A. SPI Chunks over a stream of”' packets: due to the fact that the chunk
Statistical fingerprints can exploit a number of differeri§ b-bits long, we have that can take values i, 2" — 1J.

metrics, such as for instance the Entropy measure, the Pdgnoting withO{* the number of times that chunktakes a

son’s x> measure, the Kullback-Leibner divergence, etc. IMaluei € [0,2° — 1], we have:

the reminder of this paper, we evaluate the performance of

Il. SPI FRAMEWORK

2
SPI when its signatures are expressed usihgnetric defined 2"—1 (OZ(") — Ei> _ C
by a Pearson Chi-Square test. Xx =Y g with Ei=o (2
The original test estimates the goodness-of-fit between =0 ’

observed samples of a random variable and a given théotuitively, x, achieves low values~ 0) whenever the chunk
retical distribution. Assume that the possible outcomearof under observation has a random behavior (e.g., due to obfus-
experiment areK different values and);, are the empirical cation, encryption, compression, etc.). In case of detagtic
frequencies of the observed values, oulibtotal observations behavior (e.g., a constant identifier, address, etc.), we ha
(3> Oy, = M). Let E;, be the number of expected observationthat xpe; = (2° — 1)C, which is also the maximum value that

of k for the theoretical distributionf,, = M - p;, with p;, the xxcan take. For convenience, we renormalize theas:

probability of valuek. Given aM large, the random variable o — Xx 3)
X T2 -0
K 0 Chunks have therefore, € [0, 1].
Ok — Ey)
X=>% — B (1) B. SPI Signatures
k=1

SPI signatures are then build by aggregating together the
represents the distance between the observed empirical andalues of several chunks. As outlined in Fig. 1, the first
theoretical distributions. The distribution of can be ap- N bytes of the payload (i.e., the application protocol hepder
proximated by a Chi-Square, ar?, distribution with K — 1 are divided intoG groups of b consecutive bits eachC'
degrees of freedom. In the classical goodness of fit test, iblgservations of each chunks (i.€, packets) are necessary
values of X are compared with the typical values of a Chito form the SPI signature.
Square distributed random variable: the frequent occaeren In the case of UDP, all’ packets identified by the same
of low probability values is interpreted as an indicationaof tuple (I Pg.c, UDPy.c, I P;s;,UDP,) belong to the same
bad fitting. flow. Conversely, in case of TCP, the segmentation introduce
In SPI, we build a similar experiment analyzing the valuest the transport layer reduces the chances that a TCP segment
taken by groups of bits having a fixed offset in the packearries the application protocol header. However, we can
payload, callecchunks After a given number of packets (eactexpect that the very first few segments of each flow carries
giving an observation), the empirical distribution is ealled information that are specific to each protocol (e.g., as in
and then compared to theniform distribution so to measure behavioral classification approaches [7], [8] that exptbi
the amount of randomness of a chunk as an estimate of Hige and arrival time of the first few packets of a flow).
source entropy. Notice that, by doing so, SPI is able to copeWe therefore consider a TCP endpoint, that is uniquely
also with obfuscated or encrypted chunks [6]. individuated by the server IP address and TCP port pair



HTTP SMTP
0

(IP,p). We assume to be at the edge of the network, where all 3 15, 23, 3 3 15 23 31
. . . . 0.89(0.8610.90/0.87|0.88(0.86|0.86|0.87 ¥ b

the endpoint traffic transits, and separately consider W ti;o1 Iosslosalo s [oaloss g-(’ 0o o 8 00

traffic directions, i.e., the traffic directed to, and theffica [os7 0.53 0.50 0.46

originated from the endpoint/ P, p). As outlined in Fig. 1, @ (b)

signatures are computed by observing ¢hgroups of chunks

over the_flrstP packets ofF’ consec_utlve flows orlgmate_d from Fig. 2. Example of SPI signatures of HTTP (a) and SMTP (b) mui)
(or destined to) the same endpoint, whéteand F' satisfies server endpoint is the destination.

