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2 MANFREDI ET AL.: COMPARISON OF STOCHASTIC METHODS

This paper provides and compares two alternative solutions for the sim-4

ulation of cables and interconnects with the inclusion of the effects of param-5

eter uncertainties, namely the Polynomial Chaos (PC) method and the Re-6

sponse Surface Modeling (RSM). The problem formulation applies to the tele-7

graphers equations with stochastic coefficients. According to PC, the solu-8

tion requires an expansion of the unknown parameters in terms of orthog-9

onal polynomials of random variables. On the contrary, RSM is based on a10

least-square polynomial fitting of the system response. The proposed meth-11

ods offer accuracy and improved efficiency in computing the parameter vari-12

ability effects on system responses with respect to the conventional Monte13

Carlo approach. These approaches are validated by means of the application14

to the stochastic analysis of a commercial multiconductor flat cable. This anal-15

ysis allows us to highlight the respective advantages and disadvantages of16

the presented methods.17
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MANFREDI ET AL.: COMPARISON OF STOCHASTIC METHODS 3

1. Introduction

The constant and rapid pace of technological innovation today has produced in-18

creasingly complex electronic devices to such an extent that they are often physically19

separated into several sub-devices and then connected together. The integrity of20

signals propagating on interconnections is then a fundamental point for the smooth21

functioning of the overall system. Cable bundles represent one of the most common22

means by which modern electronic systems and subsystems are interconnected. A23

large variety of examples exists, ranging from transportation vehicles (cars, aircrafts,24

ships) to Information Technology equipment and to industrial plants. The electro-25

magnetic interaction among closely spaced individual wires induces disturbances in26

all other adjacent circuits. This crosstalk can cause functional degradation of the27

circuits at the ends of the cable. The magnitude of the electromagnetic interference28

varies significantly as a function of a number of factors including the wires geometries.29

The sensitivity of crosstalk to random wires position in the cable has led to several30

probabilistic models for the crosstalk according to the frequency ranges. Instead of31

using brute-force Monte Carlo (MC) method, some alternative solutions based on32

the derivation of pseudo-analytical expressions for the statistical parameters of the33

responses of distributed systems have been proposed so far [Shiran at al., 1993; Bellan34

et al., 2003]. However, their principal limitation is related to their scarce flexibility35

and restriction to the particular structures and output variables for which they have36

been derived. Possible complementary methods based on the optimal selection of37

the subset of model parameters in the whole design space [Zhang et al., 2001] have38
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4 MANFREDI ET AL.: COMPARISON OF STOCHASTIC METHODS

also been proposed. However, these methods turn out to be extremely inefficient,39

since they require a large set of simulations with different samples of the random40

parameters and prevent us from applying them to the analysis of complex realistic41

structures.42

Recently, an effective solution based on the so-called polynomial chaos (PC) has43

been proposed to overcome the previous limitations. This methodology is based44

on the representation of the stochastic solution of a dynamical circuit in terms of45

orthogonal polynomials. For a comprehensive and formal discussion of PC theory,46

the reader is referred to [Ghanen and Spanos , 1991; Xiu and Karniadakis , 2002;47

Debusschere et al., 2004] and references therein; also, it should be pointed out that48

the word chaos is used in the sense originally defined by Wiener [Wiener , 1938] as49

an approximation of a Gaussian random process by means of Hermite polynomials.50

This technique has been successfully applied to several problems in different domains,51

including the extension of the classical circuit analysis tools, like the modified nodal52

analysis (MNA), to the prediction of the stochastic behavior of circuits [Strunz and53

