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Abstract. The effect of coupling between levels in quantum wells or quantum dots is described in Green’s
function formalism. The structure eigenvalues are shown to have a Brillouin-Wigner continued-fraction
expression that allows to give a general and intuitive meaning to levels coupling, described in terms of an
off-diagonal self-energy. The concept of coupling is linked to a general potential matrix and can be given
the same mathematical form for all kinds of coupling (inter- and intra-quantum dot and quantum well), in
which off-diagonal self-energy contributions assume each time a different conceptual meaning. Furthermore,
the same scheme, based on off-diagonal self-energies, allows to evaluate renormalization contribution due
to each structure energy level in a natural and easy way.

1 Introduction

One of the central subjects in optimizing the design of
novel semiconductor laser devices based on quantum dots
(QDs) is a quantitative description of various electronic
scattering processes [1]. Self-assembled QDs, grown by the
Stranski-Krastanov method [2], consist of nanometer-sized
protrusions on a thin, quasi-two-dimensional wetting layer
(WL). Numerous realizations consist of p-doped-intrinsic-
n-doped (p-i-n) structures allowing an electrical injection;
at the center of the intrinsic region, several layers of QD-
WL systems are stacked together, separated by spacers
S1, S2 thick enough (with bulk-type density of states) to
exclude vertical electronic coupling [3].

In optoelectronic applications (e.g., lasers and opti-
cal amplifiers) carriers are injected from bulk-type S1, S2

spacers in the two-dimensional continuum of WL states
and subsequently are captured into one of the bound,
quasi-0D states of QDs (the ground state GS and/or one
of the M excited states ESi, i = 1, . . . ,M). Figure 1
shows a typical QD-based structure, much simplified: for
the conduction band, electronic energy levels of QD-WL
subbands GS, ESi and WL are respectively indicated as
εGS , εESi

and εWL. A similar plot could be drawn for the
holes in valence band.

In a similar way, in semiconductor lasers based on
multi-quantum wells (MQWs), carriers are injected
through bulk layers in the active region, where they are

� The research leading to these results has received fund-
ing from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under Grant Agreement No. 224338
(FAST-DOT project).

a e-mail: marco.vallone@polito.it

captured in one of the quasi-2D confined energy levels of
QW, relaxing in the end on the ground state.

A major concern in this context is that each level of
QW (or of QD-WL) is not an insulated system: in general,
each energy level is affected by all the other QW levels in
a very complicated way. Furthermore, each of them is also
affected by levels and populations belonging to different
QWs (or QD-WLs), the nearest neighbors in particular.

The Coulomb potential matrix, Non-Equilibrium
Green’s Function (NEGF) and Density Matrix (DM) for-
malisms provide solid conceptual basis for an investigation
of this kind and will be briefly revised in Section 2, adapt-
ing them to the context of interest. In Section 3, coupling
between levels in the same QW or QD-WL system will
be presented as self-energy corrections in an original way,
showing how it contributes to levels renormalization. In
Section 4, applications of the formalism are illustrated by
a few examples and the same formulation is extended to
QW-QW and QD-QD coupling, then in Section 5 conclu-
sions will be drawn.

2 Review of the formalism

The NEGF formalism (also known as the Keldysh formal-
ism) provides a microscopic theory for quantum transport
including interactions. Formal descriptions of it are avail-
able in the literature [4–9], but normally their formulation
is based on concepts which are unfamiliar to most device
physicists and probably its rigorous description may be
omitted to render NEGF accessible and understandable
enough to make use of it with benefit. In the following
lines of this paragraph a brief introduction to NEGF and
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Fig. 1. On the left, a sketch of a WL-QD layer grown by
Stranski-Krastanov method is shown. On the right, conduc-
tion band is shown with the confining potential U(z), the WL
bound level (substantially a very thin quantum well), ground
state (GS) and excited states (ES) of quantum dot.

other useful concepts are given, keeping them as simple as
possible.

