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Abstract

Consider a series or parallel system of independent components and assume that
the components are randomly chosen from two different batches, with the compo-
nents of the first batch being more reliable than those of the second. In this note
it is shown that the reliability of the system increases, in usual stochastic order
sense, as the random number of components chosen from the first batch increases
in increasing convex order. As a consequence, we establish a result analogous to
the Parrondo’s paradox, which shows that randomness in the number of compo-
nents extracted from the two batches improves the reliability of the series system.
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1. Introduction and preliminaries

Design and optimization of complex systems have been extensively considered
in reliability literature. On this topic, the paper by Kuo and Rajendra Prasad
[9] provides an useful overview of methods developed for solving optimization
problems, and provides a comprehensive list of references. Some notable papers
among them include Baxter and Harche [4], Chern [5], Malon [12], Prasad and
Raghavachari [15], which contains illustrative results on the optimal allocation of
components to series-parallel reliability systems.

In particular, many papers deal with stochastic comparisons of lifetimes as a
tool to compare, or to provide, improvements in systems’ reliability. For example,
interesting results concerning stochastic comparisons between random lifetimes of
a series system with redundant components and two allocation choices are due to
Li and Hu [10], and Valdés and Zequeira [20]. Comparisons of lifetimes of more
general coherent systems, such as k-out-of-n systems, are presented for instance in
Shaked and Shanthikumar [16] and Singh and Vijayasree [19]. Furthermore, the
classical book of Barlow and Proschan [2] contains various examples of bounds of
the reliability of series and parallel systems obtained via comparisons based on
suitable stochastic orders.

The problem considered in this note is related to previous papers oriented to
compare minima and maxima of i.i.d. random variables when the size of the se-
quences is random (see Bartoszewicz [3], Li and Zuo [11], and Shaked and Wong
[18]). The novelty of our approach relies on the assumption that each sequence is
formed by two different types of random variables, where the size of each subse-
quence is random and the total number of components in the system is fixed.

Specifically, consider two different batches BX and BY of components, whose
corresponding random lifetimes are denoted by {Xi; i = 1, . . . ,m} and {Yi; i =
1, . . . ,m}. Given two independent random variables X and Y , we assume that
X1, X2, . . . are i.i.d. and identically distributed as X, and that Y1, Y2, . . . are i.i.d.
and identically distributed as Y . Also, consider a series or parallel system having
a fixed number m of components performing a similar task, and assume that k
of the m components are taken from the batch BX , while the remaining m − k
components are taken from the batch BY . Hence, by setting

Πk =


{Y1, . . . , Ym} if k = 0
{X1, . . . , Xk, Yk+1, . . . , Ym} if k = 1, . . . ,m− 1
{X1, . . . , Xm}, if k = m,

the lifetimes of the series and the parallel systems can be respectively expressed as

Sk = min{Πk} and Pk = max{Πk}, k = 0, 1, . . . ,m. (1)
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We suppose that the components of the batch BX have higher reliability, in
the usual stochastic order (defined below), than the components of the batch BY

(which, for example, are built in a different production center having lower per-
formances, or come from a set of used components). Let us now assume that
the composition of the series system and of the parallel system is randomized.
Precisely, denote by K, with support in {0, 1, . . . ,m}, the random number of com-
ponents taken from the batch BX , whereas the remaining m−K components are
taken from the batch BY . It is quite intuitive, and easy to prove, that if K in-
creases in the usual stochastic order then the reliability of the series or parallel
system increases in the same stochastic sense.

From the operational point of view, the knowledge of which batch contains
the components with higher reliability would suggest to take as many components
as possible from that batch. In the absence of such knowledge, then the optimal
choice is not obvious. A possible choice is to select half of the components from each
batch, this ensuring that half of the components have high reliability. This is also
suggested by what is commonly done in risk theory, i.e. acting with diversification
as a tool that minimizes risks. However, in this paper we aim to show that this
choice is not always optimal, and in addition we provide suitable conditions to
improve the reliability of the system.