C=P-F:

Q:{wl,WQ,...,WC} (4)

The rationale behind SPI signaturgss that they allow to au- humber of packets at the beginning of a flow carrying appli-
tomatically discover application layer message headendor cation header at the beginning of the payload. As far as the
without needing to care about specific values of the headétmber of packets per flow is concerned, we empfoy= 5
fields (e.g., known keywords). Indeed, we expect app"cati(yvhich was observed to be a good value in [7], [8]. Sensitivity
header to contain fields such as constant identifiers, conté@nalysis toP is provided in [15].

words from a small dictionary (message type, commandsumber of flows per endpoint (#'=C/P=16). Constraints
flags, etc), or truly random values coming from encryptiofn C and P yield a lower bound or¥” = 16, the minimum

or compression algorithms. These coarse classes of fietds Bamber of flows to observe before an endpoint classification
be easily distinguished through the operation in (2). Whilecision can be taken. This translates into a constraint on
randomness test provides only a coarse classification oflé¢ classification timeliness, i.e., how fast and frequentl
individual groups, by jointly considering a set 6f groups classification can be taken, since the startoflifferent flows

as in (4) the fingerprint becomes extremely accurate. NotiBave to be observed prior that a classification decision ean b
indeed that th@osition and lengtlof the different fields within taken. Notice however that, the more active the endpoiet, th
the application protocol header will likely be differenbfn  quicker the identification (which is beneficial since operst

protocol to protocol. are interested in classifying volumes of traffic, and shqudde
no problem in discriminating between active endpoints such
C. SPI Parameter Selection as server vs P2P).

SPI signatures depend on a number of parameters, some )
of which are tied to the extension of SPI to TCP endpoirt: EXample of SPI signature
classification (such a®,F), whereas others (such asC and An example of SPI signatures for two different protocols,
N) pertain to thev metric. Here we report guidelines on theinamely HTTP and SMTP is given in Fig. 2. It is derived con-
selection, and refer the reader to [11], [15] for a more dedai sidering segments of client requests directed toward these
sensitivity analysis. endpoint. Average SPI signatures over 100 different emdpoi
Bits per group (b = 4). The choice ofb = 4 trade-offs are reported. In the example, parameters are set to theiultief
opposite needs. On the one hamdshould be as closest asvalues as stated above. The classical header represansatio
possible to typical length of protocol fields (e.¢.should be adopted, representing chunks in network order from left to
4 or 8 or a multiple of 8). On the other haridshould be small right, top to bottom. Four bytes are reported on each row
enough to enable statistically significant test over thellesta (i.e., 8 chunks) and, for reference, bit offsets are replorte
possible windows”, to allow live classification if possible. at the top. Each chunk reports the value, which is also
Packet window (C = 80). While we would like to keep the visually represented with different scale of gray. Lightetors
packet window as small as possible, fitetest is considered to correspond to higher values of, suggesting deterministic
be statistically significant if the number of samples forteadields, while darker colors correspond to low values.gf
value is at least 5. Having chosén= 4, in order to have hinting to random fields. First of all, comparison of Fig. 2-
E; = C/2b equal to 5, we need’ = 80. Sensitivity toC' is (a) and Fig. 2-(b) confirms that, though the randomness test
evaluated in [11]. provides only a coarse classification over individual gsup
Number of bytes per packet (V = 12). In general, clas- and expressive fingerprints can be built by considering the
sification accuracy increases with the number of bytes pshole set of G chunks. This allows to clearly differentiate
packet. However, complexity of the classification incresasdetween protocols.
also with theN, in terms of both memory and computational To grasp the SPI signatures expressiveness, let us first con-
complexity. As a convenient trade-off we choo8e = 12. sider the case of the Web service, implemented over the simpl
Given b = 4, this value corresponds & = 24 groups for and stateless HTTP protocol, whose SPI signature is raporte
each signature. Notice that, as can be seen from Fig. 2, a feweFig. 2-(a). In the HTTP case, requests directed toward the
number of bytes and chunks may be sufficient to successfullgrver often begins withGET /" the high occurrence of
discriminate different protocols. this 5-characters string translates into the first 10 chuoks
Number of packets per flow (P = 5). The segmentation be almost deterministic (high values). Variability of the first
imposed by TCP yields an upper bound Bnthe maximum chunks is due to the fact that server can receive other HTTP