Su, 2008; Zout et al., 2007; Stievano and Canavero, 2010]. However, so far, the54

application has been mainly focused on the gaussian variability of model parameters55

and limited to dynamical circuits consisting only of lumped elements. The authors56

of this contribution have recently proposed an extension of PC theory to distributed57

structures described by transmission-line equations [Manfredi et al., 2010], also in58

presence of uniform random variables.59
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The main drawback of PC is related to the reduction of its efficiency when the60

number of random variables increases. A possible solution consists in performing61

preliminary tests to identify the most influential variables to be included in the62

model [Manfredi and Canavero, 2011]. Yet, an approach based on the Response63

Surface Modeling (RSM) is also possible and presented in this paper as an alterna-64

tive to PC, followed by a comparison between the two methods. The RSM is based65

on the fitting of a system response using polynomial terms, whose coefficients are66

computed in a least-square sense starting from a reduced set of samples.67

In order to be validated and compared, the advocated techniques are applied to68

the stochastic analysis of a commercial multiconductor flex-cable used for the com-69

munication between PCB cards.70

2. Variability via Polynomial Chaos

This section outlines the PC method, focusing in particular on the application to71

transmission lines described by telegraphers equations and validating it against a72

traditional MC simulation on a commercial cable bundle. For further information,73

readers are referred to [Manfredi et al., 2010] and references therein, where a more74

comprehensive and detailed discussion is available.75

2.1. PC Primer

The idea underlying the PC technique is the spectral expansion of a stochastic76

function (intended as a given function of a random variable) in terms of a truncated77

series of orthogonal polynomials. Within this framework, a function H, that in78
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6 MANFREDI ET AL.: COMPARISON OF STOCHASTIC METHODS

our specific application will be the expression of the parameters and the resulting79

frequency-domain response of an interconnect described as a transmission line, can80

be approximated by means of the following truncated series81

H(ξ) =
P∑

k=0

Hk · ϕk(ξ), (1)

where {ϕk} are suitable orthogonal polynomials expressed in terms of the random82

variable ξ. The above expression is defined by the class of the orthogonal bases,83

by the number of terms P and by the expansion coefficients Hk. The choice of the84

orthogonal basis relies on the distribution of the random variables being considered.85

The tolerances given in product documentation and datasheets are usually expressed86

in terms of minimum, maximum and typical values. Since the actual distribution is87

generally unknown, a reasonable assumption is to consider the parameters as ran-88

dom variables with uniform distribution between the minimum and maximum values.89

Hence, the most appropriate orthogonal functions for the expansion (1) are the Leg-90

endre polynomials, the first three being ϕ0 = 1, ϕ1 = ξ and ϕ2 = (3
2
ξ2 − 1

2
), where91

ξ is the normalized uniform random variable with support [−1, 1]. It is relevant to92

remark that any random parameter in the system, e.g., a dielectric permittivity εr,93

can be related to ξ as follows94

εr =
b+ a

2
+

b− a

2
ξ, (2)

where a and b are the minimum and maximum values assumed by the parameter,95

respectively. The orthogonality property of Legendre polynomials is expressed by96

< ϕk, ϕj >=< ϕk, ϕk > δkj, (3)
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MANFREDI ET AL.: COMPARISON OF STOCHASTIC METHODS 7

where δkj is the Kronecker delta and < ·, · > denotes the inner product in the Hilbert97

space of the variable ξ with uniform weighting function, i.e.,98

< ϕk, ϕj >=
1

2

∫ 1

−1
ϕk(ξ)ϕj(ξ)dξ. (4)

With the above definitions, the expansion coefficients Hk of (1) are computed via99

the projection of H onto the orthogonal components ϕk. It is worth noting that100

relation (1), which is a known nonlinear function of the random variable ξ, can101

be used to predict the probability density function (PDF) of H(ξ) via numerical102

simulation or analytical formulae [Papoulis , 1991].103

The basic results of PC theory outlined above can be extended to the case of104

multiple independent random variables. The application of orthogonality relations105

allows to build higher dimensional polynomials as the product combination of poly-106

nomials in one variable. As an example, Tab. 1 shows the first bivariate Legendre107

polynomials, up to the third order.108

2.2. Application to Transmission-Line Equations

This section discusses the modification to the transmission-line equations, allowing109

to include the effects of the statistical variation of the per-unit-length (p.u.l.) pa-110

rameters via the PC theory. For the sake of simplicity, the discussion is based on the111

multiconductor transmission-line structure shown in Fig. 1, that represents the typ-112

ical problem of two wires whose heights above ground and separation are not known113

exactly, thus leading to a probabilistic definition of crosstalk between the wires.114
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8 MANFREDI ET AL.: COMPARISON OF STOCHASTIC METHODS

