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Refined beam elements with only displacement 
variables and plate/shell capabilities

Erasmo Carrera · Marco Petrolo

Abstract This paper proposes a refined beam for-
mulation with displacement variables only. Lagrange-
type polynomials, in fact, are used to interpolate the
displacement field over the beam cross-section. Three-
(L3), four- (L4), and nine-point (L9) polynomials are
considered which lead to linear, quasi-linear (bilinear),
and quadratic displacement field approximations over
the beam cross-section. Finite elements are obtained
by employing the principle of virtual displacements in
conjunction with the Unified Formulation (UF). With
UF application the finite element matrices and vectors
are expressed in terms of fundamental nuclei whose
forms do not depend on the assumptions made (L3,
L4, or L9). Additional refined beam models are im-
plemented by introducing further discretizations over
the beam cross-section in terms of the implemented
L3, L4, and L9 elements. A number of numerical
problems have been solved and compared with results
given by classical beam theories (Euler-Bernoulli and
Timoshenko), refined beam theories based on the use
of Taylor-type expansions in the neighborhood of the
beam axis, and solid element models from commercial
codes. Poisson locking correction is analyzed. Appli-
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cations to compact, thin-walled open/closed sections
are discussed. The investigation conducted shows that:
(1) the proposed formulation is very suitable to in-
crease accuracy when localized effects have to be de-
tected; (2) it leads to shell-like results in case of thin-
walled closed cross-section analysis as well as in open
cross-section analysis; (3) it allows us to modify the
boundary conditions over the cross-section easily by
introducing localized constraints; (4) it allows us to
introduce geometrical boundary conditions along the
beam axis which lead to plate/shell-like cases.

Keywords Finite element method · Higher-order
beam · Shell-like capabilities · Carrera unified
formulation

1 Introduction

Beam theories are important tools for structural ana-
lysts. Interest in beam models is mainly due to their 
simplicity and their low computational costs when 
compared to 2D (plate/shell) or 3D (solid) models. 
The use of a beam model is of particular interest with 
slender bodies such as aircraft wings, helicopter ro-
tor blades, and slender bridges. The classical and best-
known beam theories are those by Euler [16] and here-
inafter referred as EBBM, and Timoshenko [30, 31] 
and hereinafter referred as TBM. The former does 
not account for transverse shear deformations. The 
latter foresees a uniform shear distribution along the
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cross-section of the beam. These models work prop-
erly when slender compact homogeneous structures 
are considered in bending. Conversely, the analysis of 
deep, thin-walled, open beams requires more sophisti-
cated methods, see [22]. Higher-order beam theories 
that enhance the displacement fields of EBBM and 
TBM can be developed to overcome these limits.

Several refined beam models can be found in open 
literature. Attention is herein given to works which 
are mainly devoted to the analysis of isotropic, thin-
walled, and open cross-section beams. A com-
prehensive review of beam (including plate) theo-ries 
for vibration, wave propagations, buckling and post-
buckling was presented by Kapania and Rac-iti [20, 
21]. An overview of existing beam finite el-ements 
was made by Reddy [25], where beam el-ements 
based on classical and higher-order theories were 
described, and the problems of shear locking and 
locking-free beam elements were discussed. Vinayak 
et al. [33] used a higher-order beam element based on 
the Lo-Christensen-Wu theory to study isotropic and 
composite, thin and deep compact beams, where axial 
and transverse displacements were modeled via cubic 
and parabolic expansions, respectively. Several works 
related to the shear correction factor evaluation were 
presented by Gruttmann et al. [18], Gruttmann and 
Wagner [17], and Wagner and Gruttmann [34]. Here, 
several structural problems were addressed: torsional 
and flexural shearing stresses in prismatic beams, ar-
bitrary shaped cross-sections, wide and thin-walled 
structures, and the influence of Poisson’s ratio on the 
shear correction factor was highlighted. A distortional 
theory for thin-walled beams was proposed by Jöns-
son [19], where the distortional displacement mode 
was embedded in the classical kinematic assumptions 
of Vlasov theory, and the role of cross-section dis-
tortion was investigated for different open and closed 
cross-sections undergoing static loads. Petrolito [24] 
and Eisenberger [13] dealt with the exact stiffness ma-
trix analysis of a high-order beam element: the re-
fined displacement field was based on a cubic varia-
tion of the axial displacement over the cross-section 
of the beam whereas the lateral displacement was kept 
constant, and comparisons with classical mod-els 
were made, while the importance of higher or-der 
terms in case of short beams was underlined. Works 
by Dinis et al. [12] and Silvestre [29] dealt with the 
buckling analysis of thin walled open/closed cross-
section beams: the Generalized Beam Theory

(GBT) was used to implement beam theories account-
ing for the in-plane cross-section deformations, and 
shell-type results were obtained by using appropri-ate 
cross-section shape functions describing the beam 
displacement field; the choice of those functions de-
pends on the geometry of the considered structures. 
GBT was also used by Rendek and Baláž [27], for the 
static analysis of thin walled beams and comparisons 
with experimental results. El Fatmi [14, 15] proposed 
a beam theory with a non-uniform warping distribu-
tion. He adopted a kinematic model that keeps the 
cross-section shape constant; warping effects were in-
vestigated on compact and hollow beams with closed 
and open cross-sections, and particular attention was 
given to the analysis of shear and axial stresses. The 
proposed refined theory proved useful especially with 
short open cross-section beams. Another interesting 
work dealing with non-uniform warping distributions 
was presented by Sadé [28]; a detailed overview of 
the warping problem was given, and static and buck-
ling analyses were performed. A different approach to 
refine a structural model is based on the asymp-totic 
method where a characteristic parameter (e.g. the 
cross-section thickness for a beam) is exploited to 
build an asymptotic series, and those terms which 
exhibit the same order of magnitude as the parame-ter 
when it vanishes are retained. Significant examples of 
asymptotic built beam models were given by Yu et al. 
[36] and Yu and Hodges [35].

