
05 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Formal Verification of Device State Chart Models / Corno, Fulvio; Sanaullah, Muhammad. - STAMPA. - Proceedings
2011 Seventh International Conference on Intelligent Environments:(2011), pp. 66-73. (Intervento presentato al
convegno The 7th International Conference on Intelligent Environments tenutosi a Nottingham (UK) nel 25-28/07/2011)
[10.1109/IE.2011.36].

Original

Formal Verification of Device State Chart Models

Publisher:

Published
DOI:10.1109/IE.2011.36

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2402456 since:

IEEE Computer Society

Formal Verification of Device State Chart Models
Fulvio Corno

Dipartimento di Automatica e Informatica
Politecnico di Torino

Torino, Italy
Email: fulvio.corno@polito.it

Muhammad Sanaullah
Dipartimento di Automatica e Informatica

Politecnico di Torino
Torino, Italy

Email: muhammad.sanaullah@polito.it

Abstract—Design and development of increasingly complex
intelligent environments require rich design flows that include
strong validation and verification methodologies. Formal verifi-
cation techniques are often advocated, and they require formally
described models of the smart home devices, their intercon-
nections, and their controlling algorithms. Complete verification
can only be achieved if all used models are verified, including
individual device models. This paper proposes an approach to
formally verify the correctness of device models described as
UML State Charts, by checking their consistency with respect
to the properties, declared in an Ontology, for the categories to
which each device belongs. The paper describes the verification
methodology and presents some first verification results.

Index Terms—Formal Verification, Intelligent Environment,
Smart Home, State Charts, Model Checking

I. INTRODUCTION

Intelligent Environments (IEs) consist of different integrated
heterogeneous devices, ranging from simple sensors to multi-
feature devices [1]. The objective of IE designers is to create
an environment which can take decisions and, as a result,
the devices can perform their ordinary activities in an intelli-
gent manner, by facilitating the environment users with ease,
comfort, security and safety in their life [2]. The increasing
complexity of IEs calls for the adoption of structured and
formal design and verification techniques [3], using model-
based approaches and formal validation and verification tools.
In particular, all devices, their interconnections, and their
governing algorithms should be modeled, to allow full system
verification. This paper focuses on the correctness of the for-
mal models used to describe the individual smart devices, by
ensuring the consistency between declarative and operational
representation. The paper complements previous work from
the same authors [4] where interconnections and governing
algorithms were considered and verified.

In modeling smart devices, both device interface and behav-
ior information are considered. Interface information describes
the device as a black box, listing functionalities (a device
can perform), commands (that can be sent to the device),
notifications (the device can send) and states (in which a device
can be at a specific time). The detailed information about the
internal workings of the device, such as the action performed
when an command is received in a particular state, falls into
the behavior category. Interface and behavior descriptions can
be expressed as a joint model (like in [5]), or with separate
models (like in our previous work [6], [7]).

DogOnt [6] is an Ontology based solution for interface
modeling and reasoning about such devices, whereas the
behavior of each device is modeled in a Device State Chart
(DSC) [7]. According to Harel [8], state charts are best suited
for representing the complex behavior of communicating
devices. In state charts, the internal behavior of devices is
represented with states, functionalities, transitions (composed
of source state, destination state, triggers, guards and actions)
and variables.

In our previous work [4], we proposed a design time
methodology to formally verify the correct behavior of IEs,
by checking the intended system properties. The methodology
adopted a model checking approach for verifying the temporal
properties over a model of the entire IE, which consists of state
charts of devices and control algorithms. Control algorithms
are the software components which intelligently control the
overall operations of IE.

As with any design artifact, the DogOnt ontology and the
Device State Charts are prone to errors and inconsistencies. In
our previous work [4], we verified the correctness of IEs on
the basis of these DSCs, but the correctness of the latter was
not checked at that time.

This paper addresses and solves the problem by proposing
a formal methodology, based on model checking, for the auto-
matic identification of inconsistencies between device informa-
tion available in DogOnt and the behavior of the corresponding
DSC. These inconsistencies must be manually fixed and then
the verification process is repeated until consistency is reached.