In a single-particle description, if Ψ is the state of en-
ergy E of a particle in a system described by the Hamil-
tonian H, the non-homogeneous Schrödinger equation
(E − H)Ψ = S holds, where S represents an excitation.
The response to a delta-like excitation is defined as Green’s
function G associated to H. In an operatorial form, we
may write it as (E − H)G = I, where I is the identity
matrix, so G is defined in single-particle formalism as
G = (E − H)−1. The solution G(�r − �r′) in the space of
coordinate �r corresponds both to a wave traveling out-
ward from (causal) and inward to (anti-causal) the point
of excitation. A common way to distinguish them is to
extend G to the complex plane and move the poles of G
a bit out from the real axis of an infinitesimal real, posi-
tive quantity η, obtaining two different Green’s functions:
the retarded (causal) one, GR0 = (E − H + iη)−1 and the
advanced (anti-causal) one GA0 = (E − H − iη)−1. The
function GR0 is also called the propagator because it de-
scribes the coherent propagation of a particle from �r to �r′
or, in the conjugate space, a particle with energy E that
propagates with momentum �k. We observe that GR0 and
GA0, expressed in the coordinate space, are complex con-
jugate, so in the operatorial formulation GA0 is the Her-
mitian adjoint of GR0. As a consequence, in the following
we will refer to them respectively as G0 and G0†.

In a Second Quantization description, GR0 is defined
as a particle that is destroyed at �r′ at a time t′ and created
at �r at a later time t, so it is described by temporal-ordered
products of creation Ψ †(�r, t) and annihilation Ψ(�r′, t′) op-
erators at different times. There are no real advantages in
going through its full Second Quantization formulation as
in the cited references, as long as we limit our description
in a quasi-equilibrium context, which is exactly what we
will do.

In the presence of plasma, the propagation of a
particle can be viewed in the context of Feynman
diagrams as an infinite sum of virtual elementary scatter-
ing processes. The result is a propagator dressed with a re-
tarded self-energy Σ, representing the effects of a

Fig. 2. The self-energy in a generally accepted approximation
is represented by a propagator G multiplied by the interaction
W and integrated over internal exchanged momentum. The
effect of potential screening can be visualized as a summation
over infinite ladder contributions.

propagation in a plasma that dynamically screens the in-
teraction [8,9]. Green’s function G is given as the solution
of the Dyson equation G = G0 + G0ΣG, where G0 is the
unperturbed (free) propagator. Solving for the retarded
G, we have

G(E) =
1

E + iη − Σ − H
, (1)

whereas G† is given by its Hermitian conjugate.
Calculating the self-energy Σ is a very complicated

task and, for real systems like solids, approximations are
usually needed. One of them is the GW approximation, so
called from the mathematical form Σ = GW that the
self-energy takes, as the product between the retarded
Green’s function G and the dynamically screened inter-
action W. Diagrammatically the situation is represented
in Figure 2 as a particle (the dressed propagator) that
interacts with the medium, emitting and reabsorbing a
virtual photon/phonon (the waved line), representing the
dynamically screened interaction. The “bubble” G ⊗ W
is a retarded self-energy Σ, because it is defined by the
retarded, causal propagator. The advanced self-energy is
defined as its adjoint Σ†. Still looking at Figure 2, the
self-energy is shown to be the result of an infinite summa-
tion of diagrams. A very important concept is the spectral
function:

A = i(G − G†) =
Γ

(E − H − Re(Σ))2 + (Γ/2)2
,

Γ = −2 Im(Σ), (2)

whose trace represents the density of states of the system,
so it can be regarded as a generalized density of states.
It only apparently has a Lorentzian shape, given that Σ
is in general energy-dependent. Its real part Re(Σ) has
the effect to shift (renormalize) the peak of A from its
unperturbed position (the eigenvalue of H measured in
the absence of plasma), whereas its imaginary part Im(Σ)
gives the level a broadening Γ .