In the structure of Fig. 1, the height h and the separation d are assumed to be115

defined by116 {
h = h̄+ (∆h/2)ξ1
d = d̄+ (∆d/2)ξ2,

(5)

where ξ1 and ξ2 are independent normalized uniform random variables, with h̄1 and d̄117

mean values and ∆h and ∆d supports. It should be noted that these variations define118

different possible configurations for the wire couple of Fig. 1, but each configuration119

is still uniform along the propagation direction.120

The electrical behavior in frequency-domain of the line of Fig. 1 is described by121

the well-known telegraph equations:122

d

dz

[
V(z, s)
I(z, s)

]
= −s

[
0 L
C 0

] [
V(z, s)
I(z, s)

]
, (6)

where s is the Laplace variable, V= [V1(z, s), V2(z, s)]
T and I= [I1(z, s), I2(z, s)]

T are123

vectors collecting the voltage and current variables along the multiconductor line124

(z coordinate) and C and L are the p.u.l. capacitance and inductance matrices125

depending on the geometrical and material properties of the structure [Paul , 1994].126

In order to account for the uncertainties affecting the guiding structure, we must127

consider the p.u.l. matrices C and L as random quantities, with entries depending128

on the random vector ξ = [ξ1, ξ2]
T . In turn, (6) becomes a stochastic differential129

equation, leading to randomly-varying voltages and currents along the line.130

For the current application, the random p.u.l. matrices in (6) are represented131

through the Legendre expansion as follows:132

C =
P∑

k=0

Ck · ϕk(ξ), L =
P∑

k=0

Lk · ϕk(ξ), (7)
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MANFREDI ET AL.: COMPARISON OF STOCHASTIC METHODS 9

where {Ck} and {Lk} are expansion coefficients matrices with respect to the orthog-133

onal components {ϕk} defined in Tab. 1. For a given number of random variables n134

and order p of the expansion – that corresponds to the highest order of the polyno-135

mials in (7) and generally lies within the range 2 to 5 for practical applications – the136

total number of terms is137

(P + 1) =
(n+ p)!

n!p!
, (8)

that turns out to be equal to ten for the case n = 2 and p = 3.138

The randomness of the p.u.l parameters reflects into stochastic values of the voltage139

and current unknowns and makes us decide to use expansions similar to (7) for the140

electrical variables. This yields a modified version of (6), whose second row is provided141

below in extended form for P = 2, as an exemplification142

d
dz
[I0(z, s)ϕ0(ξ) + I1(z, s)ϕ1(ξ) + I2(z, s)ϕ2(ξ)] = −s[C0ϕ0(ξ)+

+C1ϕ1(ξ) +C2ϕ2(ξ)][V0(z, s)ϕ0(ξ) +V1(z, s)ϕ1(ξ) +V2(z, s)ϕ2(ξ)],
(9)

where the expansion coefficients of electrical variables are readily identifiable.143

Projection of (9) on the first three Legendre polynomials leads to the following set144

of equations, where the explicit dependence on variables is dropped for notational145

convenience:146

d
dz
(I0<ϕ0, ϕj>+ I1<ϕ1, ϕj>+ I2<ϕ2, ϕj>)) = −s(C0<ϕ2

0, ϕj>V0+

+C0<ϕ0ϕ1, ϕj>V1 + . . .+C2<ϕ2
2, ϕj>V2), j = 0, 1, 2

(10)

The above equation, along with the companion relation arising from the first row147

of (6), can be further simplified by using the orthogonality relations for the com-148

putation of the inner products <ϕk, ϕj> and <ϕkϕl, ϕj>, leading to the following149

augmented system, where the random variables collected in vector ξ do not appear,150
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10 MANFREDI ET AL.: COMPARISON OF STOCHASTIC METHODS

due to the integration process:151

d

dz

[
Ṽ(z, s)