More formally, we purpose to establish that the reliability of the series (parallel)
system increases when the random number K of components taken from the batch
BX increases in the increasing convex (increasing concave) order, which is weaker
that the usual stochastic order. The main relevance of this result is that, as clearly
explained later, random variables having the same expectation can be compared
in the increasing convex (increasing concave) order, while this is not allowed in the
usual stochastic order (unless the random variables are identically distributed).

In what follows, we briefly review the definition of the stochastic orders that
will be used throughout the paper to compare random lifetimes or numbers of
components. As usual in reliability literature, throughout the paper the terms
‘increasing’ and ‘decreasing’ stand for ‘non-decreasing’ and ‘non-increasing’, re-
spectively. Moreover, we shall adopt the following notation: u∧v = min{u, v} and
u ∨ v = max{u, v}. For any random variable Z we shall denote its distribution
function by FZ(x) = P(Z ≤ x) and its survival function by FZ(x) = P(Z > x).

Definition 1. Given two random variables X and Y we say that X is greater than
Y in the usual stochastic order [convex order, increasing convex order, increasing
concave order] (denoted by X ≥st [≥cx,≥icx,≥icv] Y ) iff E[ϕ(X)] ≥ E[ϕ(Y )] for
all increasing [convex, increasing convex, increasing concave] functions ϕ for which
the expectations exist.

Details, properties and a list of potential applications in reliability of these stochas-
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tic orders may be found, for example, in Müller and Stoyan [13] or Shaked and
Shanthikumar [17].

We recall that comparison of component lifetimes based on the usual stochastic
order implies the comparison between their reliability, being X ≥st Y equivalent
to FX(t) ≥ F Y (t) for all t ∈ R. Also, observe that both the usual stochastic
order and the convex order strictly imply the increasing convex order, and that
X ≥icx Y (X ≤icv Y ) is equivalent to X ≥cx Y whenever X and Y have equal
finite means (see Theorem 4.A.35 of Shaked and Shanthikumar [17]). Hence, use
of the increasing convex order instead of the usual stochastic order allows one to
assess a wider range of cases and applications. For instance, two random variables
having equal means are not ordered in the usual stochastic order sense unless they
are identically distributed (see Theorem 1.A.8 of Shaked and Shanthikumar [17])
whereas they can be ordered in the increasing convex order sense.

2. Series systems

In this section we consider the case of series systems. Let us denote by SK
the mixture of the family of lifetimes {S0, S1, . . . , Sm} defined in (1) with respect
to the random number K of components chosen from batch BX , so that SK is
distributed as Sk if S = k. Clearly, the survival function of SK is:

FSK
(t) =

m∑
k=0

F
k
X(t)F

m−k
Y (t)P(K = k), t ≥ 0. (2)

Assume that the lifetimes of components coming from batch BX are greater, in
usual stochastic order sense, than the lifetimes of components coming from batch
BY , i.e. X ≥st Y . Due to Theorem 1.A.3(b) of Shaked and Shanthikumar [17],
in this case the sequence of lifetimes {S0, S1, . . . , Sm} is such that Sk−1 ≤st Sk for
all k = 1, . . . ,m. Hence, from Theorem 1.A.6 of the same reference the following
statement immediately follows, where K1 and K2 are random variables with sup-
port in {0, 1, . . . ,m} denoting the number of components coming from batch BX

in two different instances.

Proposition 1. Let X ≥st Y . If K1 ≤st K2 then SK1 ≤st SK2.

Example 1. Let us consider two series systems, each having m components cho-
sen according to identical and independent Bernoulli trials. Precisely, each com-
ponent of system SKi is taken either from batch BX or from batch BY with proba-
bility pi and 1− pi, respectively, for i = 1, 2. Then, Ki has a binomial distribution
and the survival function of SKi is given by

FSKi
(t) =

[
piFX(t) + (1− pi)F Y (t)

]m
, t ≥ 0, i = 1, 2.
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It is thus not hard to verify that if p1 ≤ p2 then K1 ≤st K2, and if in addition
X ≥st Y then SK1 ≤st SK2 , in agreement with the result stated in Proposition 1.

Hereafter we will show that condition SK1 ≤st SK2 can be proved also under
the weaker assumption K1 ≤icx K2. To this aim, we first obtain two preliminary
results.

