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Behavioral modeling of IC core power-delivery
networks from measured data

Igor S. Stievano,Senior Member, IEEE, Luca RigazioMember, IEEE,
Ivan A. Maio, Member, IEEE, Flavio G. Canavero,Fellow, IEEE,

Abstract—The modeling of the core power-delivery network of
digital ICs is addressed by a black-box approach, leading toan n-
port equivalent of the IC. The model parameters are estimated
from external measurements carried out at the IC ports. The
modeling procedure is demonstrated for a commercial NOR Flash
Memory in 90 nm technology housed by a specifically-designed
test fixture.

Index Terms—Digital integrated circuits, I/O ports, power de-
livery network, circuit modeling, macromodeling, power integrity.

I. I NTRODUCTION

High-performance applications, as those occurring in con-
verging technologies where the coexistence of analog blocks,
high-density memories and digital processing units leads to
complex and critical systems, grow in importance in the
recently-proposed multichip architectures. One of the chal-
lenges of these modern systems solutions is the prediction
of the switching noise generated by the current absorption of
digital circuits, that can interfere on the stable functioning of
the entire multichip system. Hence, reliable models of the core
power delivery networks of integrated circuits (ICs) are highly
desirable.

Behavioral models of the IC core power delivery networks
have already been proposed and exploited in [1], [2], where
simplified and physically-inspired circuit equivalents attempt
to describe the different blocks involved in the power delivery
network of the digital IC. Efforts are made to define and im-
prove the basic circuit equivalents and to provide a set of gen-
eral guidelines for the computation of model parameters from
both numerical simulation and real measurements. However,
the estimation of model parameters from measured data and
the inherent multiport nature of the power delivery structures
of ICs, are scarcely addressed by the current literature.

In this paper, the behavioral modeling of the IC core power
networks is addressed by a black-box approach. This approach
amounts to characterizing the device being modeled as an
n-port element defined by a set of network functions,e.g.,
by the admittance parameters, without using information on
the internal structure of the device. The model parameters
are obtained from the port responses of the power delivery
network, only. The modeling procedure benefits from simple
relationships between the model parameters and the measured
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responses and allows for multiport models. The test vehicleby
which we demonstrate the proposed approach is a commercial
IC Flash memory designed for stacked System-in-Package
(SiP) applications. This is a 512Mb NOR device in 90nm
technology produced by Numonyx.

II. STATEMENT OF THE PROBLEM

In order to discuss the modeling of IC core power delivery
networks, we focus on stacked SiP devices. These devices are
composed of a number of silicon dies encapsulated within
the same package and connected through bonding wires to
the package pads as shown in the example structure of
Fig. 1. For these structures, a single model accounting for
the combined effects of the power delivery network and of the
package interconnects as seen from the VDD-VSS balls of the
package is scarcely useful for the designer, who is looking for
the maximum flexibility in combining different modules and
assessing the impact of several available packages. In addition,
package models, possibly including the mutual effects among
the balls, are customarily available from suppliers or can be
obtained via 3D-EM simulations or measurements. Therefore,
in this paper, we decompose the stacked device into elementary
units and we separately model each element.

die #1

die #2

VSS VDD

PKG

bonding
wires

die #1

VDD1

VSS1

VDD2

VSS2

PKG

Fig. 1. Typical structure of a stacked system encapsulated in a single package
(left panel: side view; right panel; top view). The core power delivery network
of the die #1 is represented by the multiport structure defined by theVDD1−
VSS1 andVDD2− VSS2 pairs of pads.

The generation of a model for the power delivery network of
die #1 of Fig. 1 amounts to defining a suitable relation between
the voltages and currents at the two ports defined by terminals
VDD1 − VSS1 and VDD2 − VSS2. Under the assumption that
the power delivery network being modeled behaves linearly,
the relation can be expressed by a set of network functions.
We adopt an admittance representation, relating voltages and
currents as follows:
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[

I1(s)
I2(s)

]

= Y(s)

[

V1(s)
V2(s)

]

+

[

A1(s)
A2(s)

]

(1)

whereY(s) is the admittance matrix in the Laplaces-domain;
A1(s) andA2(s) represent the non-autonomous responses of
the system and account for the switching activity of the system
itself. The circuit equivalent of (1) is shown in Fig. 2 and is
used to represent the modeled power delivery network.