T C i
methods tharGET (e.g., POST, HEAD, PUT). Variability of 7/t W ETmCEsy Performance
subsequent chunks is instead tied to the different ressurce  tcp Dp| Up _,Dconfusgon
that can be specified after the method (e.g., URL in case of Orade/ L 7 matrix
CET, parameters in case #10ST, etc.). Splitted gz Spy 1lsvyMm
! . ! . ! PR —e 2
Interestingly, HTTP uses an ASCII alphabet, which trang<e ¥ - report D“ '_/:,N classifier

lates also into a reduced set of values chunks can take. Given TcP sPi _J X

byte, since we usé = 4 bits long chunks, an ASCIl encoded ~ chunker AN
) . . . ¥ model

character is splitted into two chunks, corresponding tarlost spl  wEEEwm., ——— | Validation set [}

a.nd'lleast significant part qf the byte r('as.pectively. Thg maosynatures E__,g%—» B —_—— oo

significant chunk shows higher determinism~0.6), while Sampler  Training set gy leaming

least significant chunk shows higher randomness~0.3).

For example, consider the ASCII uppercase let{&s. ., Z}

which take hexadecimal values {i®x41,. .., 0x54}. The most Fig. 3. Classification Workflow

significant bits of a character fall into a chunk that takelyon

values of 4 and 5. Conversely, least significant bits falle TABLE |

chunk that takes any possible values from 0 to 15. This leadS AMOUNT OF BYTES, PACKETS, FLows, TCP ENDPOINTS AND
to differentw values, i.e., a different randomness. In Fig. 2-(a), SPI SGNATURES IN THE CONSIDERED DATASET

the impact of ASCII encoding can be appreciated by observirgProtocol [Bl%tg]s F[’al%';ﬁts : 1':0'3}"’5 Eng T.C': S tSPI

. . . . . ndpoints ignatures

the alternation of lighter and darker chunks. HTTP 1 34367 50708 653119 177 114977

Let us now consider the SMTP protocol signature reportedFrp 0.04 0.65 19.39 21 229

in Fig. 2-(b). Recall that an SMTP client contacts a server %APP g-zg %gi 15%-433 %g 35261

with the typical sequence of commanisl. O, MAI L, RCPT, Skype 195 2038 145 29 392 2752

DATA. Notice that these commands are 4-characters longsmTpr 61.00 126.61  4917.20 56 83677

(which correspond to 8-chunks) and, with the exception of (S)?hH 4583-88‘:‘% 7%&-%73 13 50166;3 léﬁ 463%07‘;

er . . .

the DATA command, are followed by a space character an Total 87346 142780  25204% 5546 551574

some parameters of variable length. Since several commands

are used during the same session, there is a larger number of

observed symbols, which therefore decreasef correspond-

ing chunks. Also in the SMTP protocol case, commands are IV. CLASSIFICATION RESULTS
encoded using ASCII alphabet, causing a highervalue for A. Workflow

most significant chunks than for least significant chuh&ie  The overall workflow of SPI classification and validation
highly probable space character at the 5Sth byte causeshhetgepicted in Fig. 3. As usually done in the literature, SPI
and 10th chunks to take deterministic values, as the highperformance is validated against the ground truth proviged
value observed in such position shows. Chunks correspgndih oracle. The oracle is used to split the packet trace fite int
to characters after the 5th position may contain any Smeﬁherent sub-traces, one for each protocol. For each mdet

of the ASCII alphabet, (e.g., angle brackets to enclose mgjk then compute the SPI signatures for each TCP endpoint.
addresses, etc.) or user data, which then decreasehRies A subset of these signatures, uniformly selected at random,
of corresponding chunks. used to train the SVM. As a result, SVM produces a “model”
that is used during the classification process.

Signatures that have not been used for training purpose
S T Bnstitute the validation set: the SVM model is applied to
.TCP protocols, clgss.|f|cat.|on implies to label samples Ed:cp thjs set, and SVM decisions are then compared against oracle
ng to_ the most S|m|l_ar S|g_nature. We_r_esort to a SUPEIVISEGhols to evaluate the correctness of the classificationitses
machine approach, in which the decision algorithm is first Notice that the SVM training phaggartitions the signature
trained using a set of labeled samples, which are charzaet:tarispace into a number of regions equal to the number of
bﬁ’ tzeg. featurles ‘T"z frqm F]q' (4). dAfter tlhe trammg plhas%rotocols offered during the training: this implies thatanple
t € decision algorithm s then used to ca;sn‘y Samples. wli alwaysbe classified as belonging to any of the known
t.h's paper, we rely on state of the_ art technique known in tr&?asses. Thus, an additional label is needed for all santipdes
literature as Support Ve(_:tor Machines (SVM) [16]. SVM haﬁo not belong to any of the above protocols: in the following,
only recently been applied to the context of Internet traf'fkgle refer to these protocol as the “Other” set, comprising the

classification [11}-{13], but it is considered among the moﬁpplications that we cannot classify or are not interested i
powerful supervised algorithm. Due to lack of space, We”efglassifying

the reader to [16] for a good tutorial.