Lemma 1. Let ϕ : R → R be an increasing function, and let X ≥st Y . Then the
function h(u) = E[ϕ(u ∧X)− ϕ(u ∧ Y )] is increasing in u ∈ R.

Proof. Let u1 ≤ u2, and consider the function l(x) = ϕ(u1 ∧x)−ϕ(u2 ∧x), with
x ∈ R. Since the function l(x) is decreasing in x for any u1 ≤ u2, assumption
X ≥st Y implies

E[l(X)] =

∫
R
[ϕ(u1∧x)−ϕ(u2∧x)]dFX(x) ≤

∫
R
[ϕ(u1∧x)−ϕ(u2∧x)]dFY (x) = E[l(Y )],

so that

h(u1) = E[ϕ(u1 ∧X)− ϕ(u1 ∧ Y )] ≤ E[ϕ(u2 ∧X)− ϕ(u2 ∧ Y )] = h(u2),

and the assertion follows. �

Example 2. Let X and Y be exponentially distributed random variables with
parameters λ and µ, respectively. Let λ ≤ µ, so that X ≥st Y . In agreement with
Lemma 1, for ϕ(x) = x, the function h(u) = E[(u ∧X)− (u ∧ Y )] is increasing in
u ∈ R, since h(u) = 0 for u < 0 and h(u) = 1

λ

(
1− e−λu

)
− 1

µ (1− e−µu) for u ≥ 0.

Lemma 2. Let X ≥st Y . Then the sequence of lifetimes {S0, S1, . . . , Sm} defined
in (1) is such that η(k) := E[ϕ(Sk)] is increasing and convex in k = 1, . . . ,m for
every increasing function ϕ : R → R.

Proof. Let ϕ be an increasing real function. Since Sk−1 ≤st Sk for all k =
1, . . . ,m, and since ϕ is increasing, it follows that η(k − 1) = E[ϕ(Sk−1)] ≤
E[ϕ(Sk)] = η(k) for all k = 1, . . . ,m, i.e. η(k) is increasing in k. To prove that
η(k) is convex, let us verify that

η(k + 1)− η(k) ≥ η(k)− η(k − 1) for all k = 1, . . . ,m− 1. (3)

Recalling (1), Eq. (3) is equivalent to

E
[
ϕ
(
X1 ∧ · · · ∧Xk ∧Xk+1 ∧ Yk+2 ∧ · · · ∧ Ym

)
−ϕ

(
X1 ∧ · · · ∧Xk ∧ Yk+1 ∧ Yk+2 ∧ · · · ∧ Ym

)]
≥ E

[
ϕ
(
X1 ∧ · · · ∧Xk−1 ∧Xk ∧ Yk+1 ∧ · · · ∧ Ym

)
−ϕ

(
X1 ∧ · · · ∧Xk−1 ∧ Yk ∧ Yk+1 ∧ · · · ∧ Ym

)]
.
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By setting Z1 = X1 ∧ · · · ∧Xk ∧Yk+2 ∧ · · · ∧Ym and Z2 = X1 ∧ · · · ∧Xk−1 ∧Yk+1 ∧
· · · ∧ Ym, the above inequality becomes∫

R
E[ϕ(u∧Xk+1)−ϕ(u∧Yk+1)]dFZ1(u) ≥

∫
R
E[ϕ(Xk∧u)−ϕ(Yk∧u)]dFZ2(u). (4)

Now consider the function

h(u) = E
[
ϕ
(
u∧X)−ϕ(u∧Y )] = E[ϕ(u∧Xk+1)−ϕ(u∧Yk+1)] = E[ϕ(Xk∧u)−ϕ(Yk∧u)],

where the equalities follow from the assumption that the sequences of Xi’s and of
Yj ’s are both formed by i.i.d. random variables. Inequality (4) is equivalent to

E[h(Z1)] ≥ E[h(Z2)].

This last inequality is satisfied since Z1 ≥st Z2, being Xk ≥st Yk+1, and since h(u)
is increasing due to Lemma 1 and assumption X ≥st Y . Thus, inequality (3) is
also satisfied, and the assertion follows. �

The main theorem of this section immediately follows.