The adopted technologies are presented in section II, and in
particular the previous work, on which the proposed approach
is based, is detailed in section II-F. The proposed approach
for DSC verification is presented in section III, and a case
study with the implementation details is presented in section
IV. Results and remarks about the case study are given in
section V and conclusions are finally drawn in section VI.

II. BACKGROUND

Our approach uses state machines to represent devices
behavior, and is based on a well established smart home
framework that adopts semantic web technologies –in the
form of an Ontology– known as DogOnt. It uses the UMC
model checker [9] for identifying the inconsistencies between
DogOnt and DSC. For expressing properties, it uses UCTL
temporal properties. The details of the mentioned concepts are

given in the following subsections with an example of device
modeling in DogOnt.

A. DogOnt in a nutshell

In IEs, mostly, hardware (devices) and software (control
algorithms) components interact with each other in an in-
telligent manner. The modeling of these devices (hardware
components) can be performed by adopting different tech-
niques. As these devices are of various heterogeneous types,
researchers adopted Ontologies for modeling of such systems
[10]. Ontologies are one of the semantic web artifacts; they
are based on graph like structure, for representing different
concepts, their relationships and their associations, and give a
suitable reasoning power on these. DogOnt [6] is an Ontology
based solution for the modeling of Smart Homes (IEs).

DogOnt identifies the following basic dimensions for the
modeling of IEs (Figure 1):

1) “Building Environment”: information about the environ-
ment where the IE is implemented, like building, flat,
garage, garden, room (bathroom, bedroom, dining-room,
kitchen, living-room, etc);

2) “Building Things”: information about the physical objects
used in the IE, among which some are electrically con-
trollable. The electrically controlled devices (like coffee
maker, boiler, cooker, fan, lamp, actuator, sensors and
various others), used in IE, are categorized under the
Controllable category. Physical objects (like table, sofa,
wall, ceiling and others), which can not be electrically
controlled, are categorized under the Uncontrollable cat-
egory.

3) “Functionality”: Controllable devices used in IEs have
different functionalities. DogOnt further classifies them as
Control Functionality, Notification Functionality or Query
Functionality. Control functionalities are the actions that
devices can perform (like a Lamp has “on” and “off”
functionalities). Most controllable devices have the ability
to send a notification back, as an acknowledgment of
the completion of the assigned task. These notification
capabilities are modeled under the Notification function-
alities classification. For performing the task intelligently,
usually, it is required to have a mechanism through which
the status of devices can be queried at any time, which are
modeled under the Query functionalities classification;

4) “Commands”: Controllable devices in IEs perform their
Control functionalities by receiving some particular com-
mands, whose modeling and classification is performed
under this category;

5) “Notification”: Controllable devices send different types
of notifications, e.g., when their state changes;

6) “State” and “State Values”: Controllable devices possess
an internal state, which is modeled a set of orthogonal
state spaces (called “States”), with different “State Val-
ues” each. A complete description of the state of a device
is therefore a valid State Value for each of the States
defined for that device. State Values can be discrete (e.g.,
in Lamp “onState” and “offState”) or continuous within a

Figure 1. DogOnt

specific range of values (e.g, a DimmerLamp device has
a “Light-Intensity-State” whose value ranges from 0% to
100%).

7) “Domotic Network Component”: Controllable devices
adopt widely different network protocols. This model-
ing dimension describes the protocol characteristic and
network addressing scheme.

B. Device Modeling in DogOnt

According to the DogOnt classification dimensions, each
device is modeled by creating instances for all relevant Do-
gOnt classes, and according to the ontology constraints. The
device modeling process is briefly explained by illustrating
the model of a “Dimmer Lamp” device (Figure 2), which is a
subclass of “Lamp” and “Controllable”, and has all inherited
features of these super classes.

A dimmer lamp has all the functionalities which a “Lamp”
can hold, such as, it can be (switched) “on” and “off”, and can
be placed at a certain location in the IE. Furthermore, “Dim-
mer Lamp” has an extra “Light-Regulation-Functionality” by
which the “Light-Intensity” of the lamp can be managed.
The value of “Light-Intensity” ranges from 0 to 100. With
the “Light-Regulation-Functionality” it may be increased or
decreased with a step 10 through “stepUp” or “stepDown”
commands respectively, or it may also be directly set to a spe-
cific value with “set(value)” command. As “Dimmer Lamp”
is a type of Controllable device, two more functionalities are
inherited from the class of “Controllable”, these are “Query-
Functionality” and “State-Change-Notification-Functionality”.