A1(s) A2(s)V1(s) V2(s)

I1(s) I2(s)
b b

b b

Y(s)

VDD1 VDD2

VSS1 VSS2

Fig. 2. Multiport Norton equivalent of the power supply network of the
die #1 of Fig. 1.

III. M ODELING PROCEDURE

This Section summarizes the procedure for the estimation
of the Norton model of the core power supply network of a
digital circuit like the die #1 of Fig. 1 and addresses possible
difficulties in the computation of model parameters.

A. Short-circuit admittance matrix Y(s)

The estimation of the admittance matrixY(s) is obtained
from the scattering frequency-domain measurements of the
multiport structure of Fig. 1. It is worth noticing that the on-
chip probing, when available, is the best option to collect mea-
sured data that can be readily converted into the admittance
representation (an example of such test strategy is available
in [3], where partial results are available for the same test
vehicle considered in this study). On the other hand, when
the spacing of the supply pads does not allow for the on-chip
probing or the number of ports exceeds the number of RF
probes that can be used simultaneously with a probing station
(generally limited to a few units), the off-chip measurement
is the only available option. In the latter case, the die must
be encapsulated in a custom package or directly mounted on
a board with the bonding wires connecting the die pads to
the board traces. In this case, however, the computation of the
admittance matrix of the power network of the die requires
special care to de-embed the effects of the test fixture.

It goes without saying that the measurements do not directly
provide a computational model that can be used in a simulation
environment like SPICE. Experience, supported also by the
evidence that the die is electrically small, teach us that the
interpretation of (1) and its conversion into an equivalent
circuit is rather straightforward. As an example, the results
collected in [3] confirm a smooth behavior of the entries of
the admittance matrixY in a frequency range up to 10GHz,
that covers the next generation ICs and justifies the modeling
via lumped simplified equivalents.

B. Short-circuit current sources

The computation of the current sourcesA1 andA2 of Fig. 2
is the most critical step of the modeling process and special
care must be taken in collecting, interpretating and processing
the measured data.

From a theoretical point of view, the determination of theAk

terms would require the measurement of the currents flowing
through ideal short-circuits terminating the die pads (e.g., the
VDD1 andVSS1 pads on the right panel of Fig. 1). However,
in practice, the pads cannot be shorted and the circuit operation
of the die must be ensured with the device mounted on a test
board. Hence, the activity current can be measured on the
board only,i.e., after it has gone through the bonding wires
and some board wiring. Figure 3 shows the equivalent circuit
of the setup for the measurement of the activity currentiss(t).
This setup is representative for a die mounted on a board with
the bonding wires connecting the die pads with the PCB traces
on the board. For the sake of simplicity, the die is described
by a two-terminal Norton equivalent and the external power
supply provided by a voltage regulator and a possible shunt
capacitance is simply represented by the ideal batteryVdd. For
the example memory chip of this study, typical values ofC
(representing the capacitive behavior of the power network) are
in the range [1-10] nF, as outlined in [3]. On the other hand,
the dominant inductive effects of the two adjacent bonding
wires is represented by the loop inductanceL conventionally
attributed in half to each of the bonding wires (see Fig. 3) [4],
[5]. In the simulations of the following Sections, we adopt
C = 3 nF andL = 4 nH.

The transient currentiss(t) is obtained via an indirect
measurement of the voltage drop across theR = 1Ω resistor
of Fig. 3. This method, following the standard for the mea-
surement of the conducted emission of ICs in the range from
dc to 1GHz [6], has been selected among a limited number of
possible alternative techniques, since it is simple to implement
and leads to accurate results in practical applications [7].

VDD

VSS

IC (die)

C
a(t)

r/2 L/2

r/2 L/2 iss(t)R

Vdd

bonding wires
external supply
+ current probe

b b

b b

VDDb

VSSb

b

Fig. 3. Simplified equivalent of the setup used for the measurement of the
core power supply current of a digital IC. Current is indirectly measured
through the voltage drop on the series resistorR = 1Ω.