Theorem 1. Let X ≥st Y , and let the sequence of lifetimes {S0, S1, . . . , Sm} be
defined as in (1). Then

K1 ≤icx K2 ⇒ SK1 ≤st SK2 .

Proof. Let ϕ : R → R be an arbitrary increasing function. By Lemma 2 the
function η(k) = E[ϕ(Sk)] is increasing and convex. Thus

E[ϕ(SK1)] = E[E[ϕ(SK1)|K1]] = E[η(K1)] ≤ E[η(K2)] = E[E[ϕ(SK2)|K2]] = E[ϕ(SK2)],

where the inequality is due to assumption K1 ≤icx K2. The assertion then follows.
�

We notice that assumption K1 ≤st K2 of Proposition 1 has been weakened to
K1 ≤icx K2 in Theorem 1. Recalling that random numbers having the same ex-
pectation cannot be compared in usual stochastic order, the usefulness of Theorem
1 becomes clear in the following example.

Example 3. Consider the family of discrete random variables {X(ϵ); 0 ≤ ϵ ≤
1/n} having support {1, 2, . . . , n}, with n ≥ 4, and such that

P[X(ϵ) = k] =


1/n+ ϵ, k = 1, n
1/n− ϵ, k = 2, n− 1
1/n, k = 3, 4, . . . , n− 2.
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It is not hard to see that X(ϵ1) ≤icx X(ϵ2) for 0 ≤ ϵ1 < ϵ2 ≤ 1/n, since∑
j≥k

P[X(ϵ1) = j] ≤
∑
j≥k

P[X(ϵ2) = j] ∀k ∈ {1, 2, . . . , n}.

However, we have E[X(ϵ)] = (n + 1)/2 for all ϵ ∈ [0, 1/n], so that the random
variables X(ϵ) are not ordered in the usual stochastic order sense. It follows that
Ki =st X(ϵi), i = 1, 2, satisfy the assumption K1 ≤icx K2 of Theorem 1 for
0 ≤ ϵ1 < ϵ2 ≤ 1/n, whereas they do not fulfill the hypothesis K1 ≤st K2 of
Proposition 1.

Making use of the result given in Theorem 1, hereafter we provide an upper
bound and a lower bound on the survival function (2) when m is even.

Corollary 1. Let X ≥st Y , and let the sequence of lifetimes {S0, S1, . . . , Sm} be
defined as in (1), with m = 2n, and let K have support in {0, 1, . . . , 2n} with
E(K) = n. Then, for all t ≥ 0 we have

F
n
X(t)F

n
Y (t) ≤ FSK

(t) ≤ 1

2

[
F

2n
X (t) + F

2n
Y (t)

]
.

Proof. It immediately follows from Theorem 1, by recalling the properties of
usual stochastic order, and by noting that K1 ≤icx K ≤icx K2, where K1 = n
almost surely (a.s.) and K2 takes values 0 and 2n with equal probabilities. �

Another application of Theorem 1 will be given in Section 4.

3. Parallel systems

In this section we deal with the case of parallel systems. Similarly to the
approach taken in Section 2, we now denote by PK the mixture of the family of
lifetimes {P0, P1, . . . , Pm} defined in (1) with respect to the random number K of
components chosen from batch BX , and thus PK is distributed as Pk for K = k.
The distribution function of PK is thus:

FPK
(t) =

m∑
k=0

F k
X(t)Fm−k

Y (t)P(K = k), t ≥ 0. (5)

We assume that the lifetimes of components coming from batch BX are greater,
in the usual stochastic order sense, than the lifetimes of components coming from
batch BY , i.e. X ≥st Y . Hence, as for the case of series system it is easy to verify
that Pk−1 ≤st Pk for all k = 1, . . . ,m and to prove the following result.
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Proposition 2. Let X ≥st Y . If K1 ≤st K2 then PK1 ≤st PK2.

Example 4. Examine two parallel systems, each formed bym components chosen
according to identical and independent Bernoulli trials. As for Example 1, each
component of system SKi is taken either from batch BX or from batch BY with
probability pi and 1 − pi, respectively, for i = 1, 2. Hence, Ki has a binomial
distribution and the distribution function of PKi is:

FPKi
(t) = [piFX(t) + (1− pi)FY (t)]

m , t ∈ R, i = 1, 2.