Ĩ(z, s)

]
= −s

[
0 L̃

C̃ 0

] [
Ṽ(z, s)

Ĩ(z, s)

]
. (11)

In the above equation, the new vectors Ṽ= [V0,V1,V2]
T and Ĩ= [I0, I1, I2]

T collect152

the coefficients of the PC expansion of the unknown variables. The new p.u.l. matrix153

C̃ turns out to be154

C̃ =


C0

1
3
C1

1
5
C2

C1 C0 +
2
5
C2

2
5
C1

C2
2
3
C1 C0 +

2
7
C2

 , (12)

and a similar relation holds for matrix L̃.155

It is worth noting that (11) is analogous to (6) and plays the role of the set of156

equations of a multiconductor transmission line with a number of conductors that is157

(P + 1) times larger than those of the original line. It should be remarked that the158

increment of the equation number is not detrimental for the method, since for small159

values of P (as typically occurs in practice), the additional overhead in handling the160

augmented equations is much less than the time required to run a large number of161

MC simulations.162

The extension of the proposed technique to different multiconductor structures pos-163

sibly including losses and to a larger number of random variables is straightforward.164

For instance, the procedure to include losses amounts to including the resistance and165

conductance matrices in (6) and the corresponding augmented matrices in (11).166

The solution of a transmission-line equation requires the definition of boundary167

conditions, such as the Thevenin equivalent networks depicted in Fig. 2, defining168

sources and loads. For the deterministic case, the simulation amounts to combining169
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the port electrical relations of the two terminal elements with the transmission-line170

equation, and solving the system. This is a standard procedure as illustrated for171

example in [Paul , 1994] (see Ch.s 4 and 5). The port equations of the terminations172

of Fig. 2 in the Laplace domain become173 {
Va(s) = E(s)− ZS(s)Ia(s)

Vb(s) = ZL(s)Ib(s),
(13)

where ZS = diag([ZS1, ZS2]), ZL = diag([ZL1, ZL2]) and E = [E1, 0]
T . Also, in the174

above equation, the port voltages and currents need to match the solutions of the175

differential equation (6) at line ends (e.g., Va(s) = V(z=0, s), Vb(s) = V(z=L, s)).176

Similarly, when the problem becomes stochastic, the augmented transmission-line177

equation (11) is used in place of (6) together with the projection of the characteris-178

tics of the source and the load elements (13) on the first P Legendre polynomials.179

It is worth noticing that in this specific example, no variability is included in the180

terminations and thus the augmented characteristics of the source and load turn out181

to have a diagonal structure.182

Once the unknown voltage and currents are computed, the quantitative informa-183

tion on the spreading of circuit responses can be readily obtained from the analyt-184

ical expression of the unknowns. As an example, the frequency-domain solution of185

the magnitude of voltage Va1 with P = 2, leads to |Va1(jω)| = |Va10(jω)ϕ0(ξ) +186

Va11(jω)ϕ1(ξ) + Va12(jω)ϕ2(ξ)|. As already outlined in the introduction, the above187

relation turns out to be a known nonlinear function of the random vector ξ that188

can be used to compute the PDF of |Va1(jω)| via standard techniques as numerical189

simulation or analytical formulae [Papoulis , 1991].190
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12 MANFREDI ET AL.: COMPARISON OF STOCHASTIC METHODS

2.3. Validation

As a proof of the capabilities of the proposed technique, the analysis of the test191

structure depicted in Fig. 3 is presented. The structure represents a 0.050” High192

Flex Life Cable in a standard 9-wire configuration. Figure 3 collects both the key193

parameters defining the geometry of the wires as well as the information on the two-194

terminal circuit elements connected at the near-end of the cable. The cable length195

is 80 cm and the far-end terminations are defined by identical RC parallel elements196