A particle in one of the QD-WL levels does not have
an infinite lifetime, because of the coherence loss of its
motion due to scattering events. In the presence of other
levels, the particle can decay in a lower level (capture from
WL to QD), relax toward GS, or escape from it. Looking
at equation (1), in the denominator the renormalized op-
erator H + Σ appears, in which Σ is not Hermitian, gen-
erally, unlike H. Adding and subtracting Σ†/2, we obtain
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H + Σ = H + Re(Σ) − iΓ/2, where Γ = i(Σ − Σ†) is the
same real Γ that appears in equation (2), but it can be
given, in a “multi-energy-level” context, a different mean-
ing: it can be viewed as the sum of two scattering func-
tions, known in the Keldysh formalism as the in-scattering
−iΣ< and out-scattering iΣ> rate functions (the imagi-
nary unit and signs are a matter of convention and are
related to the Keldysh formulation: its sum remains real):

Γ (E) = i(Σ(E) − Σ†(E)) = −iΣ<(E) + iΣ>(E) (3)

in which we have indicated explicitly the energy depen-
dence.

The inverse of the lifetime of a particle on a given level
in fact is proportional to the sum of escape rates from it,
up or down in energy (out-scattering) and the capture rate
in it (in-scattering). This can also be viewed as the fact
that an escape of an electron can also be seen as a capture
of a hole and between the two processes there is a complex
conjugation operation, as there is between Σ and Σ† or
between −iΣ< and iΣ>.

To come to the point, the imaginary part of self-energy
is strongly related to capture, relaxation and escape rates
through equation (3). In order to precisely see in which
way, it is necessary to introduce a further concept: the
correlation functions G< and G>. A distribution function
f(�k) can be thought of the diagonal elements of a more
general density matrix ρ(�k,�k′, t), which includes
additional information regarding the phase correlations
between states |�k〉 and |�k′〉 at equal time t. A still more
general function can be defined as G<(�k,�k′; t, t′) correlat-
ing the amplitude of a state |�k〉 at time t with a state
|�k′〉 at a different time t′. Its diagonal elements G<(�k; t),
Fourier transformed with respect to t to give G<(�k;E) and
integrated in energy E, constitute the particle distribution
f(�k). Instead, just as a matter of definition, if we Fourier
transform G<(�k;E) with respect to �k and integrate in en-
ergy, we get the electron density n(�r) in ordinary space.

It can be easily verified that, at thermodynamic
quasi-equilibrium, when all the states are occupied
according to a Fermi function f0(E), the electron
density can also be evaluated as the integral of
f0(E)A(�k,E) in energy and momentum. It can be demon-
strated [10] that at quasi-equilibrium f0(E)A(�k,E) and
G<(�k;E) coincide and that the corresponding holes
correlation function G>(�k;E) at quasi-equilibrium coin-
cides with (1 − f0(E))A(�k,E).

Moreover, it can be demonstrated [11,12] that the rela-
tion between the scattering functions and the broadening
of the spectral function is, at quasi-equilibrium:

− iΣ< = f0(E)Γ (E); iΣ> = (1 − f0(E))Γ (E). (4)

Furthermore, the transition rate in or out of a level is given
by one of the following equivalent expressions:

τ−1 =
Γ

�
=

−i(Σ< − Σ>)
�

=
i(Σ − Σ†)

�
(5a)

that, at quasi-equilibrium reduce to:

τ−1
eq = −2

�
Im(Σ) (5b)

and in the retarded self-energy Σ we have all the informa-
tion we need.

3 Levels coupling and self-energies

First question is: how do we calculate QD, WL and QW
levels? They are the eigenvalues of the unperturbed Hamil-
tonian H0 = − �

2

2m∇2 + U(z), where U(z) is the potential
profile for the considered band (e.g., the conduction band).
We call them unperturbed levels (or subbands).

Let us consider a subband as if it were insulated,
occupied by a single particle. The wave function Ψn associ-
ated to it (where n represents the ensemble of its quantum
numbers) obeys the Schrödinger equation H0|Ψn〉 = E|Ψn〉
and we define the associated, retarded Green’s
function matrix G0 as the solution of the equation
(E + iη − H0)G0(E) = I.