The reconstruction of the source terma(t) from the transient
current measurementiss(t) is theoretically obtained in the
Laplace-domain by means of the backward application of the
current division rule (see Fig. 3):

A(s) = Iss(s)H
−1(s) =

= Iss(s)(LC)(s2 + s(r +R)/L+ 1/LC).
(2)



3

This operation, however, is ill-conditioned because of the
high-pass filtering behavior of the network external to the
die, as evidenced by theH−1 plot of Fig. 4. Thus, the net
effect is an amplification of the high-frequency noise of the
measurediss(t) signal, leading to ana(t) waveshape severely
plagued by the noise. A detailed discussion of the inherent
limitations of the inversion procedure of (2) is presented in
Appendix A, where this argument is supported by a set of
numerical simulations based on the ideal structure of Fig. 3.
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Fig. 4. Bode plots (magnitude) of the transfer functionsH(s) = Iss(s)/A(s)
and its inverseH−1(s).
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Fig. 5. Proposed Norton equivalent that accounts for the effects of both the
die and the bonding wires.

In order to overcome this problem, we propose a new
model for the device, including the effect of the bonding
wires. This amounts to build a Norton equivalent of the part
of the circuit to the left of portVDDb-VSSb in Fig. 3. As
shown in the scheme of Fig. 5, the two elements of this
new equivalent are the parallel admittanceỸ (s) = (1/sC +
r + sL)−1 and the short-circuit current̃A(s) = A(s)H̃(s) =
(A(s)/sC)/(1/sC + r + sL), that corresponds to the current
flowing through an ideal short-circuit connecting the terminals
VDDb andVSSb. With the help of (2), we can readily express
the new Norton source in terms of the measured current,i.e.,

Ã(s) = A(s)H̃(s) = (Iss(s)H
−1(s))H̃(s) =

Iss(s)
s2 + s(r +R)/L+ 1/LC

s2 + sr/L+ 1/LC

(3)

whereH̃(s) = Ã(s)/A(s).
Equation (3) turns out to be much more robust to measure-

ment noise, since the combined transfer functionH−1(s)H̃(s)
is unitary at high-frequency and does not amplify the mea-
surement noise. The reader is referred to Appendix A for
additional details and for a quantitative justification of the
previous claim. It is worth noticing that this solution does

not limit the application of the extracted model, since, forany
practical application, the die will be connected to the package
traces via bonding wires as shown in Fig. 1

The proposed procedure can be easily extended to the mul-
titerminal case, like the two-port structure in Fig. 2, by means
of current measurements at the terminal pads, as shown in
Appendix B. Briefly speaking, this can be achieved as follows:
the test setup of Fig. 3 is suitably modified by replacing
the two terminal Norton equivalent of the IC core with a
multiterminal equivalent obtained by replicating at each port
the SMD probing resistor (see Fig. 13). With this modification,
the matrix equation obtained form the computation of the
measured port currents turns out to be an extension of (2-3),
thus allowing the reconstruction of the different source terms
with the same robustness to high frequency noise of the scalar
case.

C. Model generalization

In a real application, the bonding wires might be different
from those used for the measurement of the switching current.
Hence, the device model needs to be rescaled with respect to
the parameters of the actual case in use. In analogy with (3),
the actual Norton equivalent becomes:







Ã(s) = Iss(s)(L/L̃)
s2 + s(r +R)/L+ 1/LC

s2 + sr̃/L̃+ 1/L̃C
Ỹ (s) = (1/sC + r̃ + sL̃)−1

(4)

where the series resistancer̃ and inductancẽL of the actual
bonding wires need to be known independently. In general,
the designer is able to estimate these parasitics by means
of empirical considerations or via EM simulation. Model (4)
represents a useful building block for a designer needing
to assess integration scenarios for the device or conduct
performance analyses at multichip level.

IV. M EASUREMENTS RESULTS

This Section collects the results of the real measurements
carried out on the example memory chip mentioned at the end
of Sec. I. The Norton equivalent of the die power network,
including standard bonding, is also identified.

In order to implement the ideal setup of Fig. 3, a test
board has been suitably designed. The board, shown in Fig. 6,
is composed of a general-purpose control circuitry for the
operation of the device under test, and of a measurement board
holding the IC under test and the measurement fixture. The
measurement board is connected to the control board via a pair
of 40-pin QTE connectors, and can be replaced to test different
ICs. The memory controller has been designed to allow the
memory to operate at 66MHz and perform repeatedly the basic
cycles (Program, Erase, Read).

The ad-hoc measurement board contains also a female SMA
connector close to the VSS reference pads (see Fig. 6). Such
connector is used for the inclusion of the1-Ω probe, mounted
on a male SMA connector and designed according to the
guidelines of [6]. The indirect measurement of the switching
current via the voltage drop on the series resistor was carried
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Fig. 6. Measurement board for recording the core switching activity current
for the example IC.

out with a LeCroy WavePro 7300A scope (3GHz bandwidth,
10GS/s). Preliminary measurement results can be found in [8].