(R = 10 kΩ, C = 10 pF) connecting the wires #1,. . . ,#8 to the reference wire #0.197

In this example, the goal is to estimate the response variability of the near-end198

crosstalk between two adjacent wires in a bundle of many wires. As highlighted in199

Fig. 3, line #4 is energized by the voltage source ES and the other lines are quiet and200

kept in the low state via the RS resistances. From the official datasheet of the cable,201

tolerance limits regarding the separation between wires (dij ∈ [48, 52]mils) and the202

overall radius of each wire including the dielectric coating (rc,i ∈ [16, 19]mils) are203

available. There is no information about the permittivity value εr of the PVC dielec-204

tric coating. Nevertheless, this value typically represents a primary source of uncer-205

tainty and therefore cannot be neglected; a possible realistic range is εr ∈ [2.9, 4.1].206

In order to reduce the number of random variables included in the PC model, a rea-207

sonable choice is to assume that only the separations between the generator and the208

two adjacent wires are effective on crosstalk, as well as the permittivity. Therefore,209

the variability is considered to be provided by the relative permittivity εr of the coat-210

ing and the separations d34 and d45 between the active and its immediately adjacent211
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lines. These quantities are assumed to behave as independent uniform random vari-212

ables lying in the aforementioned ranges. All the other parameters are considered to213

be equal to their nominal values. For this comparison a third order PC expansion214

of the p.u.l. parameters is computed via numerical integration based on the method215

described in [Paul , 1994] (see Sec. 3.2.4 and cylindrical structures).216

Figure 4 shows a comparison of the Bode plot (magnitude) of the transfer function217

H(jω) = V3(jω)/ES defining the near-end crosstalk computed via the advocated PC218

method and determined by means of the MC procedure. The solid black thin curves219

of Fig. 4 represent the ±3σ interval of the transfer function, where σ indicates the220

standard deviation, determined from the results of the proposed technique. For com-221

parison, the deterministic response with nominal values of all parameters is reported222

in Fig. 4 as a solid black thick line; also, a limited set of MC simulations (100, out of223

the 40,000 runs, in order not to clutter the figure) are plotted as gray lines. Clearly,224

the thin curves of Fig. 4 provide a qualitative information of the spread of responses225

due to parameters uncertainty. A better quantitative prediction can be appreciated226

in Fig. 5, comparing the PDF of |H(jω)| computed for different frequencies (circles)227

with the distribution obtained via the analytical PC expansion (squares). The fre-228

quencies selected for this comparison correspond to the dashed lines shown in Fig. 4.229

The good agreement between the actual and the predicted PDFs and, in particu-230

lar, the accuracy in reproducing the tails and the large variability of non-uniform231

shapes of the reference distributions, confirm the potential of the proposed method.232

Moreover, it should be noted that the reference MC distribution is computed by con-233
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14 MANFREDI ET AL.: COMPARISON OF STOCHASTIC METHODS

sidering 9 random variables, i.e., the permittivity and all the wire-to-wire separations.234

The good agreement between the curves allows us to conclude that the limited set of235

variables included in the PC model represented a smart choice. For this example, it236

is also clear that a PC expansion with P = 3 is already accurate enough to capture237

the dominant statistical information of the system response.238

3. Variability via Response Surface Modeling

Although PC provides an accurate stochastic model, even at high frequencies,239

the amount of time taken by the overhead and by the solution of the augmented240

system rapidly grows with the number of polynomial terms. Hence, the indiscriminate241

inclusion of any possible random variable in the PC model may be critical for this242

method and should be avoided. The variables should be carefully chosen among the243

most influential instead. Nonetheless, an alternative and effective method for the244

inclusion of a higher number of random variables exists and it is provided by the245