More than 143 device classes are currently modeled in
DogOnt.

C. State Charts

In 1987, Harel [8] extended the semantics of state-transition
diagram for specifying the complex behavior of reactive
system and named it State Charts, whose variant, afterward,
became a standard in Unified Modeling Language (UML) 2.0.

Figure 2. Dimmer Lamp in DogOnt

In reactive systems, internal and external communication in-
and-between different devices is performed through message-
exchange.

DogOnt only contains the interfaces information (function-
alities, commands, notifications, states and others) of devices,
and this is sufficient to interact with the device. But the behav-
ior of devices must be modeled with an operational representa-
tion, such as State Charts. Device behavior is encoded as a set
of transitions among internal states. Each transition between
a source state SS and a destination state SD is represented as
SS → SD(T [G]/A), where T (trigger) is an event (command,
notification) which a device can receive when in SS , and
provided that the guards G (boolean conditions) are satisfied,
the action A (command, notification, expression evaluation or
other) is performed, by also switching to SD.

D. Devices State Charts

For representing the behavior of IE devices, we use Device
State Charts (DSCs), which are encoded in SCXML (State
Chart XML) [11]. The “Dimmer Lamp” state chart, in SCXML
syntax, is given in Figure 3 and the corresponding Harel state
chart is presented in Figure 4. In SCXML, DSCs work as
Templates for specified devices; the “id” attribute is used for
containing the name of device instances.

The presented DSC shows the behavior of “Dimmer Lamp”:
it contains “off”, “on” and “LightIntensityState” states, where
“off” is the initial state, and “LightIntensityState” is a sub-
state of “on”. With “on()” or “set(value)” commands, “Dim-
mer Lamp” switches its state from “off” to “on”. When it
receives the “on()” command, it is switched on and moves
to “LightIntensityState”, and when it receives ‘set(value)”
command, the lamp is switched on, the intensity of the light
is set with the parametric value of this command and the state
moves to “LightIntensityState”, where the intensity of light
can be controlled (details are given in II-B). When the “off()”
command is received, the state is switched from “LightIn-
tensityState” to “off”. For storing the “Light-Intensity” value
in DSC, a variable named “lightIntensity”, with 50 as initial
value, is used, and “lightStep” is used with the value of 10

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE scxml SYSTEM "template.dtd">
<!-- @device=DimmerLamp -->
<scxml xmlns="http://www.w3.org/2005/07/scxml"
version="1.0">

<state id="&id;dimmerLamp">
<initial> <transition target="&id;off"/> </initial>

<datamodel>
<data name="&id;lightIntensity" expr="50.0"/>
<data name="&id;lightStep" expr="10.0" />

</datamodel>

<state id="&id;off">
<transition event="&id;on" target="&id;on" />

<transition event="&id;set"
target="&id;lightIntensityState">
<assign name="&id;lightIntensity"

expr="_&id;set.value" />
</transition>

</state>

<state id="&id;on">
<initial>

<transition target="&id;lightIntensityState" />
</initial>

<transition event="&id;off" target="&id;off" />

<state id="&id;lightIntensityState">
<transition event="&id;stepUp"

target="&id;lightIntensityState">
<assign name="&id;lightIntensity"

expr="if(&id;lightIntensity lt 100.0)
{&id;lightIntensity + &id;lightStep;}
else{100.0;}" />

</transition>

<transition event="&id;stepDown"
target="&id;lightIntensityState">
<assign name="&id;lightIntensity"

expr="if(&id;lightIntensity gt 0.0)
{&id;lightIntensity - &id;lightStep;}
else{0.0;}" />

</transition>

<transition event="&id;set"
target="&id;lightIntensityState">
<assign name="&id;lightIntensity"

expr="_&id;set.value" />
</transition>

</state> <!--lightIntensityState-->
</state> <!--on-->
</state> <!--dimmerLamp-->
</scxml>

Figure 3. The State Chart of Dimmer Lamp in SCXML format

for increasing or decreasing the light intensity.