If two levels are coupled, a term describing their in-
teraction energy must be present in the Hamiltonian. Let
Ψm(�r) and Ψn(�r′) be states in subbands m and n. The
interaction (coupling) between them can be viewed as an
exchange of a virtual photon, that is a scattering event
with exchange of momentum �q and frequency ω. If Ψi and
Ψj are the states after scattering, the interaction Hamil-
tonian element is given by:

Vij;nm =
∫

d�r d�r ′Ψ∗
n(�r ′)Ψm(�r) · Vs(|�r − �r ′|)Ψ∗

i (�r)Ψj(�r ′)

(6)
in which Vs is the Coulomb interaction matrix potential,
dynamically screened by carriers plasma. This potential
matrix expression is very general and can describe in prin-
ciple all scattering events. If we are dealing with coupling
effects only, there is no change of band and we have i = m,
j = n, but for the moment we maintain the general ex-
pression. In the hypothesis that QW, WL and QD wave
functions Ψn(�r) can be factorized as [1,13]:

Ψn(�r) = ϕln(�ρ)ζσn
(z)un(�r), (7)

where ϕln(�ρ) is the in-plane component, ζσn
(z) is the per-

pendicular z-component and un(�r) is the Bloch function,
a great simplification can take place and we assume this
hypothesis throughout (here l and σ are the in-plane and
perpendicular wave function quantum numbers, that com-
bine in n at the end of calculation). In this hypothesis, op-
erating a Fourier transform of the z-component of �q, the
interaction Hamiltonian element becomes:

Vij;nm(�q, ω) =
2πe2

q

Fij;nm(q)Pij;nm(q)
ε(q, ω)

, (8)

where

Fij;nm(q) =
∫

dz dz′ζ∗
σn

(z′)ζσm
(z)

× exp(−q|z − z′|)ζ∗
σi,(z)ζσj

(z′) (9)
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and

Pij;nm(q) =
∫

d2�ρϕ∗
li(�ρ)ϕlm(�ρ) exp(−i�q · �ρ)

×
∫

d2�ρ ′ϕlj (�ρ
′)ϕ∗

ln(�ρ ′) exp(i�q · �ρ ′). (10)

Here the dielectric constant ε(q, ω) may have the form
given, for example, in reference [8] or in our previous
work (see Ref. [14], Eq. (6)), in which a screened electron-
electron and an electron-phonon coupled interaction were
considered. About wave functions, various levels of ap-
proximation can be followed and the exact calculations of
coupling factors Fij;nm and Pij;nm are out of the scope of
the present work. What is here important to notice is the
fact that equation (8) can represent not only the interac-
tion potential matrix in any scattering event, but also the
coupling energy between subbands.

If there are several subbands in the conduction band,
a given state of the system Ψ is represented by the vector
|Ψ〉 = |ΨS1 , ΨWL, ΨGS , ΨES1 , . . . , ΨESM

, ΨS2〉. If all sub-
bands were uncoupled (that is, if a particle in a subband is
not affected by other subbands), the single-particle Hamil-
tonian of the system would be diagonal in the {Ψi} ba-
sis and its eigenvalues would be just the levels εi, where
i = S1,WL,ES1, . . ., etc., were calculated solving the
Schrödinger equation H0|Ψn〉 = E|Ψn〉. If carriers injection
is considered, following the many-particle propagator for-
malism, but keeping subbands uncoupled, the Hamiltonian
is still diagonal, but its eigenvalues are modified to εn+Σn,
where Σn is the diagonal self-energy contribution, that in
the GW formalism assumes the form:

Σn(�k) = − 1
β

∑
q,ω

Vnn;nn(�q, ω)Gnn(�k − �q, ω). (11a)

Here β is the inverse temperature in energy units and Gnn

is the particle propagator for the nth subband. Σn origi-
nates the usual exchange and Coulomb-hole contributions
and can be evaluated at the desired level of approximation
[9,10,15].

This is just the hypothesis normally accepted in many
scattering calculations, justified by the fact that off-
diagonal elements are small compared with the energy
separation between subbands [14,16]. The possibility to
accept this simplification on study and on the purposes
of calculation. The model we present here allows to give
quite a simple expression of the problem, keeping at least
the greater part of the correction coming from coupling
effects.