Figure 7 shows a slice of the measured transient current
iss(t) observed during the erase operation phase and its
frequency-domain spectrum, thus confirming the same behav-
ior observed in the simplified analysis of Appendix A.
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Fig. 7. Measured transient currentiss(t) carried out on the example
commercial memory chip (top panel) and its related spectrum(bottom panel).

The SMA connector of Fig. 6 has also been used to measure
theS11 scattering parameter needed for the computation of the
equivalent admittance seen from the terminals of the resistor
and therefore for the estimation of the setup capacitanceC
and inductanceL (see Fig. 3). Figure 8 shows the measured
frequency-domain admittance compared with the response
predicted by theLC circuit equivalent of Fig. 3. The values
of the circuit equivalent were estimated via simple fitting.

As outlined in Sec. III, the measured current responseiss(t)
of Fig. 7 is used to compute the Norton current sourceã(t) via
equation (3). The measured response and the estimated short-
circuit current are shown in Fig. 9, that confirms the feasibility
and robustness of the proposed approach.

It is worth noticing that the test board specifically designed
in this study allowed the estimation of one transient current
only, and therefore the estimation of a single-port Norton
equivalent. However, the advocated processing technique can
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Fig. 8. Impedance seen from the terminals of the1Ω resistor of Fig. 3.
Dashed lines: real measurement carried out on the test boardof Fig. 6; solid
lines: prediction obtained via a lumpedLC equivalent like the one of Fig. 3
(L = 7nH, C = 3.5nH).
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Fig. 9. Measured transient currentiss(t) of Fig. 7 (solid gray curve) and
short-circuit current̃a(t) of the Norton equivalent computed via equation (3)
(dashed black curve)

be extended to an arbitrary number of ports and is con-
sequently suited for the estimation of a multiport Norton
equivalent.

V. CONCLUSIONS

This paper addresses the generation of a black-box model of
the core power delivery network of a digital IC. The proposed
model, that is defined by a multiport Norton equivalent, can
be obtained from measurements carried out at the IC ports.
The effects of the measurement noise, that introduces practical
constraints in the computation of the source terms of the
equivalent, has been demonstrated. A systematic procedure
enabling the estimation of a simplified yet representative
model including the bonding wires of the device, has been
proposed. The feasibility of the advocated approach has been
demonstrated through the modeling of a commercial IC mem-
ory from data measured by means of a specifically-designed
test board.

Acknowledgements
This paper provides a systematic and unified interpretationof several
activities carried out under the MOCHA (MOdeling and CHAr-
acterization for SiP - Signal and Power Integrity Analysis)grant
no. 216732 of the European Communitys Seventh Framework Pro-
gramme. A. Girardi, R. Izzi, A. Vigilante and F. Vitale (Numonyx,



5

Italy) are gratefully acknowledged for providing the example test chip
and the support for the design of the test board used in this study.

APPENDIX

A

The aim of this appendix is twofold,i.e., to clarify via
numerical simulation the difficulties in the reconstruction
of the short-circuit currenta(t) from the measured current
activity of the chip (see eq. (2)); also, to demonstrate the
robustness of (3) and (4) for the prediction of the short-circuit
current of a new Norton model of the IC supply network, built
including standard bonding wires.

Experience teaches us that the power supply current drawn
by a digital memory is a superposition of a fast switching
activity of the internal gates and of a slower current absorption
corresponding to the enable/disable function of internal macro-
blocks [8]. Therefore, the signala(t) of Fig. 3 can be idealized
by a square wave modulating a combination of current spikes
(please refer to the dark curve of the top panel of Fig. 10).
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Fig. 10. Transient waveform of the current sourcea(t) defining the switching
activity of the example test (top panel) and the corresponding supply current
iss(t) that is possibly corrupted by a superimposed simulatedmeasurement
noise (the standard deviation of the white noise disturbance isσ = 1mA)
(bottom panel).