E. UMC Model Checker

Model checking is a technique used for automatically veri-
fying the behavior of the system according to its specifications.
It is capable of exhaustively considering all the states of the
model for checking the correctness of specification. UMC [9]
is an “on-the-fly” model checker tool, designed for the formal
verification of the dynamic behavior of UML state charts,
by providing a user friendly environment for expressing the
system and the properties. UMC is fast because it is based
on a linear time complexity model checking algorithm for the
exact verification of the system.

Figure 4. Harel State Chart of a Dimmer Lamp

The structure of the model verified by UMC consists of
classes, instances and abstraction rules. Classes are used to
represent the state machines in textual format. They have
states, operators (used for synchronous communication of mes-
sages) or signals (used for asynchronous communication of
messages), local variables and transitions. Further, transitions
are associated with states (source and destination), triggers,
guards and actions. Instances are the objects of the classes.
Abstractions are the mechanism for representing the subset of
relevant information, which users want to observe, from the
large amount of states and actions (operators and signals) in
the complex graph of the modeled system.

An on-line version of the UMC model checker is also
available1.

The requirements and specifications of the systems must be
written in some formal way, so that, they can be verified on
the model of the system. Temporal logic is one of these formal
ways, which is best suited for the verification of reactive
systems, as it is a system of rules for reasoning with different
propositional quantifiers [12].

For the verification of complex systems, UMC supports the
UCTL branching time temporal logic [13], which is a UML-
oriented branching-time temporal logic, with the combined
power of ACTL (Action Based Branching Time Logic) [14]
and CTL (State Based Branching time logic) [15]. UCTL
uses the box [] (“necessarily”) and diamond <> (“possible”)
operators from Hennessy-Milner Logic [16] and temporal
operators (Until, Next, Future, Globally, All, Exists) from
CTL/ACTL.

Due to the rich set of state propositions and action expres-
sions, UCTL is best fitted for the verification of state machines.
With the help of UCTL, we can verify different properties
like liveness (something good will eventually happen), safety
(nothing bad can happen) and properties with or without the
fairness restrictions.

F. Verification methodology for IEs

In our previous work [4], we suggested a design time
methodology for the verification of IEs, by adopting a Model
Checking approach, based on DogOnt, DSCs and Temporal
properties.

1http://fmt.isti.cnr.it/umc/

Temporal properties are designed in order to verify the
specifications of IE by checking the existence, absence and
sequence of commands, notifications or states in IE. The
state charts of IE model (devices and control algorithms)
are given to the Model Checker and Temporal properties are
verified on them. In case any specification is found incorrect,
the required modification is performed and the verification
process is repeated until all the specifications satisfy. The
approach is presented in Figure 5, and shows that the model
under verification consists of a collection of State Charts
obtained by combining all the individual DSCs, according to
IE configuration and topology.

Figure 5. Design Time Methodology

Although the above methodology verifies the correctness
of IE, a missing point, which was not considered in [4],
is the correctness of these DSC. These should model the
actual device behavior and at the same time be consistent with
the information available in DogOnt: there is a likelihood of
inconsistencies and discrepancies between DSC and DogOnt.
In the following proposed approach, we verify these DSCs and
ensure their consistency with DogOnt.

III. PROPOSED APPROACH

The goal of this paper, as mentioned earlier, is to prove the
consistency between DogOnt (interface information) and the
corresponding DSC (behavioral information) for all devices
classes, by identifying and fixing discrepancies. In DSCs, each
state can accept some messages, depending on the outgoing
transitions; anything other than them, will be rejected on that
state and no action will be performed. The action is in the
form of some internal activities or commands/notifications to
other DSCs. The following type of discrepancies may occur:

1) the DSC may lack or have some extra notifications with
respect to the ones modeled in DogOnt;

2) the DSC may not receive a command/notification which
is modeled in DogOnt for fulfilling the required function-
alities of the device;

3) the DSC may not have a state which is modeled in
DogOnt;

4) the DSC may follow some behavior which may not
conform with the specifications;

5) the DSC may be designed in such a way that a deadlock
may occur.