The above works show a clear interest in investi-
gating refined beam theories. The present work falls 
in the framework of the Carrera Unified Formulation, 
CUF, which has been developed during the last 
decade by the first author and his co-workers. CUF 
was ini-tially devoted to the development of refined 
plate and shell theories, see [2, 3]. Recently, it has 
been ex-tended to beam modeling by Carrera and 
Giunta [6]. CUF is a hierarchical formulation which 
considers the order of the theory as an input of the 
analysis. This permits us to deal with a wide variety 
of problems with no need of ad hoc formulations. 
Non-classical effects (e.g. warping, in-plane 
deformations, shear ef-fects, bending-torsion 
coupling) are accounted for by opportunely increasing 
the order of the adopted model. Finite element 
formulation is adopted to deal with ar-bitrary 
geometries, boundary conditions, and loadings. 
Previous works have been based on the use of Tay-lor 
type polynomials to define the displacement field 
above the beam cross-section; each field consists of

2



a direct extension to higher-order expansions of the 
Timoshenko beam theory. Static analyses, see [8, 11], 
showed the strength of CUF in dealing with warping, 
in-plane deformations, and shear effects. Free vibra-
tion analyses, see [9, 10], underlined the possibility of 
detecting shell-like vibration modes by means of re-
fined beam theories with no need of more 
cumbersome 2D or 3D models. An effectiveness 
analysis by Car-rera and Petrolo [7] was also 
conducted to highlight the role of each higher-order 
term in given structural problems.

The use of Taylor-type expansions has some intrin-
sic limitations: the introduced variables have a mathe-
matical meaning (derivatives at the beam axes); higher
order terms cannot have a local meaning, they can
have cross-section properties only; the extension to
large rotation formulation could experience difficul-
ties. To overcome these problems, this work proposes
new beam theories whose cross-section displacement
field is described by Lagrange-type polynomials. The
choice of this kind of expansion functions leads us to
have displacement variables only. This aspect is of par-
ticular interest because:

1. each variable has a precise physical meaning (the
problem unknowns are only translational displace-
ments);

2. unknown variables can be put in fixed zones (sub-
domains) of the cross-section area (e.g. close to
loadings);

3. geometrical boundary conditions can be applied in
sub-domains of the cross-section (and not only to
the whole cross-section);

4. geometrical boundary conditions can also be ap-
plied along the beam-axis;

5. cross-sections can be divided into further beam sec-
tions and easily assembled since the displacements
at each boundary are used as problem unknowns;

6. the extension to geometrically non-linear problems
appears more suitable than in the case of Taylor-
type higher-order theories.

Three- (L3), four- (L4), and nine-point (L9) polyno-
mials are considered in the framework of CUF; this
leads to linear, quasi-linear (bilinear), and quadratic
displacement field approximations over the beam
cross-section. More refined beam models are imple-
mented by introducing further discretizations over the
beam cross-section in terms of implemented elements.
A number of significant problems are treated. Com-
pact, thin-walled, open cross-section, and shell-like

Fig. 1 Coordinate frame of the beam model

structures are analyzed. Homogenous isotropic mod-
els are used. The possibilities of dealing with localized
loadings and to treat in a ‘new manner’ the geometri-
cal boundary conditions are shown.

The paper is organized as follows: brief descrip-
tions of the adopted beam theories and the finite ele-
ment formulation are furnished in Sects. 2 and 3; 
struc-tural problems addressed, together with results 
and discussion, are provided in Sect. 4. The main 
conclu-sions are then outlined in Sect. 5.

2 Preliminaries

The adopted coordinate frame is presented in Fig. 1.
The beam boundaries over y are 0 ≤ y ≤ L. The dis-
placement vector is:

u(x, y, z) = {
ux uy uz

}T
(1)

The superscript “T ” represents the transposition oper-
ator. Stress, σ , and strain, ε, components are grouped
as follows:

σp = {
σzz σxx σzx

}T
, εp = {

εzz εxx εzx

}T

σ n = {
σzy σxy σyy

}T
, εn = {

εzy εxy εyy

}T (2)

The subscript “n” stands for terms lying on the cross-
section, while “p” stands for terms lying on planes
which are orthogonal to Ω . Linear strain-displacement
relations are used:

εp = Dpu
εn = Dnu = (DnΩ + Dny)u

(3)
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with:

Dp =
⎡

⎢
⎣

0 0 ∂
∂z

∂
∂x

0 0
∂
∂z

0 ∂
∂x

⎤

⎥
⎦ , DnΩ =

⎡

⎢
⎣

0 0 0
0 ∂

∂x
0

0 ∂
∂z

0

⎤

⎥
⎦

(4)

Dny =
⎡

⎢
⎣

0 ∂
∂y

0
∂
∂y

0 0

0 0 ∂
∂y

⎤

⎥
⎦

The Hooke law is exploited:

σ = Cε (5)

According to (2), the previous equation becomes:

σp = C̃ppεp + C̃pnεn

σ n = C̃npεp + C̃nnεn

(6)

In the case of isotropic material the matrices C̃pp ,
C̃nn, C̃pn, and C̃np are:

C̃pp =
⎡

⎣
C̃11 C̃12 0
C̃12 C̃22 0

0 0 C̃66

⎤

⎦

C̃nn =
⎡

⎣
C̃55 0 0
0 C̃44 0
0 0 C̃33

⎤

⎦ (7)

C̃pn = C̃
T

np =
⎡

⎣
0 0 C̃13

0 0 C̃23

0 0 0

⎤

⎦

C

For the sake of brevity, the dependence of coefficients 
[ ˜ ]ij versus Young’s modulus and Poisson’s ratio is 
not reported here. It can be found in the books by Tsai 
[32] or Reddy [26].