RSM. This section introduces this alternative method and compares it against MC246

and PC solutions of the same cable configuration shown in Fig. 3.247

3.1. RSM Primer

The Response Surface Model [Myers and Montgomery , 2002] is a polynomial func-248

tion which approximates the input/output behaviour of a complex system; the model249

is a non-linear equation constructed by fitting observed responses and inputs via a250

least-square fitting technique and it is used to predict the system output in response251

to arbitrary combinations of input variables.252
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A second-order RSM has the following general form:253

y = β0 +
n∑

i=1

βixi +
n∑

i=1

βiix
2
i +

j−1∑
i=1

n∑
j=2

βijxixj, (14)

where y is the system response, βi and βij are the model fit coefficients, xi are254

the system inputs and n is the number of independent input variables. Even if255

quadratic and interaction terms are introduced to model weak non-linearities, RSM256

is still a linear function of fit coefficients β, whose amount is equal to k = 1 +257

2n + n (n− 1) /2. Therefore they can be evaluated through a least-square fitting258

technique, which calculates the coefficients from the system response and inputs by259

minimizing the sum of the square errors.260

A second-order RSM is chosen noticing that it is flexible enough to model the261

observed stochastic behavior. Although in the field of parametric modeling there262

are more complex and powerful approaches, e.g., surrogate modeling [Gorissen et263

al., 2010], which are more capable of extracting information from a lower amount264

of computationally-expensive data samples, in our application the most important265

requirement is the inclusion of a higher number of random variables. Despite its266

relative structural simplicity, RSM turns out to be suitable for our purpose, featuring267

a good model accuracy compared to standard MC approach.268

The set of samples used for model fitting is determined in order to obtain accu-269

rate response surfaces over a wide range; a Latin Hypercube Sampling (LHS) plan270

yields a randomized space-filling sample set, whose projections on each design space271

dimension are uniformly spread, modeling appropriately all experimental corners of272

the design space. Sample size r is increased, starting from r = k, until standard273
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16 MANFREDI ET AL.: COMPARISON OF STOCHASTIC METHODS

model evaluation criteria, e.g. RMSE and coefficients of multiple determination R2
274

and R2
adj [Morris and Mitchell , 1995; devore, 2000], are satisfied on a separate sample275

subset.276

3.2. Application to Stochastic Frequency-Domain Response

This section discusses the application of RSM to interconnects, like the one depicted277

in Figs. 1 and 2, with the inclusion of the effects of the statistical variation of278

geometrical and material parameters. The goal is to model the response variability279

of some output, for instance the transfer function H(jω) = Va2(jω)/E1, defining the280

near-end crosstalk, with a polynomial RSM using normalized random variables as281

inputs.282

For the sake of simplicity, we start considering the influence of two parameters,283

described by uniform random variables ξ1 and ξ2. The second-order RSM of |H(jω)|284

in dB scale is composed of k = 6 terms and takes the following form, according285

to (14):286

|H (jω)|dB = |H0 (jω)|dB + β1 (ω) ξ1 + β2 (ω) ξ2 + β11 (ω) ξ
2
1+

+β22 (ω) ξ
2
2 + β12 (ω) ξ1ξ2,

(15)

where β0 is set equal to the nominal transfer function |H0 (jω)|dB without any effect287

of parameter variability. The remaining five terms have to be estimated through a288

least square fitting technique; it is relevant to remark that the system response and289

therefore model coefficients are frequency-dependent, hence a least square problem290

has to be solved for each frequency point. The choice of normalized random variables291

with support [−1, 1] as inputs and of the magnitude of the transfer function in dB292
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as output reduces the variation of the fit coefficients, thus avoiding numerical insta-293

bilities in the model. However, a Response Surface Model for the estimation of the294

linear magnitude or phase may be created as well. It has been experimentally proven295

that a LHS-based design for n = 2 input variables requires a total of r = 10 samples,296

which are obtained from the solutions of line equation (6) computed for the values297

of the input variables specified by the sampling plan.298

Once the fit coefficients are determined, the RSM represents an analytical function299

of the random variables (similarly to the case discussed earlier for the PC expansion),300

and it can be used to compute the PDF of |H (jω)|dB through standard techniques.301