When subband coupling is considered, we assume that
each subband is coupled only to its nearest neighbors in
energy, with an interaction potential Vmn;nm. In this way,
disregarding spacers S1, S2 contributions, the Schrödinger
equation H|Ψ〉 = E|Ψ〉 assumes a tri-diagonal matrix form
in which off-diagonal elements between columns m and n
are given by Vmn;nm, whereas on-diagonal elements are
the usual kinetic and potential terms H0 + Vnn,nn. Still
following the propagator formalism, the off-diagonal ele-
ments give origin to off-diagonal self-energy terms Σmn,

still having the form (11a), with Vmn;nm,m �= n, instead
of Vnn;nn:

Σmn(�k) = − 1
β

∑
q,ω

Vmn;nm(�q, ω)Gnn(�k − �q, ω). (11b)

If H is the Hamiltonian, we define the associated
Green’s function matrix as the solution of the equation
(E − H)G(E) = I, where E − H is tri-diagonal too: see
equation (12) in the next page.

Each diagonal element of the retarded function GR

associated with G represents the response of any subsys-
tem (GS,WL,ESi, . . .) due to an excitation at any other.
For example, example, solving for the ground state GR

GS ,
on the basis of H eigenstates, we find the following expres-
sion, having considered only two QD excited states, as an
example: see equation (13) in the next page.

Here we have indicated as ε̃i the eigenvalues εi, cor-
rected for the diagonal elements of self-energy Σii(Ni) due
to its level population effects only, whose carrier density
is Ni, that is ε̃i = εi + Σii(Ni). For brevity of notation,
we have not indicated the weak energy dependence of self-
energy on E, understood throughout.

It is worthy of note the fact that the denominator of
equation (13) has a continued-fraction expression and in
particular it takes the form of the energy expectation value
of a Brillouin-Wigner perturbation expansion [17]:

E = ε̃0 − |Σ01|2
E − ε̃1 − |Σ12|2

E−ε̃2−···
. (14)

This expression is more complicated compared with the
more usual Rayleigh-Schrödinger series of conventional
perturbation theory, due to the fact that the energy E
appears in all denominators.

The Hamiltonian eigenvalue for the GS subband is
given by the poles of equation (13), that is, the roots of
the equation:

E−εGS−ΣGSGS(E,NGS)−ΣGS,off(E,NGS , Nothers) = 0,
(15)

where ΣGSGS(NGS) is the self-energy diagonal term that
depends on GS carrier density NGS only, to be evaluated,
e.g., as in references [9,10,13]. ΣGS,off is the off-diagonal
self-energy correction, due to coupling of GS with all other
subbands, and depends, in a complicated by straightfor-
ward way, on carrier densities on each level, as shown in
equation (13), here summarized as Nothers. Each subband
has its own correction, due to the presence of all higher
levels. Equations similar to (13)–(15) hold for each level
ESi and for WL, allowing to evaluate all Hamiltonian
eigenvalues, corrected for off-diagonal contributions, in the
hypothesis done.

The role of the off-diagonal contribution to self-energy
consists in an extra-renormalization of GS toward low en-
ergies (so, further reducing the energy gap), due to a re-
pulsion effect between subbands, as indicated in Section 4.
This formulation is general; it does not depend on what
self-energy formulation is used and applies both to QD
and QW.
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�
�����

E − εWL − ΣWLWL Σ†
WLESM

0 0 0

ΣWLESM

�
E − εESM−1 − ΣESM−1ESM−1

� · · · 0 0
0 · · · · · · · · · 0

0 0 · · · (E − εES1 − ΣES1ES1) Σ†
GSES1

0 0 · · · ΣGSES1 (E − εGS − ΣGSGS)

�
�����

G = I. (12)

GGS =
1

E + iη − ε̃GS(NGS) − |ΣGSES1(NGS ,NES1)|2
E+iη−ε̃ES1(NES1)− |ΣES1ES2(NES1

,NES2)|2
E+iη−ε̃ES2(NES2)− |ΣES2W L(NES2

,NW L)|2
E+iη−ε̃W L(NW L)