3 Unified FE formulation

In the framework of the Carrera Unified Formula-
tion (CUF), the displacement field is the expansion of
generic functions, Fτ :

u = Fτ uτ , τ = 1,2, . . . ,M (8)

where Fτ vary above the cross-section. uτ is the dis-
placement vector and M stands for the number of

Table 1 L3 cross-section element point natural coordinates

Point rτ sτ

1 0 0

2 1 0

3 0 1

Fig. 2 Cross-section elements in actual geometry

terms of the expansion. According to the Einstein no-
tation, the repeated subscript, τ , indicates summation. 
Taylor-type expansions have been exploited in pre-
vious works by Carrera and Giunta [6], Carrera and 
Petrolo [7], Carrera et al. [8–11]. The Euler-Bernoulli 
(EBBM) and Timoshenko (TBM) classical theories 
are derived from the linear Taylor-type expansion. La-
grange polynomials are herein used to describe the 
cross-section displacement field. Three-, L3, four-, 
L4, and nine-point, L9, polynomials are adopted. L3 
poly-nomials are defined on a triangular domain 
which is identified by three points. These points 
define the el-ement that is used to model the 
displacement field above the cross-section. Similarly, 
L4 and L9 cross-section elements are defined on 
quadrilateral domains. The isoparametric formulation 
is exploited. In the case of the L3 element, the 
interpolation functions are given by [23]:

F1 = 1 − r − s, F2 = r, F3 = s (9)
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Table 2 L4 cross-section element point natural coordinates

Point rτ sτ

1 −1 −1

2 1 −1

3 1 1

4 −1 1

Table 3 L9 cross-section element point natural coordinates

Point rτ sτ

1 −1 −1

2 0 −1

3 1 −1

4 1 0

5 1 1

6 0 1

7 −1 1

8 −1 0

9 0 0

where r and s belong to the triangular domain defined 
by the points in Table 1. Figure 2a shows the point 
locations in actual coordinates. The L4 element inter-
polation functions are given by:

Fτ = 1

4
(1 + rrτ )(1 + ssτ ), τ = 1,2,3,4 (10)

where r and s vary from −1 t o +1. Figure 
2b s h o w s  the point locations and Table 2 reports 
the point natural coordinates. In the case of a L9 
element the interpola-tion functions are given by:

Fτ = 1

4
(r2 + rrτ )(s

2 + ssτ ), τ = 1,3,5,7

Fτ = 1

2
s2
τ (s2 − ssτ )(1 − r2)

+ 1

2
r2
τ (r2 − rrτ )(1 − s2)

τ = 2,4,6,8

Fτ = (1 − r2)(1 − s2), τ = 9

(11)

where r and s from −1 t o +1. Figure 2c s h o w s 
t h e  point locations and Table 3 reports the point 
natural coordinates. The displacement field given by an 
L4 el-ement is:

Fig. 3 Two assembled L9 elements

ux = F1ux1 + F2ux2 + F3ux3 + F4ux4

uy = F1uy1 + F2uy2 + F3uy3 + F4uy4

uz = F1uz1 + F2uz2 + F3uz3 + F4uz4

(12)

where ux1 , . . . , uz4 are the displacement variables of 
the problem and they represent the translational dis-
placement components of each of the four points of 
the L4 element. The cross-section can be discretized 
by means of several L-elements. Figure 3 shows the 
assembly of 2 L9 which share a common edge and 
three points.

The discretization along the beam axis is conducted
via a classical finite element approach. The displace-
ment vector is given by:

u = NiFτ qτ i (13)

where Ni stands for the shape functions and qτ i for
the nodal displacement vector:

qτ i = {
quxτi

quyτi
quzτ i

}T
(14)

For the sake of brevity, the shape functions are not 
reported here. They can be found in many books, for 
instance in Bathe [1]. Elements with four nodes (B4) 
are herein formulated, that is, a cubic approxi-mation 
along the y axis is adopted. It has to be high-lighted 
that the adopted cross-section displacement field 
model defines the beam theory. It is therefore possible 
to deal with linear (L3), bilinear (L4), and quadratic 
(L9) beam theories. Further refinements can be 
obtained by adding cross-section elements, in this 
case the beam model will be defined by the num-ber 
of cross-section elements used. The choice of the 
cross-section discretization (i.e. the choice of the type, 
the number and the distribution of cross-section ele-
ments) is completely independent of the choice of the 
beam finite element to be used along the beam axis.
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The present formulation has to be considered as an
1D model since the unknowns of the problem, i.e. the
nodal unknowns, vary along the beam axis whereas the
displacement field of the beam is axiomatically mod-
eled above the cross-section domain. The introduction
of the Lagrange-like discretization above the cross-
section allows us to deal with locally refinable 1D
models having only displacement variables. This mod-
eling choice represents the novelty of the present work
since Taylor-like polynomials were exploited previ-
ously above the cross-section domain.

The stiffness matrix of the elements and the exter-
nal loadings, which are consistent with the model, are
obtained via the Principle of Virtual Displacements:

δLint =
∫

V

(δεT
pσp + δεT

n σ n)dV = δLext (15)

where Lint stands for the strain energy, and Lext is the 
work of the external loadings. δ stands for the virtual 
variation. The virtual variation of the strain energy is 
rewritten using (3), (6) and (13):

δLint = δqT
τiK

ijτsqsj (16)

where Kijτs is the stiffness matrix in the form of the
fundamental nucleus. Its components are:

K
ijτs
xx = C̃22

∫

Ω

Fτ,x Fs,x dΩ

∫

l

NiNjdy

+ C̃66

∫

Ω

Fτ,zFs,zdΩ

∫

l

NiNjdy

+ C̃44

∫

Ω

FτFsdΩ

∫

l

Ni,y Nj,y dy

K
ijτs
xy = C̃23

∫

Ω

Fτ,x FsdΩ

∫

l

NiNj,y dy

+ C̃44

∫

Ω

FτFs,x dΩ

∫

l

Ni,y Njdy

K
ijτs
xz = C̃12

∫

Ω

Fτ,x Fs,zdΩ

∫

l

NiNjdy

+ C̃66

∫

Ω

Fτ,zFs,x dΩ

∫

l

NiNjdy

K
ijτs
yx = C̃44

∫

Ω

Fτ,x FsdΩ

∫

l

NiNj,y dy

+ C̃23

∫

Ω

FτFs,x dΩ

∫

l

Ni,y Njdy

K
ijτs
yy = C̃55

∫

Ω

Fτ,zFs,zdΩ

∫

l

NiNjdy

+ C̃44

∫

Ω

Fτ,x Fs,x dΩ

∫

l

NiNjdy (17)