If p1 ≤ p2 we have K1 ≤st K2, and if in addition X ≥st Y then PK1 ≤st PK2 ,
according to Proposition 2.

Even for parallel systems it is possible to prove that the stochastic inequality
between the mixtures also holds under a weaker ordering between K1 and K2,
namely K1 ≤icv K2. Again, we need some preliminary results stated in the two
following lemmas.

Lemma 3. Let ϕ : R → R be an increasing function, and let X ≥st Y . Then the
function g(u) = E[ϕ(u ∨X)− ϕ(u ∨ Y )] is decreasing in u ∈ R.

Proof. For u1 ≤ u2, let us define the function ℓ(x) = ϕ(u1 ∨ x) − ϕ(u2 ∨ x),
x ∈ R. It is easy to verify that ℓ(x) is increasing in x for any u1 ≤ u2. Hence,
since X ≥st Y we have

E[ℓ(X)] =

∫
R
[ϕ(u1∨x)−ϕ(u2∨x)]dFX(x) ≥

∫
R
[ϕ(u1∨x)−ϕ(u2∨x)]dFY (x) = E[ℓ(Y )].

This yields

g(u1) = E[ϕ(u1 ∨X)− ϕ(u1 ∨ Y )] ≥ E[ϕ(u2 ∨X)− ϕ(u2 ∨ Y )] = g(u2).

The proof is thus completed. �

Example 5. Let X and Y be exponentially distributed as in Example 2, so that
X ≥st Y . In agreement with Lemma 3, for ϕ(x) = x, we have that function
g(u) = E[(u ∨X)− (u ∨ Y )] is decreasing in u ∈ R, since g(u) = 1

λ − 1
µ for u < 0

and g(u) = 1
λe

−λu − 1
µe

−µu for u ≥ 0.

Lemma 4. Let X ≥st Y . Then the sequence of lifetimes {P0, P1, . . . , Pm} defined
in (1) is such that ξ(k) = E[ϕ(Pk)] is increasing and concave for every increasing
function ϕ : R → R.
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Proof. Let ϕ be an increasing real function. Since Pk−1 ≤st Pk for all k =
1, . . . ,m, and since ϕ is increasing, it follows that ξ(k − 1) = E[ϕ(Pk−1)] ≤
E[ϕ(Pk)] = ξ(k) for all k = 1, . . . ,m, i.e. ξ(k) is increasing. To prove that ξ(k) is
concave, let us verify that

ξ(k + 1)− ξ(k) ≤ ξ(k)− ξ(k − 1) for all k = 1, . . . ,m− 1, (6)

i.e., that

E
[
ϕ
(
X1 ∨ · · · ∨Xk ∨Xk+1 ∨ Yk+2 ∨ · · · ∨ Ym

)
−ϕ

(
X1 ∨ · · · ∨Xk ∨ Yk+1 ∨ Yk+2 ∨ · · · ∨ Ym

)]
≤ E

[
ϕ
(
X1 ∨ · · · ∨Xk−1 ∨Xk ∨ Yk+1 ∨ · · · ∨ Ym

)
−ϕ

(
X1 ∨ · · · ∨Xk−1 ∨ Yk ∨ Yk+1 ∨ · · · ∨ Ym

)]
.

Letting Z1 = X1∨· · ·∨Xk∨Yk+2∨· · ·∨Ym and Z2 = X1∨· · ·∨Xk−1∨Yk+1∨· · ·∨Ym,
the above inequality is equivalent to∫

R
E[ϕ(u ∨Xk+1)− ϕ(u ∨ Yk+1)]dFZ1(u) ≤

∫
R
E[ϕ(Xk ∨ u)− ϕ(Yk ∨ u)]dFZ2(u).

Now consider the function

ψ(u) = E
[
ϕ
(
u∨X)−ϕ(u∨Y )] = E[ϕ(u∨Xk+1)−ϕ(u∨Yk+1)] = E[ϕ(Xk∨u)−ϕ(Yk∨u)],

where the equalities follow from the assumption of independence and identical
distribution for all Xi’s and for all Yj ’s. Due to Lemma 3 and assumption X ≥st

Y the function ψ(u) is decreasing. Moreover, note that the inequality above is
equivalent to

E[ψ(Z1)] ≤ E[ψ(Z2)].