. (13)

4 Applications and extensions
of the formalism

4.1 Coupling among different levels
in the same QW or QD

As a first example of application, we consider a 120 Å/
120 Å unstrained InGaAsP quantum well/barrier system,
emitting at 1550 nm, with a conduction band offset of
177 meV between the well and the barrier materials. We
calculated the position of conduction band levels in effec-
tive mass approximation, finding two bound levels, whose
confinement energies are 148 meV (GS) and 66 meV (ES),
quite close to each other due to the wide QW. The explicit
expression of off-diagonal self-energy contribution ΣGS,off

has a simple form, especially expressing the dielectric func-
tion ε(q, ω) in the static limit of the RPA Single Plasmon
Pole. In this case, in equation (11) the propagator is given
by (see [8])

GGS(�k − �q, ωr)

=
nGS(|�k|, NGS)

i�pGS + i�ωr + �2|�k − �q|2/(2meff) + εES

, (16)

where � is the reduced Planck’s constant and nGS(k,NGS)
is the Fermi distribution for the GS in-plane �k state. Here
εES is the unperturbed energy of the ES-subband, meff

is the carrier effective mass and pGS , ωr are respectively
the frequency of the GS state and the exchanged quantum
of energy during the interaction, which have to be treated
according to the Matsubara formalism [8,9,15]. Frequency
ωr summation yields the occupation factor −nES(|�k − �q|,
NES) of the ES state. Integrating in the QW plane and
multiplying by two to consider the spin summation, we
find the expression (17), in which, for the translation in-
variance, PESGS;GSES is unity, whereas FESGS;GSES is
readily evaluated from the wave functions expressions:

ΣGSES(|�k|, NGS , NES) =
2e2

βεs

∫ ∞

0

nGS

nES
FESGS;GSES(q)
q + κ(NGS,ES)

q dq, (17)

having indicated with nGS , nES respectively the
occupation factors nGS(|�k|, NGS) and nES(|�k − �q |, NES),
for brevity of notation. Here κ(NGS,ES) =

[
κ(NGS)−1+

κ(NES)−1
]−1 is the density-dependent GS-ES reduced

screening wave vector. The integral in q converges quickly,
because of the form factor FESGS;GSES(q) that drops
rapidly in q and can be numerically evaluated without
any problem. This expression is purely real and is suit-
able only to evaluate renormalization. In order to evalu-
ate transition rates, a full dynamic expression of dielectric
function should be considered and will be addressed in a
future Paper. The position of GS and ES results from
equations (13)–(15):

�
εGS =

εGS + εES + ΣGS + ΣES

2

−ΔεES-GS

2

√
4
∣∣∣∣ ΣGSES

ΔεES-GS

∣∣∣∣
2

+ 1,

�
εES =

εGS + εES + ΣGS + ΣES

2

+
ΔεES-GS

2

√
4
∣∣∣∣ ΣGSES

ΔεES-GS

∣∣∣∣
2

+ 1, (18)

where ΔεES-GS = εES +ΣES(NES)− [εGS + ΣGS(NGS)]
is the difference between diagonally-renormalized energy
levels.

In Figure 3 levels position is reported, considering ther-
malized electrons with �k = 0, for several values of GS
carrier density. ES1 carrier density has been evaluated
at thermal quasi-equilibrium and diagonal parts of self-
energy have been calculated in the static limit of RPA.
When NGS starts increasing, both levels reduce their en-
ergy: this is the usual energy renormalization. When NGS

exceeds 2 × 1012 cm−2, the population of ES starts affect-
ing GS and vice versa: we have a further renormalization
of GS and a reduction of renormalization for ES and at
very high density the effect is quite considerable, due to
the closeness of the levels.