+ C̃33

∫

Ω

FτFsdΩ

∫

l

Ni,y Nj,y dy

K
ijτs
yz = C̃55

∫

Ω

Fτ,zFsdΩ

∫

l

NiNj,y dy

+ C̃13

∫

Ω

FτFs,zdΩ

∫

l

Ni,y Njdy

K
ijτs
zx = C̃12

∫

Ω

Fτ,zFs,x dΩ

∫

l

NiNjdy

+ C̃66

∫

Ω

Fτ,x Fs,zdΩ

∫

l

NiNjdy

K
ijτs
zy = C̃13

∫

Ω

Fτ,zFsdΩ

∫

l

NiNj,y dy

+ C̃55

∫

Ω

FτFs,zdΩ

∫

l

Ni,y Njdy

K
ijτs
zz = C̃11

∫

Ω

Fτ,zFs,zdΩ

∫

l

NiNjdy

+ C̃66

∫

Ω

Fτ,x Fs,x dΩ

∫

l

NiNjdy

+ C̃55

∫

Ω

FτFsdΩ

∫

l

Ni,y Nj,y dy

It should be noted that no assumptions on the approx-
imation order have been made. It is therefore possible 
to obtain refined beam models without changing the 
formal expression of the nucleus components. This is 
the key-point of CUF which permits, with only nine 
FORTRAN statements, to implement any-order beam 
theories. The shear locking is corrected through the 
se-lective integration (see [1]). The line and surface 
inte-gral computation is numerically performed by 
means of the Gauss method. The assembly procedure 
of the Lagrange-type elements is analogous to the one 
fol-lowed in the case of 2D elements. The procedure 
key-points are briefly listed:

1. The fundamental nucleus is exploited to compute
the stiffness matrix of each cross-section element
of a structural node. If an L4 element is considered,
this matrix will have 12 × 12 terms.

2. The stiffness matrix of the structural node is then
assembled by considering all the cross-section ele-
ments and exploiting their connectivity.

3. The stiffness matrix of each beam element is com-
puted and assembled in the global stiffness matrix.
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The variationally coherent loadings vector is derived
in the case of a generic concentrated load P:

P = {
Pux Puy Puz

}T
(18)

Any other loading condition can be similarly treated.
The virtual work due to P is:

δLext = PδuT (19)

The virtual variation of u in the framework of CUF is:

δLext = Fτ PδuT
τ (20)

By introducing the nodal displacements and the shape
functions, the previous equation becomes:

δLext = FτNiPδqT
τi (21)

This last equation permits us to identify the compo-
nents of the nucleus which have to be loaded, that is,
it leads to the proper assembling of the loading vector
by detecting the displacement variables that have to be
loaded.

The imposition of constraints can be carried out
by considering each of the three degrees of free-
dom of cross-section element points independently. In
other words, a constraint can be either imposed on
the whole cross-section or on an arbitrary number of
cross-section points.

4 Results and discussion

The proposed beam formulation is herein evaluated
and compared with different models: classical beam
theories, refined beam elements based on Taylor-type
assumptions, and, in some cases, solid elements of the
commercial code MSC Nastran. MSC Nastran models
are based on HEX8 elements having approximatively
a unitary aspect ratio. Various homogeneous cross-
section geometries made of isotropic materials are an-
alyzed. The material data is: the Young modulus, E, is
equal to 75 [GPa]; the Poisson ratio, ν, is equal to 0.33.
Particular attention is given to problems that show the
capability of the present beam element to deal with lo-
calized boundary conditions over the cross section as
well as with plate/shell-like analyses. All the graphic
results are opportunely scaled.

Fig. 4 Rectangular cross-section

Table 4 Effect of the number of elements on uz for different
beam models. L/h = 100. Compact square cross-section

No. Elem. 5 10 40

uz × 102 [m], uzb
× 102 = −1.333 [m]

EBBM −1.333 −1.333 −1.333

TBM −1.333 −1.333 −1.333

N = 1 −1.333 −1.333 −1.333

N = 2 −1.314 −1.324 −1.331

1 L4 −1.107 −1.111 −1.115

1 L9 −1.314 −1.324 −1.331

4.1 Square and rectangular cross-sections

A cantilevered beam is used for the preliminary as-
sessment of the present beam model. The geometry of 
the cross-section is shown in Fig. 4. The height of the 
cross-section, h, i s  0 .2 [m], with b as high as 
h. T w o  slenderness ratios, L/h, are considered: 100 
and 10. Slender and moderately short beams are 
considered in order to highlight the importance of 
refined models in case of short structures. A point load, 
Fz, is applied at [0, L, 0]. The magnitude of Fz is equal 
to −50 [N].