The proposed approach, whose general architecture is de-
picted in Figure 6, consists of three components, namely
“Temporal Properties Generator” (TPG), “Environment De-
signer (ED)” and “Model Builder (MB)”. TPG and ED are
fully automatic, whereas MB is semi-automatic.

Figure 6. Library Files Verification Methodology

Ontologies (such as DogOnt) and State Charts (such as
DSCs) are not directly comparable formalisms. In our verifica-
tion approach, we extract some logic and temporal properties
from DogOnt, and we check them against the device DSC.
Such properties are derived from the semantic description of
the device. These temporal properties are of the following
types:

1) the acceptance of all the described commands;
2) the generation of all the described notifications;
3) the reachability of all the described states.
If needed, for checking, e.g., the correct behavior, extra

information or deadlock in DSC, our approach also supports
manual design of further temporal properties.

Verification of a device state chart (DSC) model requires
to embed it into a suitable environment, that may generate
and receive the appropriate events. For each DSC, we auto-
matically generate an “Environment” in which it is embedded,
so that the Environment plus the DSC make a closed system.
The environment expects the DSC to implement the interface
(commands, notifications, states) prescribed in DogOnt, and
is designed to be as hostile as possible (generating commands
with arbitrary orders and speeds), and as general as possible
(allowing all possible device behaviors and execution paths): in
this way, the verification results will be valid for any possible
“real” environment in which the device may be embedded.

The Environment can send all the commands to DSC and
can receive the notifications from it, where the information
of commands and notifications is obtained from DogOnt.

Its functionality is represented in Figure 7 and is composed
of an “Environment Generate Commands” (EGC) and an
“Environment Receive Notification” (ERN) parallel modules.
EGC generates all the commands obtained from DogOnt,
where as ERN receives all the notifications modeled in DogOnt
against this device.

Figure 7. Environment behavior in Verification Process

The Environment is implemented by an “Environment De-
signer” component, which queries DogOnt and automatically
generates the state charts of EGC and ERN in a format
acceptable by the model checker. After generating these, it
sends them to “Model Builder”, which performs the following
activities;

a. semi-automatically translates DSC from SCXML to the
language supported by the model checker. The current
“SCXML to UMC” converter tool only deals with those
SCXML tags used in the modeling of device behavior;

b. automatically combines the Environment state charts (EGC
and ERN) with the state chart of the device;

c. automatically adds abstraction rules and generates instances
of these state machines, so that UMC code is ready for
further processing;

d. automatically saves all these in a file known as “Closed
Model”.

The Temporal Property Generator (TPG) module obtains the
information about device states, commands and notification
from DogOnt, and it automatically generates three types of
properties in the form of UCTL logic:

1) the first property group checks that all the commands
declared for the device are actually sent by the EGC
component, and that all the notifications are eventually
sent by the device;

2) the second group checks that such messages are actually
received: commands are correctly received by the device
DSC and notifications are correctly received by ERN;

3) the third type of properties verifies the reachability of all
states that are explicitly mentioned in DogOnt.

The Closed Model and these Temporal Properties are sent to
the Model checker, which is responsible for the verification of
these temporal properties on the given model. This verification
process is repeated until all found inconsistencies are resolved.
Advanced properties may be manually added to verify the
correct behavior of the modeled device.

Device # External # DogOnt # DogOnt # DogOnt # Explored # Automatically # Satisfied
Commands Commands Notifications States States (max) designed TPs Properties

Button 1 0 3 2 16 8 8
Dimmer Lamp 0 5 1 3 417 15 13
Door Actuator 4 2 1 4 65 10 8
Infrared Sensor 2 0 3 2 16 8 8

Mains Power Outlet 0 6 1 2 30 16 12
On Off Switch 1 0 3 2 12 8 8

Shutter Actuator 2 3 1 5 50 13 11
Simple Lamp 0 2 1 2 14 8 8
Smoke Sensor 2 0 3 2 16 8 8
Toggle Relay 0 1 3 2 12 10 10

Window Actuator 4 2 1 4 65 10 8

Table I
LIST OF VERIFIED DEVICE STATE CHARTS (DSCS) THROUGH THE PROPOSED APPROACH

IV. CASE STUDY

The proposed approach (section III) relies on tools (shown
in Figure 6) implemented in Java. For querying from the
Ontology, “Temporal Properties Generator” (TPG) and “En-
vironment Designer (ED)” use the Jena libraries [17], while
the “Model Builder (MB)” reads DSCs through an XML DOM
parser.