A similar calculation applies to QDs, with a more
complicated treatment of PESGS;GSES and FESGS;GSES

and will be omitted here for brevity. From a qualitative
point of view, carriers in QDs are normally too few to
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Fig. 3. (a) Energy levels position for GS and ES1, with off-
diagonal self-energy contribution (dashed lines) and disregard-
ing them (solid), as a function of the GS two-dimensional
carrier density. (b) Well/barrier potential profile, with unper-
turbed (0-density) levels position, GS (solid) and ES (dashed)
eigenfunctions in the z-direction.

considerably shift the levels, but WL can be heavily pop-
ulated by current injection. The correct way to keep into
account energy renormalization in QD is to make use of
an equation like (18). Discarding the very low correction
due to ES, the GS energy level, as a function of carrier
density in GS and in WL, assumes the form:

ε̃GS =
εGS + εWL + ΣGS (NGS) + ΣWL (NWL)

2

−ΔεWL-GS

2

√
4
∣∣∣∣ΣGSWL (NGS , NWL)

ΔεWL-GS

∣∣∣∣
2

+ 1,

(19)

GS1

GS2

GS1

GS2

(a)

(b)

Fig. 4. (Color online) (a) Energy levels position in conduction
band, for GS of two stacked QDs (or two adjacent QWs as
well), with flat bands in absence of electric field (build-in po-
tential is not considered here, for simplicity). (b) Electric field
can be used to fine-tune the levels position. If spacers between
QD layers (or barriers between QWs) are thin enough, levels
are coupled and split.

where ΔεWL-GS =εWL+ΣWL(NWL)−[εGS +ΣGS(NGS)].
The interaction self-energy ΣGSWL(NGS , NWL) has still
the form (17) (in which the subscript WL substitutes ES)
with an opportune calculation of FWLGS;GSWL integral
according to equation (9).

Other situations can occur, for example, not limiting
interactions between the nearest levels. In general, a lit-
tle coupling does exist among all levels, but in this case
the task to keep into account all corrections is very chal-
lenging and can be addressed only numerically, not be-
ing possible to obtain a conceptually simple formula as
the continued-fraction one. For a treatment of the general
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Fig. 5. (Color online) GS energy level splitting by effect
of QD-QD coupling, for two stacked layers of self-assembled
InAs/GaAs quantum dots, at null carrier density. Electron
mass m has been set to 0.060 free electron mass. In abscissas,

a/aB is the layers separation in unit of Bohr radius �/
	

m
�
ε GS

(here ≈4 nm).

coupling, although presented not in an explicit way, see,
e.g., reference [16].

4.2 Coupling among levels of different QDs or QWs

It is well known that, in narrowly-spaced and shallow
quantum wells, coupling energy between levels can split
them, originating a miniband (superlattices). In a simi-
lar way, this can also happen in stacked self-assembled
and narrowly-spaced InAs/GaAs QD layers, with the com-
plication that QDs are generally of different size, giving
origin to different energy positions of QD levels. Let us
consider two stacked, narrowly-spaced QDs of different
sizes, as in Figure 4a. Their levels are at different en-
ergies and coupling is inefficient. Applying electric field
oriented along the stacking axis via a voltage applied be-
tween the back n-contact and the top p-contact, we can
tune the coupling making their levels coincide, couple and
split, as in Figure 4b. The off-diagonal self-energy formal-
ism presented in the previous section can be efficiently
exploited to describe this phenomenology, too. As an ex-
ample, for the situation depicted in Figure 4a, we indicate
with �

εGS(NGS , Nothers) the renormalized energy level of
GS1,2 given by the root of (15) (and similarly �

εESn
for

ESn). When we tilt the bands applying an electric field,
we can reach a situation in which – for example – the
ground states of the two QD coincide, in the absence of
coupling, so they both have the same energy �

εGS . The
level splitting can be described writing a matrix equation
like (E + iη − H)GR(E) = I, as usual:
(

GGS Gc

Gc GGS

) (
E + iη − HQD ΣGS1,GS2

Σ†
GS1,GS2

E + iη − HQD

)
=

(
1 0
0 1

)

(20)

in which HQD is the Hamiltonian of the QDs considered
insulated and ΣGS1,GS2 is the inter-dot coupling Hamil-
tonian for GS. Solving for GGS , we find, on the basis of
HQD eigenstates:

GGS =
1

E + iη − �
εGS − |ΣGS1,GS2 |2

E+iη−�
ε GS

. (21)

The eigenvalues of the total Hamiltonian, i.e., the GS en-
ergy, recalculated keeping into account the inter-dot cou-
pling, are given by the poles of (21), that is:

εGS with coupling = �
εGS(NGS , Nothers)
±ΣGS1,GS2 (NGS1 , NGS2) . (22)

As expected, the energy level is split by the effect of cou-
pling in a singlet and a triplet state.