The loaded point vertical displacement, uz, is eval-
uated. The Euler-Bernoulli theory is used for compari-

son purposes, uzb
= FzL

3

3EI
, where I is the cross-section

moment of inertia. Table 4 shows the displacement 
values for different meshes and beam models in the 
case of a slender beam (L/h = 100). Classical the-
ories, EBBM and TBM, are accounted for (2nd and 
3rd rows). Results by Taylor-type linear and parabolic 
models, N = 1 and N = 2, are reported in the 4th 
and 5th rows. Lagrange polynomial beam model re-
sults are shown in the last two rows. Four-point, L4, 
and nine-point, L9, cross-section elements are con-
sidered. Table 5 reports the results of a moderately

7



Table 5 Effect of the number of elements on uz for different
beam models. L/h = 10. Compact square cross-section

No. Elem. 5 10 40

uz × 105 [m], uzb
× 105 = −1.333 [m]

EBBM −1.333 −1.333 −1.333

TBM −1.343 −1.343 −1.343

N = 1 −1.343 −1.343 −1.343

N = 2 −1.320 −1.327 −1.330

N = 3 −1.322 −1.329 −1.332

N = 4 −1.323 −1.330 −1.333

1 L4 −1.112 −1.115 −1.116

1 L9 −1.320 −1.327 −1.329

Table 6 Effect of the number of L4 elements on uz . L/h =
100. Compact square cross-section

No. Elem. 1 L4 2 × 1 L4 1 × 2 L4 2 × 2 L4

uz × 102 [m], uzb
× 102 = −1.333 [m]

5 −1.107 −1.155 −1.222 −1.254

10 −1.111 −1.160 −1.229 −1.262

40 −1.115 −1.164 −1.234 −1.268

thick beam (L/h = 10). Multiple L4 elements above 
the cross-section are used in Table 6. Each column 
refers to a different L4 discretization. The second col-
umn indicates the results obtained by using one L4, 
the third is related to the case of two L4 along the x-
direction, the fourth to the case of two L4 along the z-
direction, and the fifth to the case of two L4 ele-ments 
along both cross-section directions. The results from 
all these analyses suggest the following consid-
erations.

1. The use of an L9 permits us to obtain good accu-
racy. This element gives results which are equiv-
alent to those of a Taylor-type parabolic, N = 2,
model. This means that the cubic and quartic poly-
nomial terms (s2r , sr2, and s2r2) do not play a very
significant role in the considered problem, in fact,
these terms are not considered in the Taylor case
N = 2.

2. L4 have slower convergence rates than L9. How-
ever, the subdivision of the cross-section in more
than one L4 is very effective.

3. The improvement given by the cross-section dis-
cretization in L4 elements is related to the total
number of elements as well as their distribution

Table 7 Role of the bilinear term and of the Poisson locking
correction on uz . L/h = 100. Compact square cross-section

Correction Taylor bilinear 1 L4

uz × 102 [m], uzb
× 102 = −1.333 [m]

Activated −1.866 −1.868

Deactivated −1.115 −1.115

above the cross-section. The refinement along the
z-direction is more effective than the one along the
x-direction when a Fz load is applied.

The L4 is characterized by the presence of a bilin-ear 
term in the displacement field expression. This term is 
responsible for the slow convergence rate. Table 7 
presents the investigation on the role of the bilinear 
term together with the Poisson locking correction. 
Locking is corrected as in Carrera and Brischetto [4, 
5]. The following Taylor-type model is used for 
comparison purposes:

ux = ux1 + xux2 + zux3 + xzux5

uy = uy1 + xuy2 + zuy3 + xzuy5

uz = uz1 + xuz2 + zuz3 + xzuz5

(22)

This model has been obtained as in Carrera and 
Petrolo [7]. The following considerations arise from 
Table 7.

1. The L4 is equivalent to the bilinear Taylor expan-
sion.

2. The Poisson locking correction corrupts the effec-
tiveness of both models because of the presence of
the bilinear term, but, at the same time, the bilinear
term is not enough to eliminate the Poisson lock-
ing.

3. As a general remark it can be stated that a beam
model based on a bilinear displacement field should
not be used because of its convergence issues. Lin-
ear models (e.g. TBM or N = 1) with a Poisson
locking correction or at least a second-order model
should be preferred to predict the bending behavior
of a compact beam.

An equilateral triangular cross-section is now consid-
ered to conduct a further investigation on the role of 
the Poisson locking and its correction. Figure 5 shows 
the geometry of the triangle, b is equal to 1 [m] and 
L/b is as high as 20. A vertical force, Fz, is applied 
at the center point. Fz is equal to −30 [N]. Two cross-
section discretizations are used: 1 L3 and 2 L3. The
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Fig. 5 Triangular cross-section

Fig. 6 2 L3 discretization of the triangular cross-section

Table 8 Role of the Poisson locking correction on uz in case of
L3 elements. Compact triangular cross-section

Correction 1 L3 2 L3

uz × 105 [m], uzb
× 105 = −5.912 [m]

Activated −5.917 −7.300

Deactivated −3.995 −4.567

latter one is shown in Fig. 6. Table 8 shows the ver-
tical center point displacement values for both beam 
models and the effects of the Poisson locking correc-
tion. The result analysis suggests the following.

1. The Poisson locking correction is beneficial in the
case of 1 L3 because a linear description of the
cross-section displacement field is given. This con-
firms what has been previously mentioned about
the role of the bilinear term.

2. The correction is detrimental in the case of 2 L3
because the displacement field is step-wise linear,
therefore is overall higher than the first-order. How-
ever, more than 2 L3 elements are needed to nul-
lify the Poisson locking. That explains why Pois-
son locking correction is not effective in L4 beam
theories.

Fig. 7 3 × 3 L9 discretization of the rectangular cross-section

Table 9 Displacement and stress values of the rectangular
beam

SOLID 1 L9 3 × 3 L9 [x, y, z]

27000 DOF’s 4941 DOF’s 8967 DOF’s

uz × 107 [m]

4.770 4.652 4.682 [0, L, −h/2]

σyy × 10−4 [Pa]

1.292 1.296 1.291 [0, L/10, +h/2]

σyz × 10−2 [Pa]

−6.168 −4.277 −6.086 [b/2, L/10, 0]

A rectangular cantilevered beam is now considered. 
The geometry of the cross-section is shown in Fig. 4. 
The height of the cross-section, h, i s  0 .1 [m], with 
b as high as h/4 and L/h equal to six. A point load, 
Fz, is applied at [0, L, −h/2]. The magnitude of Fz is 
equal to −1 [N]. Two cross-section L9 distributions 
are adopted: a 1 L9 and a 3 × 3 L9. The latter is 
shown in Fig. 7. A 20 B4 mesh is used along the y-
direction. Table 9 presents vertical displacements and 
stress val-ues in different points; comparisons with a 
solid model are reported together with the 
computational cost of each model. Shear stress 
distributions above the cross-
s e c t i o n a r e s h o w n i n F i g . 8. These results 
suggest the following.