Eleven Device State Charts (DSCs), listed in Table I,
were verified by this approach. The table also gives some
information about the DogOnt modeling of each device, the
number of automatically generated properties, and the number
of properties found true by the model checker. The last
columns show that some devices do not comply with the
specifications, and the DSC (or possibly the DogOnt model)
should be modified. Computation times were reasonable, and
they amount to just some seconds per each verified property.

The complete case study of a Dimmer Lamp is presented
here, for illustrating the details. DogOnt currently models
the Dimmer Lamp class through the set of attributes (direct
and inherited) listed in Table II. According to the modeled
information, it has two types of states: “OnOffState” and
“lightIntensityState”. “OnOffState” is a discrete value state
with “on” and “off” as state values, whereas “lightIntensityS-
tate” is a continuous value state, in the range of 0 to 100 and
is used for managing the intensity of light. A dimmer lamp
has two types of command functionalities: “OnOffFunctional-
ity” and “lightRegulationFunctionality”. “OnOffFunctionality”
is used for switching the Dimmer Lamp “on” and “off”,
and “lightRegulationFunctionality” is used for increasing or
decreasing or even setting the intensity of light in Dimmer
Lamp to a specific value (obtained through “Level-Control-
Functionality”, which is in the range of 0 and 100). It has one
notification functionality, “StateChangeNotificationFunctional-
ity”; which sends a notification when the state is changed.

With the above information, the properties about the reach-
ability of states and the existences of the path (commands) are
generated automatically by the TPG block. For each command
or notification we generate two properties, one checking that
the corresponding event is sent, and the other checking that it
is accepted by the destination state chart. State properties are

Table II
DIMMER LAMP DETAIL AVAILABLE IN DOGONT

also automatically designed for verifying the existence and
reachability of all the states which are modeled in DogOnt.
The automatically designed properties for the Dimmer Lamp
are reported in Figure 8 in UCTL syntax.

With the information presented in Table II, EGC and ERN
state charts are designed automatically and sends them to the
Model builder. Model Builder semi-automatically obtains the
translated state chart of the DSC by using our customized

--Action Properties
--the acceptance of all the commands in DSC

EF {sending(stepDown)} true
EF {sending(stepUp)} true
EF {sending(set)} true
EF {sending(off)} true
EF {sending(on)} true

--
EF {accepting (stepDown)} true
EF {accepting (stepUp)} true
EF {accepting (set)} true
EF {accepting (off)} true
EF {accepting (on)} true

--the generation of all the notifications in DSC
EF {sending(stateChanged)} true
EF {accepting(stateChanged)} true

--State Properties
--the reachability of all the states in DSC

EF (offState)
EF (onState)
EF (LightIntensityState)

Figure 8. Automatically designed Temporal Properties for Dimmer Lamp

SCXML to UMC converter. It then adds required abstraction
statements for renaming states and commands. Some abstrac-
tions are added for checking the bounds of light intensity
values. Currently this step is manual and we are automating
it. Finally the model builder creates the instances of these
state machines, so that the model can be ready for verification
processing. The full Dimmer Lamp model generated by Model
Builder, including EDC and ERN, is shown in Figure 10.

V. RESULTS AND REMARKS

The Model Checker, after checking these properties (shown
in Figure 8) on the designed model (shown in Figure 10),
found that the properties related to “StateChangeNotification-
Functionality” were false. When the model was analyzed, it
was observed that the “StateChangeNotificationFunctionality”
was not modeled in the DSC. Necessary actions were taken
and the DSC of Dimmer Lamp was modified. After the
modification, the process was repeated and all properties were
found true.