It is worth noting that the time required to evaluate the function output is much302

smaller than a single MC simulation, and this motivates the use of the proposed303

technique for a significantly large number of random variables.304

3.3. Validation

This section refers to the stochastic analysis of the test structure already presented305

in Section 2.3, extending the considered variability to other parameters. A first306

RSM of |H(jω)|dB is built considering n = 9 random variables as inputs, in order to307

include the variability of each wire-to-wire separation dij, as well as of the relative308

dielectric constant. The resulting polynomial function needs k = 55 terms, whose fit309

coefficients are estimated evaluating deterministic responses for a LHS composed of310

r = 250 samples.311
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18 MANFREDI ET AL.: COMPARISON OF STOCHASTIC METHODS

Fig. 5 additionally shows the PDF obtained from the RSM. Again, the good312

correspondance demonstrates that RSM is indeed capable of handling a larger number313

of variables, assuring a good accuracy.314

Moreover, a second RSM is created to perform a complete stochastic analysis of315

the structure, including also the thickness of wire insulators. Hence, the new model316

contains a total number of n = 18 variables, i.e., 8 wire-to-wire separations, 9 coating317

radii and the dielectric permittivity. To estimate the k = 190 fit coefficients of the318

polynomial function, a LHS composed of r = 600 samples is used. Fig. 6 shows the319

PDF of |H(jω)| computed via MC simulations and by means of RSM polynomial320

function. The good agreement confirms that second-order Response Surface Models321

are sufficient to capture the non-uniform distribution of the statistical responses of322

this class of structures, when affected by a large number of random parameters.323

4. Conclusions

This paper presents two alternative methods enabling to compute quantitative324

information on the sensitivity to parameters uncertainties of complex distributed325

interconnects described by multiconductor transmission-line equations.326

PC is based on the expansion of the voltage and current variables into a sum of327

a limited number of orthogonal polynomials. It is shown that it provides very high328

accuracy when compared to conventional solutions like Monte Carlo in the evaluation329

of statistical parameters, even at high frequencies. Besides, PC allows to build a330

stand-alone (augmented) model describing an interconnect affected by parameters331
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variability. This model can be reused when simulating different test conditions, such332

as different loads and line lengths, as well as it can be integrated into more complex333

systems. However, it suffers from a loss of computational efficiency when the number334

of included random variables is raised.335

RSM represents an alternative solution to overcome the previous limitation and336

it is based on a polynomial fitting of the desired output variables in a least-square337

sense. Yet, the model is limited to the specific conditions for which it is computed,338

and it needs to be re-built whenever the loads or the line length change. Typically,339

it is less accurate since some interaction terms are neglected to limit the amount of340

samples required.341

Both methods have been applied to the stochastic analysis of a commercial mul-342

ticonductor flex cable with uncertain parameters described by independent uniform343

random variables. Table 2 collects the main figures on the efficiency of the proposed344

methods vs. the conventional MC for a 300-point frequency sweep. It is worth noting345

that the setup time refers to the computation of the expansion and the augmented346

matrices for the PC case, while it refers to the computation of the solutions at sam-347

pling plan points for the RSM model. Table 2 data indicate that the PC and RSM348

computation of curves like those in Figs. 5 and 6 on the whole frequency range is349

faster by a factor ranging between 50 and 150 with respect to MC computation.350

This holds even if for fairness we consider the computational overhead required by351

the generation of the proposed models. Additionally, thanks to the analytical model352

provided by either PC or RSM, designers might achieve superior insight into the353
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influence of each system parameter, compared to the relatively blind MC approach.354

This comparison confirms the strength of the proposed methods, that allow to gen-355

erate accurate predictions of the statistical behavior of a realistic interconnect with356

a great efficiency improvement.357
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Figure captions

Figure 1. Cross-section of two coupled wires, whose height above ground and408

separation are uncertain parameters.409

Figure 2. Definition of Thevenin equivalent boundary conditions at source and410

load terminations.411

Figure 3. Application test structure: 80-cm long commercial flex cable (.050”412

High Flex Life Cable, 28 AWG Standard, PVC, 9-wire configuration). RS = 50Ω,413
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dw = 15mils, dc = 35mils. The nominal value of the distance between adjacent wires414