1. A general good match is found between the present
formulation and the solid model solution. A slight
difference is observed in the vertical displacement
because the loading point is considered where se-
vere local effects undergo.

2. The cross-section discretization refinement is an ef-
fective method that leads to the 3D solid solution.

9



Fig. 8 σyz distributions above the rectangular cross-section

Fig. 9 Hollow square cross-section

Shear stress distributions are particularly improved
by the adoption of a refined cross-section model.

3. The present formulation requires significantly lower
computational efforts than a solid model.

4.2 Hollow cross-section

A hollow square cross-section is considered. Both 
ends are clamped. The cross-section geometry is 
s h o w n i n F i g . 9. The length-to-height ratio, 
L/h, i s

Fig. 10 Cross-section element distributions for the hollow
square beam

equal to 20. The height-to-thickness ratio, h/t, is equal 
to 10 with h as high as 1 [m]. A point load, Fz, i s 
first considered and applied at [0, L/2, −h/2]. Its 
magnitude is equal to 1 [N]. Three cross-section dis-
cretizations have been used, as shown in Fig. 
10. T h e  8 L9 distribution is symmetric, whereas the 
9 L9, and the 11 L9 ones have been refined in the 
proximity of the loaded point. Table 10 shows the 
displacement, uz, of the loaded point together with the 
indication of the number of degrees of freedom of each 
considered model. The first row shows the solid model 
result ob-tained by building a FE model in MSC 
Nastran. The increasing order Taylor-type models are 
considered in rows 2nd to 5th . The present Lagrange 
model results are shown in the last three rows. The 
following state-ments hold.

1. Refined beam theories allows us to obtain the solid
model results.

2. The computational cost of the beam models is sig-
nificantly smaller than the one requested by the 3D
model.

10



Table 10 uz of the loaded point of the hollow square beam

DOF’s uz × 108 [m]

SOLID 128952 1.374

Taylor

EBBM 155 1.129

N = 4 1395 1.209

N = 8 4185 1.291

N = 11 7254 1.309

Lagrange

8 L9, Fig. 2a 4464 1.277

9 L9, Fig. 2b 5022 1.308

11 L9, Fig. 2c 6138 1.326

3. An appropriate distribution of the L9 elements
above the cross-section is effective in improving
the accuracy of the solution. In other words, the
local refinement of a beam model is possible and
leads to the adaptation of the Lagrange point distri-
bution to the given problem.

4. Lagrange-based models are able to detect a more
accurate solution than Taylor-based ones with re-
duced computational costs. This is due to the pos-
sibility of locally refining the beam model which
is offered by the use of Lagrange polynomials,
whereas a Taylor model uniformly spreads the re-
finement above the cross-section with no distinc-
tion between lowly and highly deformed zones.

A second load case is considered in order to bet-ter 
highlight the local refinement capabilities of the 
present beam formulation. Two point loadings (Fz =
± 1 [N]) are applied at [0, L/2, ∓h/2]. The adopted 
L9 distributions are those in Figs. 10a and 10c, that is, 
symmetric and asymmetric distributions are involved. 
The latter has a refined distribution just in the 
proximity of the bottom side load point. Table 11
shows the displacements of the two loaded point uztop 
and uzbot , respectively. Solid, as well as Taylor-type 
models, are used for comparison purposes. Figure 11 
shows the deformed cross-section for each of the con-
sidered L9 element distributions. The following con-
siderations are highlighted by this last example.

1. Due to the symmetry of the geometry and of the
load, the loaded points should be affected by the
same vertical displacements (in magnitude). This
result is obtained in all the considered cases unless
the asymmetric L9 distribution is adopted. The lo-

Table 11 Effect of the cross-section element distribution on the
displacement of the loaded point. Hollow square beam

DOF’s uztop × 109 [m] uzbot
× 109 [m]

SOLID 128952 −1.716 1.716

Taylor

EBBM 155 0.0 0.0

N = 4 1395 −0.178 0.178

N = 8 4185 −1.046 1.046

N = 11 7254 −1.270 1.270

Lagrange

8 L9, Fig. 2a 4464 −0.985 0.985

11 L9, Fig. 2c 6138 −0.972 1.456

Fig. 11 Effect of the cross-section element distribution on the
displacement field. Hollow square beam

cally refined model leads to higher values for the
displacements only in the proximity of the refine-
ment.

2. The solution improvement offered by Lagrange-
based models is higher and computationally
cheaper than the one offered by Taylor-type mod-
els.

3. It has been shown that classical beam models, such
as EBBM, are not capable of detecting the displace-
ments of the loaded points at all.

4.3 Open cross-sections

A cantilevered C-section beam is considered. The 
cross-section geometry is shown in Fig. 
12. T h e  length-to-height ratio, L/h, is equal to 
20. The height-to-thickness ratio, h/t, is as high as 10 
with h and b2

11



Fig. 12 C-section geometry

Fig. 13 Cross-section L9 distributions for the C-section beam

equal to 1 [m], and b1 as high as b2/2. Two point 
loads are applied at [0, L, ±0.4], and their magni-
tudes are as high as ∓1 [N]. Two L9 distributions are 
adopted and shown in Fig. 13. The 9 L9 distribution

Table 12 Vertical displacement, uz , of the top loaded point.
C-section beam

DOF’s uz × 108 [m]

SOLID 84600 −3.067

Taylor

EBBM 155 0.0

N = 4 1395 −0.245

N = 8 4185 −2.161

N = 11 7254 −2.565

Lagrange

6 L9, Fig. 13a 3627 −2.930

9 L9, Fig. 13b 5301 −2.982

presents refinements in the proximity of the loading 
points. Table 12 shows the vertical displacement, uz, 
of the point at [0, L, +0.4]. Solid models as well as 
Taylor-type beam models are considered together 
with the present beam formulation. Figure 14 show 
the free tip deformed cross-section for both the 
adopted L9 distributions. The solid model solution is 
reported as well. The following statements hold.