E [true {not accepting(off)} U
{accepting(on) or accepting(set)} true]

E [true {not (accepting(stepDown)or accepting(stepUp))} U
{accepting(on) or accepting(set)} true]

EF (not underFlow)
EF (not overFlow)
EF (inRange)

Figure 9. Manually designed Temporal Properties for Dimmer Lamp

Furthermore, some advanced properties for verifying the
correct behavior of Dimmer Lamp were manually added,
shown in Figure 9: the first two properties check that “off”,
“stepUp” and “stepDown” commands are not be acceptable
unless the Dimmer Lamp is in the “on” state. The last three
properties check the boundary values of the light intensity
state value, thanks to the definition in the closed model of
the abstactions for “underFlow,” “overFlow” and “inRange”

conditions. The model checker found the last three proper-
ties to be false: the analysis of the DSC showed that the
condition lightIntensity < 100 should be replaced
by lightIntensity + lightStep <= 100, and sim-
ilarly for the decrement. After this final correction, the veri-
fication process was repeated all properties were found true.
Thus now, the Dimmer Lamp model (DSC) is consistent with
DogOnt and behaves well according to the requirements.

VI. CONCLUSION AND FUTURE WORK

IEs can be modeled by adopting different approaches;
DogOnt is one ontological solution among them. In DogOnt,
interface information of devices are modeled,and the behavior
of the devices are modeled in Device State Charts (DSC).
There is a fair chance of missing and/or providing extra
information and inaccuracies, as DogOnt and DSCs are heavily
based on human observation and manual input, influenced by a
huge variety of devices, extensible and personalize-able, creat-
ing inconsistencies between DogOnt and DSC. The proposed
methodology is about finding and fixing these discrepancies
and making DSCs consistent with DogOnt.

Our future work is about finding the sequences of transi-
tions, which are required to be followed, for letting the IEs
reach a desired and set configuration. This configuration may
be simple (based on the behavior of one device) or complex
(based on the complex behavior of different devices). By
finding the sequence of transitions, one can know the way
that (s)he can follow to achieve the desired configuration of
environment.

ACKNOWLEDGEMENTS

This work is partially supported by the Higher Educa-
tion Commission (HEC), Pakistan under UESTP-Italy/UET
project. The authors thank Franco Mazzanti for his guidance
and support.

REFERENCES

[1] H. Ristau, “Publish/process/subscribe: Message based communication
for smart environments,” in IET 4th International Conference on Intel-
ligent Environments, 2008, pp. 1–7.

[2] K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten, and J.-C. Burgel-
man, “Scenarios for Ambient Intelligence in 2010,” ISTAG: IST Advi-
sory Group, Tech. Rep., February 2001.

[3] A. Coronato and G. De Pietro, “Formal design of ambient intelligence
applications,” Computer, vol. 43, no. 12, pp. 60 –68, Dec. 2010.

[4] F. Corno and M. Sanaullah, “Design time Methodology for the Formal
Verification of Intelligent Domotic Environments,” in Ambient Intelli-
gence - Software and Applications, ser. Advances in Intelligent and Soft
Computing, P. Novais, D. Preuveneers, and J. Corchado, Eds. Springer
Berlin / Heidelberg, 2011, vol. 92, pp. 9–16.

[5] D. Roman, M. Kifer, and D. Fensel, “Wsmo choreography: from abstract
state machines to concurrent transaction logic,” in Proceedings of the
5th European semantic web conference on The semantic web: research
and applications, ser. ESWC’08. Berlin, Heidelberg: Springer-Verlag,
2008, pp. 659–673.

[6] D. Bonino and F. Corno, “DogOnt - Ontology Modeling for Intelligent
Domotic Environments,” in International Semantic Web Conference, ser.
LNCS, A. Sheth, S. Staab, M. Dean, M. Paolucci, D. Maynard, T. Finin,
and K. Thirunarayan, Eds., no. 5318. Springer-Verlag, October 2008,
pp. 790–803.