Assuming a QD confining potential as in reference [18],
ΣGS1,GS2 can be readily evaluated; for example, if �

εGS =
−80meV with respect to the WL for both QDs and elec-
tron mass is 0.060 free electron mass, the GS levels energy
for the QD couple becomes as in Figure 5: we can see that
for QD separated less than 10 nm the splitting is quite
considerable.

This effect is well known, but with the present formal-
ism it is straightforward to account both for the Coulomb
potential screening effect and the Fermi band filling, as
done in equation (17), assigning NGS1 , NGS2 , Nothers to
self-energy components in the opportune way, as done, for
example, building (17)–(19).

These concepts apply to QW of different widths as
well, in which an electric field applied along the growth
direction can be used to tune level positions: when they
coincide, they split according to equation (22), in which
ΣGS1,GS2 is now the inter-QW coupling energy for the two
QW ground states.

5 Conclusions

If we consider a single QW or QD, the calculation
of levels energy, given by poles of equations similar to
(13), presents the advantage of allowing the renormaliza-
tion of each level for carriers injection separately in the
standard way, delegating to off-diagonal potentials ma-
trix terms Vij all the difficulty to keep into account levels
coupling. Although the physics of level coupling is well
known, this is not true for the applications it can ex-
plore. The coupling here depicted for electrons in coupled
QDs can be obtained both for electrons and holes, giving
the opportunity to explore many novel physical concepts,
as voltage tunable magnetic properties and manipulation
of the hole spin in quantum computing. The presented
Green’s function based approach gives a more intuitive
view of the various meanings and roles that a concept like
“self-energy” can have. The concept of coupling is viewed
linked to a general potential matrix and can be given the
same form for all kinds of coupling, in which off-diagonal
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self-energy contributions assume each time a different con-
ceptual meaning. Furthermore, population effects belong-
ing to each level arise naturally without any confusion, as
arguments of the related self-energy components.

We point out that our purpose is not to give a full
and self-consistent calculation of coupling contribution to
level position in energy. It is well evident that considering
coupling effects beyond nearest neighbors (e.g., between
GS and ES3) resulted in a more accurate calculation, but
this can obtained only considering a full squared Hamil-
tonian, instead of a tri-diagonal one in equation (12). This
is surely possible to be implemented – it is a matter of
software – but it prevents the comprehension of the un-
derlying physics and the building of explicit expressions
like (19), (21) and (22).

More, we stress that the same formalism applies un-
changed also to hole levels: in this case, the corrections are
also more necessary, given that levels are less spaced from
each other. In principle, nothing changes in the formalism,
if electrons-holes interaction is considered, too. If we only
consider interactions between levels having the same prin-
cipal quantum number (e.g., e0 − h0, or e1 − h1), but not
also e0 − h1 that normally result in the greatest contribu-
tion, it is sufficient to insert in equation (12) an extra row
and column for each electron-hole state to couple, keeping
form in equation (12) still tri-diagonal and the whole treat-
ment unchanged in form and meaning. On the contrary, if
all states have to be considered coupled, of course the ma-
trix results in becoming no more tri-diagonal. The major
difficulty in treatment could not be justified, if selection
rules and the obtained values for Fij;nm(q) and Pij;nm(q)
coefficients resulted in becoming very little; from time to
time, the necessity to extend the description till this grade
of complication should be evaluated, depending on the
structure we are dealing with and the purpose of the cal-
culation (approximate device design or basic research) we
are carrying on.
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