1. The 9 L9 model perfectly detects the solid solution
with a significant reduction of the computational
cost.

2. Taylor-type models require higher than eleventh-
order expansions to match the solid model solution,
consequently, the difference of computational cost
between Taylor- and Lagrange-based beam models
appears to be higher in the case of open, as opposed
to closed cross-sections.

3. As seen previously, the classical model is totally
inadequate to detect the displacement field of the
considered structural problem.

A second loading condition is now considered: a flex-
ural-torsional load is obtained by means of a point 
force applied at [b1, L, −h/2], its magnitude is equal 
to −1 [N]. In this case, two L/h values are consid-
ered: 20 and 10. The L9 distribution shown in Fig. 
13b is adopted. Displacement and stress values at 
different locations are presented in Tables 13 and 14, 
whereas stress distributions above the cross-section 
and the 3D deformed configuration are shown in Figs. 
15, 16, and 17. These results suggest what follows.

1. The flexural-torsional behavior of a moderately
short open cross-section beam is correctly pre-
dicted by the present formulation.

12



Fig. 14 Deformed C-sections for different L9 distributions

Table 13 Displacements and stresses of the C-beam, L/h = 20

SOLID 9 L9 [x, y, z]

84600 DOF’s 5301 DOF’s

uz × 106 [m]

−1.470 −1.462 [−b2/2, L, +h/2]

σyy × 10−2 [Pa]

3.880 3.976 [b1, L/10, +h/2]

σxy × 10−2 [Pa]

−1.636 −1.691 [b1, L, −h/2]

σyz × 10−1 [Pa]

−2.401 −2.348 [0.4, L/10, 0]

2. As far as stress distributions are considered, a good
match with the solid model solution was found both
for axial and shear components.

Table 14 Displacements and stresses of the C-beam, L/h = 10

SOLID 9 L9 [x, y, z]

84600 DOF’s 5301 DOF’s

uz × 107 [m]

−2.280 −2.272 [−b2/2, L, +h/2]

σyy × 10−2 [Pa]

2.030 2.055 [b1, L/10, +h/2]

σyz × 10−2 [Pa]

−4.345 −3.837 [b1, L, −h/2]

σyz × 10−1 [Pa]

−1.930 −1.863 [0.4, L/10, 0]

Fig. 15 Stress distributions above the C cross-section,
L/h = 20

An open square cross-section is now considered. The 
cross-section geometry is shown in Fig. 18. The di-
mensions are the same of those seen in Sect. 
4.2. T w o  opposite unit point loads, ±Fx , are 
applied at [0, L,−0.45]. Three L9 distributions are 
adopted as shown in Fig. 19. Table 15 reports the 
horizontal displace-ment of the right-hand side loaded 
point which under-goes a positive horizontal force. A 
solid model is used to validate the results. The free-tip 
deformed cross-section is shown in Fig. 20. All the 
considered L9 dis-tributions together with the solid 
model solution are reported. Figure 21 shows the 3D 
deformed config-uration of the considered structure. 
The analysis of
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Fig. 16 3D deformed configuration of the C-section beam,
L/h = 10

Fig. 17 Stress distributions above the C cross-section,
L/h = 10

the open hollow square beam highlights the following
considerations.

1. The Lagrange-based beam model is able to deal
with cut cross-sections.

2. This type of problem cannot be analyzed with
Taylor-type beam models since the application of
two opposite forces at the same point would imply
null displacements.

3. The most appropriate refined L9 distribution does
not necessarily lie in the proximity of load points.

Fig. 18 Open square cross-section

Fig. 19 Cross-section L9 distributions for the hollow square
beam

In this case, the most effective refinement was the
one placed above the vertical braces of the cross-
section which undergo severe bending deforma-
tion.

14



Table 15 Horizontal displacement, ux , at [0, L, −h/2]. Open
hollow square beam

DOF’s ux × 108 [m]

SOLID 131400 5.292

9 L9, Fig. 20a 5301 4.884

11 L9a, F i g . 20b 6417 4.888

11 L9b, F i g . 20c 6417 5.116

Table 16 Vertical displacement, uz , at [0, L/2, 0] of the rect-
angular cross-section beam with new constraints

DOF’s uz × 107 [m]

SOLID 17271 −1.114

5 L9, Fig. 20a 3069 −0.959

10 L9a, F i g . 20b 5859 −1.110

4.4 Localized constraints over the cross-section

The present Lagrange-based beam formulation offers 
the important possibility of dealing with constraints 
that cannot be considered within classical and refined 
beam theories that make use of Taylor-type expan-
sions. Beam model constraints usually act above the 
whole cross-section as shown in Fig. 22a (the beam 
longitudinal axis coincides with the y-axis). In the 
framework of the present approach, each of the three 
degrees of freedom of every Lagrange point of the 
beam can be constrained independently. This means 
that the cross-section can be partially constrained. 
Fig-ure 22b shows a possible structural problem that 
can be faced where only the lateral edges of the cross-
section are clamped. Figure 23 shows the x–z view in 
the case of a rectangular cross-section.

A compact rectangular beam is first considered. The 
cross-section geometry and the cross-section con-
straint distribution is shown in Figs. 4 and 23, respec-
tively. The length-to-height ratio, L/h, is equal to 100 
with b/h as high as 10 and h equal to 0.01 [m]. A set 
of 21 unitary point loads is applied along the mid-span 
cross-section at z = h/2 with constant x-steps start-ing 
from the edge of the cross-section. Two L9 dis-
tributions are adopted as shown in Fig. 24. Table 16 
presents the center-point vertical displacement, uz, o f 
the considered beam models and that of solid ele-
ments. The deformed mid-span cross-section is shown 
in Fig. 25.