Class State is
end State;

Class EGC is
Vars: RandomValue:int=35
State top = E
Transitions:

E -> E {-/DimmerLampInstance.set(RandomValue)}
E -> E {-/DimmerLampInstance.stepDown()}
E -> E {-/DimmerLampInstance.stepUp()}
E -> E {-/DimmerLampInstance.off()}
E -> E {-/DimmerLampInstance.on()}

end EGC;

Class ERN is
Operations: stateChanged(newState:State)
State top = N
Transitions:

N -> N {stateChanged(newState)/}
end ERN;

Class DimmerLamp is
Operations: on(), off(),set(value:int),

stepUp(), stepDown()
Vars: lightIntensity:int=50, lightStep:int=10
State top = off, on
State on = lightIntensityState

Transitions:
off-> on{on()/ }
off-> lightIntensityState{set(value)/

lightIntensity:=value}

on -> lightIntensityState{-/}
on-> off{off()/ }

lightIntensityState -> lightIntensityState{stepUp() /
if (lightIntensity < 100)then
{lightIntensity := lightIntensity + lightStep}

else {lightIntensity := 100}; }

lightIntensityState -> lightIntensityState{stepDown() /
if (lightIntensity > 0)then
{lightIntensity := lightIntensity - lightStep}
else {lightIntensity := 0}; }

lightIntensityState -> lightIntensityState{set(value)/
lightIntensity:=value}

end DimmerLamp

Objects:
ec: EGC
en: ERN
DimmerLampInstance: DimmerLamp

Abstractions{
Action $1($*) -> $1($*)
Action $1 -> sending($1)
Action accept($1) -> accepting($1)
Action lostevent($1) -> discarding($1)

State inState(DimmerLampInstance.lightIntensityState)
-> LightIntensityState

State inState(DimmerLampInstance.off) -> offState
State inState(DimmerLampInstance.on) -> onState

State DimmerLampInstance.lightIntensity < 0 -> underFlow
State DimmerLampInstance.lightIntensity > 100 -> overFlow
State DimmerLampInstance.lightIntensity >= 0 and

DimmerLampInstance.lightIntensity <= 100 -> inRange
}

Figure 10. Complete Model File of the Dimmer Lamp

[7] ——, “DogSim: A State Chart Simulator for Domotic Environments,”
in Pervasive Computing and Communications Workshops (PERCOM
Workshops), 2010 8th IEEE International Conference on, 29 2010-april
2 2010, pp. 208 –213.

[8] D. Harel, “Statecharts: a visual formalism for complex systems,” Science
of Computer Programming, vol. 8, no. 3, pp. 231 – 274, 1987.

[9] F. Mazzanti, “Designing uml models with umc,” Technical Report 2009-
TR-43, ISTI-CNR-Pisa, Italy, Tech. Rep., 2009.

[10] D. Fensel, Ontologies: a silver bullet for knowledge management and
electronic commerce. New York, NY, USA: Springer-Verlag, 2001.

[11] J. Barnett et al., “State chart XML (SCXML): State Machine Notation
for Control Abstraction,” W3C, Tech. Rep., May 2010.

[12] Z. Manna and A. Pnueli, The temporal logic of reactive and concurrent
systems. New York, NY, USA: Springer-Verlag New York, Inc., 1992.

[13] F. Mazzanti, UMC 3.3 User Guide, ISTI Technical Report 2006-TR-33,
ISTI-CNR Pisa-Italy, September 2006.

[14] R. De Nicola and F. Vaandrager, “Action Versus State based Logics
for Transition Systems,” Semantics of Systems of Concurrent Processes,
Lecture Notes in Computer Science, vol. 469, pp. 407–419, 1990.

[15] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic Verification of
Finite-State Concurrent Systems Using Temporal Logic Specifications,”
ACM Transactions on Programming Languages and Systems, vol. 8:2,
pp. 244–263, April 1986.

[16] M. Hennessy and R. Milner, “On observing nondeterminism and concur-
rency,” in Automata, Languages and Programming, ser. Lecture Notes
in Computer Science, J. de Bakker and J. van Leeuwen, Eds. Springer
Berlin / Heidelberg, 1980, vol. 85, pp. 299–309.

[17] B. McBride, “Jena: A semantic web toolkit,” IEEE Internet Computing,
vol. 6, pp. 55–59, November 2002.