The lower panel of Fig. 10 shows thevirtually measured
current responseiss(t), corresponding toa(t) in the upper
panel. The “measured” current is contaminated by a white
gaussian noise to mimic a real measurement situation. The
top panel of Fig. 10, in addition, includes the reconstructed
short-circuit current obtained from the direct application of
(2) to the noisy response ofiss(t), thus highlighting the severe
degradation of the predicted waveform through the processing
of noisy data. This phenomenon is described from a different
point of view in Fig. 11, where the spectrum of the transient
current iss(t) is shown for both the noiseless and the noisy
case. The two plots of Fig. 11 clearly highlight that the noise
in a real measurement modifies the behavior of the spectrum
in the high-frequency region,i.e., from about 100 MHz. The
application of (2) means to multiply the noisy spectrum of
Fig. 11 by the inverse transfer functionH−1(s) (see its Bode
plot in Fig. 4), and this operation unavoidably leads to the

amplification of the measurement noise, preventing the direct
computation of the current sourcea(t).
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Fig. 11. Frequency-domain spectrum of theiss(t) current.

In order to overcome this problem, as already anticipated in
Sec. III, we propose the generation of a new Norton equivalent
including the effects of the bonding wires. As an example, the
top panel of Fig. 12 shows the predicted short-circuit current
of the new Norton equivalent of the die including the bonding
of Fig. 3. In this case, the noisy signaliss(t) is processed by
means of (3),i.e., it is transformed by the network function
H−1(s)H̃(s) shown in the bottom panel of Fig. 12, featuring
a flat response in the high-frequency region.
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Fig. 12. Top panel: short-circuit currentã(t) of the new Norton equivalent
including standard bonding (r = 100mΩ, L = 4 nH); bottom panel: Bode
plot (magnitude) of the transfer functionsH−1(s)H̃(s) defined in (3).

In the above assessment, no filtering has been applied to
the noisy signaliss(t), in order to demonstrate the robustness
of the estimation via (3). Also, it is ought to note that typical
values of the bonding inductanceL are always within the range
1÷ 10 nH, leading to a transfer function (3) that modifies the
measured currentiss(t) in a frequency region where the signal-
to-noise ratio of the measurements is certainly larger thanone.
This demonstrates the general validity of the inversion proce-
dure and confirms that similar results are obtained when (4)
is used with different values of the bonding parameters

As a final remark, we wish to point out that a careful
design or characterization of the current probe (i.e., of the
1Ω resistorR in Fig. 3) is not required, since the bandwidth
of the measured current is relatively small with respect to
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frequencies where SMD parasitics can have effects; hence,
the SMD resistor can be assumed as an ideal component.

APPENDIX

B

This Appendix shows the extension of the proposed method-
ology for the multiport case. A two-port case is considered for
the sake of simplicity, and the equivalent of Fig. 3 is general-
ized to the equivalent of Fig. 13, where the bonding resistances
have been omitted for simplicity andIss1, Iss2 represent the
currents flowing out of the power supply terminals of a die
with two VDD-VSS supply pairs.

The measured currents can be obtained from



































[

Iss1(s)
Iss2(s)

]

= Y(s)

[

V1(s)
V2(s)

]

+

[

A1(s)
A2(s)

]

[

V1(s)
V2(s)

]

= −

[

R+ sL 0
0 R+ sL

]

[

Iss1(s)
Iss2(s)

]

= −diag(R+ sL)

[

Iss1(s)
Iss2(s)

]

(5)
where the first equation represents the die and the second
equation is the series connection of the bonding impedances
with the two-terminal probing elements.

Equations (5) can be rewritten as

[

Iss1(s)
Iss2(s)

]

(I+Y(s)diag(R + sL)) =

[

A1(s)
A2(s)

]

. (6)

A similar equation arises when the two-terminal probing
elements of Fig. 13 are replaced by ideal short circuits. In the
latter case, the short circuit currents write

[

Ã1(s)

Ã2(s)

]

(I+Y(s)diag(sL)) =

[

A1(s)
A2(s)

]

. (7)

Finally, the combination of (6) with (7) allows to compute
the short circuit currents̃A1 andÃ2 of the multiport equivalent
of the IC (see Fig. 13), including the bonding wires. The
equivalent source currents are determined as functions of
the measured currentsIss1 and Iss2. As already outlined in
Sec. III-B, the obtained equation turns out to be robust to
measurement noise and can be effectively used to process
measured data.
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Fig. 13. Simplified equivalent of the setup for the measurement of the core power supply currents of a digital IC with two VDD-VSS power supply pairs.
Currents are indirectly measured through the voltage drop on the series resistorsR = 1Ω.