E. Decision process
After SPI signature have been computed for some knovg

B. Dataset
1The higher variability of the first 8 chunks is also due to othessible Unf . d . . h . if
commands (e.gVRFY), the presence of old clients (e.¢dELO instead of nfortunately, due to privacy Issues, the scientific commu-

EHLO), clients using lower case letters, etc. nity lacks a common reference dataset used to benchmark



. TABLE I
the different proposal [1]-[12] although valuable effortthat ¢ assiFicaTiON PERFORMANCE FOR TRAFFIC DIRECTED T¢TOP) OR

direction is going on [13], [14]. For this reason, we evatuat ORIGINATED FROM (BOTTOM) THE SERVER SIDE ENDPOINT
the SPI performance using a traffic trace collected during ma
2008 at the egress router of Politecnico di Torino network.

. - RST HTTP FTP SMTP IMAP Skype SSH POP Other
The traces c_orrespond to a one week long d_ataset, in whieh=s—1—9z792 o 006258 0 - o 539
about 7000 internal hosts exchange data with more than 8rp 0 98.59 0 0 0 0 003 0
o ; ; ; . SMTP | © 0 99.86 0 0 0 0 0
m|II|_on dlfferent_ hosts in the Internet. Details concemitne | 10 | o2 0 0 90.97 0 0 0 0
traffic volume, in terms of the number bytes, packets, flowsskype | 0.01 0 0 0 100 0 0 0.05
endpoints and signatures, are given in Tab. I. The tablertgpo 550 | %% 0 0 9 e 1o o 003
P Y »are g - POpop | 001 131 002 29 0 0 9994 0
the total traffic volume, and the breakdown across the mosbther | 4.97 0.1 006 355 0 0 003 9758
common application protocols considered in this work, nigme .. —mrre—rre—swTr— VAP Skype—SSH——POP—Othdr
HTTP, FTP, IMAP, POP, Skype, SMTP, SSH, Other. HTTP | 91.63 0 0.07 154 0 0 0 13.99
; : L FTP 035 9898  0.02 0 0 0 0 1.05
In this paper we focus _on.Iy oimternal endpoints,i.e., | gyp | o 003 9945 0 o o 003 003
servers whose IP address is internal to our LAN. Recall thaivap 0 0 0 58.08 0 0 0 0
H : : kype 0.01 0 0 0 100 0 0 0.03
we need to opserve several flows involving a single endpo SH 015 0 s 0 o 100 0 005
to gather a single signature, and thus take a classificatjoror 0 0 0 0 0 0 9959 0
decision. In case of external endpoints, this means tharaey Oher | 786 099 046 4038 0 0O 038 848

of our internal hosts have to contact the same endpoint to

collect enough packets to compute the signature. While this

is not an issue for popular external server and protocog, (e. the flow to the sub-trace containing all the other protocols

popular Web sites), however it limits the number of protscol since it is syntactically wrong.

we could use considering the dataset we use in this paper.
Our dataset includes more than 250000 signatures, that ré?e

to about 2250 endpoints. As expected, Web service coregtitut Evaluation of classification performance is conducted over

the bulk of traffic, while a fairly large amount of incomingthe entire dataset, by comparing the SVM labels to the DPI

SMTP traffic is present. The protocols we consider accoudtacle labels for each signature.

for about one half of the traffic (in terms of bytes, packets Results reported in this section refer to a test in which

and flows), yielding to a large fraction of the traffic to bdhe training set containing 5000 signatures, proportignal

labeled as “others”, which therefore includes all P2P wgaffi balanced across protocols. Each test is repeated 10 tipes, b
Concerning the number of available signatures, notice tHandomizing the training set at each execution, and vafigat

each internal endpoint has to be contactedhdifferent hosts the model on the remaining signatures. Average results over

of at leastP packets to compute the signature. The number 8l 10 iterations are reported in the following.