Fig. 20 Deformed cross-sections of the hollow square beam

A circular arch cross-section beam is then analyzed 
to deal with a shell-like structure. The cross-section 
geometry and the constraint distribution is shown in 
Fig. 26. The length of the beam, L, is equal to 2 [m]. 
Outer, r1, and inner, r2, radii are equal to 1 and 0.9 
[m], respectively. The angle of the arch, θ, is equal
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Fig. 21 3D deformed configuration of the hollow square beam.
11L9b

Fig. 22 Comparison of classical and new constraint imposition
approaches

Fig. 23 Boundary conditions above the rectangular cross-sec-
tion

to π/4 [rad]. Three unitary point loads are applied
at y = 0, y = L/2, and y = L. Each load acts along
the radial direction (from the inner to the outer direc-

Fig. 24 Rectangular cross-section L9 distributions

Table 17 Vertical displacement, uz , at the external surface of
the arch cross-section beam, L = L/2, θ = θ/2

DOF’s uz × 1010 [m]

SOLID 43011 4.797

12 L9a, F i g . 20b 6975 4.809

Table 18 Displacement of the loaded point of the C-section
beam

DOF’s uz × 108 [m]

SOLID 84600 −3.759

13 L9a, F i g . 20b 7533 −3.662

tion). The polar coordinates of the loading points are 
[r2, θ/2]. The L9 cross-section discretization is shown 
in Fig. 27. Table 17 shows the vertical displacement, 
uz, of a point of the mid-span cross-section. The solid 
model solution is also reported. Figures 28 and 29 
show the 2D and 3D deformed configurations, respec-
tively.

The C-section beam is reconsidered to give a fi-nal 
assessment of this paper. The geometry is as in Sect. 
4.3. Constraints are distributed along the bot-tom 
portions of the free-tip cross-sections as shown in Fig. 
30. Two unitary point loads, Fz, are applied at 
[ 0 , 0 , 0 .4] and [0, L, 0 .4], respectively. Both forces 
act along the negative direction. The L9 cross-section 
dis-tribution is shown in Fig. 31. The loaded point 
verti-cal displacement, uz, is reported in Table 18 and 
com-
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Fig. 25 Mid-span deformed rectangular cross-section for dif-
ferent L9 distributions and comparison with a solid element
model

pared with the value obtained from the solid model. 
Figures 32 and 33 show 2D and 3D deformed 
configu-rations, respectively. The following 
considerations can be made.

1. The results are in perfect agreement with those
from solid models in all the considered cases.

2. The analysis of the rectangular cross-section beam
has confirmed the possibility of dealing with par-
tially constrained cross-section beams that is of-
fered by the present formulation.

3. The constraints can be arbitrarily distributed in
the 3D directions as shown by the analysis of the
C-section beam.

Fig. 26 Circular arch cross-section

Fig. 27 L9 distribution above the arch cross-section, 12 L9

4. The arch beam has shown the strength of the
present beam model in dealing with beams that
have shell-like characteristics. The local effects due
to point loadings have also been detected.

5 Conclusions

This paper presents a novel beam formulation in
the framework of the Carrera Unified Formulation
(CUF). Lagrange polynomials have been used to de-
fine the displacement field above the cross-section of
the beam. This choice has led to a beam formulation
with sole displacement variables, that is, the unknowns
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Fig. 28 Free-tip deformed cross-section of the arch cross-sec-
tion beam

Fig. 29 3D deformed configuration of the arch cross-section
beam

Fig. 30 3D clamped point distribution on the C-section beam

of the problem are the three translational displacement
components of each Lagrange point above the cross-
section. Three-point (L3), four-point (L4), and nine-
point (L9) cross-section elements have been imple-
mented. Multiple element distributions have been as-
sembled as well. Several assessments have been con-
sidered: compact cross-sections, hollow closed and

Fig. 31 L9 distribution above the C-section, 13 L9

Fig. 32 Deformed cross-section of the C-section beam. y = L

Fig. 33 3D deformed configuration of the C-section beam

open beams, and shell-like structures. Point loads have
been applied. Taylor-type beam and solid models have
been exploited for comparison purposes.

The construction of a refined beam model by means
of the present Lagrange-based formulation has been
achieved in two different ways.
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1. By increasing the order of each Lagrange-type el-
ement (i.e. using a larger number of interpolation
points per element).

2. By discretizing the cross-section and by using
beam elements in sub-domains. This last option of-
fers the possibility of adapting the element distri-
bution to the considered problem with a consequent
optimization of the computational cost.

The local refinement plays a fundamental role in deal-
ing with point loads in the presence of open thin-
walled cross-sections. In these cases, the Lagrange-
based formulation has shown enhanced capabilities
compared to the Taylor-based modeling. Other impor-
tant capabilities of the present formulation are the fol-
lowing.

1. The Poisson locking correction is needed only in
the case of single L3 elements. The assembly of
two L3 or the use of L4 could make the correction
detrimental.

2. The classical beam constraining approach has been
overcome since a 3D distribution of the boundary
conditions is possible. This implies the possibility
of dealing with partially constrained cross-section
beams, that is, the possibility of considering bound-
ary conditions which are obtainable by means of
plate/shell and solid models only.

The following considerations arise from the compari-
son with solid element models.

1. The results comply with all the assessed problems.
2. 3D solutions are obtained by model refining.
3. The computational cost of the present beam formu-

lation is considerably lower than those incurred for
3D models.

The presence of only translational degrees of freedom
appears to be attractive in the future perspective of the
implementation of geometrically non-linear problems.
The extension to the layer-wise analysis of composite
structures could also be considered.
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