(e.g., d34 and d45) is 50mils.415

Figure 4. Bode plots (magnitude) of the near-end crosstalk transfer function416

H(jω) of the example test case (see text for details). Solid black thick line: de-417

terministic response; solid black thin lines: 3σ tolerance limit of the third order418

polynomial chaos expansion; gray lines: a sample of responses obtained by means of419

the MC method (limited to 100 curves, for graph readability).420

Figure 5. Probability density function of |H(jω)| for the example of this study,421

computed at different frequencies. Of the three distributions, the one marked PC422

(3) refers to the response obtained via a third-order polynomial chaos expansion423

with 3 random variables, the one marked RSM (9) is generated from a second-order424

Response Surface Model including 9 random variables, while the one marked MC (9)425

refers to 40,000 MC simulations, involving the same nine variables of the RSM.426

Figure 6. Probability density function of |H(jω)| resulting from the variability of427

18 independent parameters. Of the two distributions, the one marked RSM refers to428

the response obtained via second-order Response Surface Model, and the one marked429

MC refers to 40,000 MC simulations.430
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Table 1. Legendre Polynomials for the case of two independent random variables

(ξ = [ξ1, ξ2]
T ) and a third-order expansion (p = 3).

index k order p k-th basis ϕk < ϕk, ϕk >

0 0 1 1

1 1 ξ1
1
3

2 1 ξ2
1
3

3 2 3
2
ξ21 − 1

2
1
5

4 2 ξ1ξ2
1
9

5 2 3
2
ξ22 − 1

2
1
5

6 3 5
2
ξ31 − 3

2
ξ1

1
7

7 3 3
2
ξ21ξ2 − 1

2
ξ2

1
15

8 3 3
2
ξ1ξ

2
2 − 1

2
ξ1

1
15

9 3 5
2
ξ32 − 3

2
ξ2

1
7

Table 2. CPU time required for the simulation of the setup of Fig. 3 by the standard MC

method and the advocated PC and RSM techniques. See text for explanation of colums.

Method # of random variables Order Setup Simulation time Speed-up

MC – – – 3 h 53 min –

PC 3 2 4.1 sec 1 min 50 sec 116×
PC 3 3 5 sec 4 min 20 sec 52×
RSM 9 2 1 min 23 sec 2.6 sec 163×
RSM 18 2 3 min 20 sec 21.7 sec 63×

Figure 1. Cross-section of two coupled wires, whose height above ground and separation

are uncertain parameters.
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Figure 2. Definition of Thevenin equivalent boundary conditions at source and load

terminations.

Figure 3. Application test structure: 80-cm long commercial flex cable (.050” High

Flex Life Cable, 28 AWG Standard, PVC, 9-wire configuration). RS = 50Ω, dw = 15mils,

dc = 35mils. The nominal value of the distance between adjacent wires (e.g., d34 and d45)

is 50mils.

Figure 4. Bode plots (magnitude) of the near-end crosstalk transfer function H(jω) of

the example test case (see text for details). Solid black thick line: deterministic response;

solid black thin lines: 3σ tolerance limit of the third order polynomial chaos expansion; gray

lines: a sample of responses obtained by means of the MC method (limited to 100 curves,

for graph readability).

Figure 5. Probability density function of |H(jω)| for the example of this study, computed

at different frequencies. Of the three distributions, the one marked PC (3) refers to the

response obtained via a third-order polynomial chaos expansion with 3 random variables,

the one marked RSM (9) is generated from a second-order Response Surface Model including

9 random variables, while the one marked MC (9) refers to 40,000 MC simulations, involving

the same nine variables of the RSM.

Figure 6. Probability density function of |H(jω)| resulting from the variability of 18

independent parameters. Of the two distributions, the one marked RSM refers to the re-

sponse obtained via second-order Response Surface Model, and the one marked MC refers

to 40,000 MC simulations.
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