signatures per protocol depends on the arrival pattern #s we In particular, 1800 training signature are used to describe

Performance evaluation

as on the flow length as well. the “other” protocol set, since this set comprises possibly
several protocols and its proper description requires ghah
C. DPI Oracle protocols are well represented in the training set. A siitgit

] ) o _analysis to the training set size is not reported due to lack
As already pointed out in [2], the definition of a reliableyt space. Readers are referred to [15], which shows than, eve
DPI oracle is a daunting task, that we have to carry on due dgpsjdering only 35 signatures per each of the known prdgoco
the lack of a labeled dataset. Except for the Skype protoc@{e classification results are minimally compromised. Tis
for which we resort to [6], we devise a two-stages DPI oraclg, consequence of the discriminative power of SVM, whose
defined as follows. performance are known to be highly robust even in presence
« Port filter : The first phase only involves TCP port num-of few learning samples.
ber. We consider only those flows whose TCP destinationTab. Il summarizes the results. @onfusion matrixrepre-
port correspond to the corresponding service well-knowgentation is used, in which each column corresponds to a sub-
port, i.e., 80 for HTTP, 22 for SSH, and so on. By doingrace filtered by the DPI oracle, which is fed to a trained SVM,
so, we forcibly miss some endpoint. For example, HTT®hose output labels are reported on each row. Thus, diagonal
servers running on port 8080 or on other non-standaettments of the confusion matrix account for True Positive
ports end-up in the “other” protocol sub-trace. Howeveclassification (i.e., a protocol labeled & by DPI is also
this choice yields to a conservative evaluation of thiabeled asX by SVM). Conversely, cells outside the diagonal
classification performance results. refer to misclassified signatures: a protocol labeledXaby
« Protocol syntax check The second phase involves apDPI is labeled a§” by SVM,; this decision accounts for False
plication protocol check, that is done using the WireshaiRositive classification ot” and False Negative classification
tool. Wireshark is a well-know sniffer which is able toof X.
parsethe headers of known protocols. In case during the Results considering the two different traffic directiong ar
parsing Wireshark fails to identify the protocol, we moveeported. Top (bottom) portion of the table reports the case



where traffic is destined to (originated from) the interreaver  [5]
endpoints. Notice that, although classification resulés\ary
good in both cases, best results are obtained when traffic
destined to the server endpoints. This is visible for HTTP,
IMAP and Other protocols. The intuition behind this is thatl’]
the client protocol requests are easier to characterize tte
server replies, which can be more variable. For example, HTT
requests use limited set of protocol keyword as discussed n]
Sec. llI-D, while server answers can be much more differenl.

Focusing on traffic destined to the server, we gather that tru
positive rate classification always exceeds 90.97%, with &)
average of about 97.62%. Compared to the UDP classification
results presented in [11] which yielded a 98% true positivel]
ratein the worst casethe classification performance of TCP
traffic decreases. This is somehow expected: in the UDP cags;
application protocol headers are present in each segment,
yielding to very reliable SPI signatures; in the TCP case, th
TCP connection oriented service and segmentation algasith;; 5,
affect the SPI signatures, that are possibly computed atér b
application protocol headers and actual data carried iffirtste
5 TCP flow segments.

R

(14]

V. DISCUSSION AND CONCLUSIONS [15]

This paper focused on the classification of TCP endpoints
by means of Stochastic Packet Inspection. Even though
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achieves remarkably good results, (average and worst case versity PressNew York, NY, 1999.

true positive rate of about 98% and 91% respectively), there
is room for improvement, especially when compared to the
results achieved by SPI for UDP traffic.

Two possible directions could be undertaken to improve SPI
performance. The first implies to find an optimal value ftr
which clearly depends on the length of the application paito
keywords. However, it is likely that there is no single vabfe
P that is optimal for all protocols, as already observed inf8]
second direction could be instead of using SPI signaturesca
on the Predictive Entropy: in this case, the SPI signatures
would statistically encode aexpected sequendeather than
an expected frequengeof chunks, yielding to more robust
signatures.

Finally, we are currently testing the SPI classifier to inieu
also other classes of traffic, and in particular Peer-ta-Pee
traffic. Preliminary results are very promising, and shokzt t
SPI has excellent performance also for those kind of traffic.
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