This last inequality is satisfied since Z1 ≥st Z2, being Xk ≥st Yk+1, and since ψ(u)
is decreasing. Hence, also inequality (6) is satisfied, thus completing the proof. �

We are now able to state the main result of this section.

Theorem 2. Let X ≥st Y , and let the sequence of lifetimes {P0, P1, . . . , Pm} be
defined as in (1). Then

K1 ≤icv K2 ⇒ PK1 ≤st PK2 .

Proof. Let ϕ : R → R be an arbitrary increasing function. By Lemma 4 the
function ξ(k) = E[ϕ(Sk)] is increasing and concave. Hence,

E[ϕ(SK1)] = E[E[ϕ(SK1)|K1]] = E[ξ(K1)] ≤ E[ξ(K2)] = E[E[ϕ(SK2)|K2]] = E[ϕ(SK2)],

where the inequality is due to assumption K1 ≤icv K2. The assertion finally
follows. �
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We remark that comments similar to those made about the usefulness of The-
orem 1 can also be made about Theorem 2, due to the strict analogies between icx
and icv orders. Indeed, the following bounds to the distribution function (5) hold
when m is even.

Corollary 2. Let X ≥st Y , and let the sequence of lifetimes {P0, P1, . . . , Pm} be
defined as in (1), with m = 2n, and let K have support in {0, 1, . . . , 2n} with
E(K) = n. Then, for all t ≥ 0 we have

1

2

[
F 2n
X (t) + F 2n

Y (t)
]
≤ FPK

(t) ≤ Fn
X(t)Fn

Y (t).

The proof is omitted, being similar to that of Corollary 1.

4. A Parrondo’s type paradox

Recently, the Parrondo’s paradox has attracted the attention of several re-
searchers. Its simplest formulation is based on two fair gambling games, both of
which having a negative expectation. Precisely, when the two games are played
individually, for each of them the player is expected to lose. However, when the
games are played in an alternating random sequence, the resulting compound game
is a winning game, with a positive expectation (see, for instance, Abbott [1] and
references therein). The Parrondo’s paradox is thus centered on the counterintu-
itive result that the right combination of several losing strategies can be turned
into a winning strategy. We remark that this is not a contradiction. The explana-
tory key is that the games are not independent. Thus it is not surprising that
a suitable combination of non-independent losing games may produce a winning
game.

A suitable version of Parrondo’s paradox in the field of reliability theory has
been presented recently by Di Crescenzo [6]. It involves independent pairs of
systems in series with two independent components, where the units of the first
system are less reliable than those of the second. It is shown in Di Crescenzo [6]
that, if the first system can be modified by a random choice of its components,
allowing each of the two units to be randomly chosen from a set of components
identical to those in the series, then its reliability can be improved, obtaining a
system more reliable the the second one, although the original one was worse.
An extension to the case of dependent components has been treated recently in Di
Crescenzo and Pellerey [7]. See also Navarro and Spizzichino [14], where stochastic
comparisons of series and parallel systems with vectors of component lifetimes
sharing the same copula are studied.

It should be pointed out that the results given in the present paper have a
narrow intersection with the contribution of Di Crescenzo and Pellerey [7]. First

10



of all, papers [6] and [7] deal with 2-unit series and parallel systems, whereas the
systems we examine here have arbitrary fixed sizes. Moreover, the single common
case involves random variables K1 = 1 a.s. and K2 having binomial distribution
with parameters n = 2 and p = 1/2. A similar comment holds for Navarro and
Spizzichino [14]. In the latter paper, under suitable assumptions about the depen-
dence between the component lifetimes, it is shown that the heterogeneity of the
random lifetimes decreases (increases) the overall reliability of the series (parallel)
system. However, the relevant difference is that in the present contribution the
number of components of a given batch is assumed to be random.

According to Harmer and Abbott [8] randomness or “noise” in physical systems
is often considered to yields a deleterious effect. However, the rapidly growing fields
of stochastic resonance, Brownian ratchets and stochastic molecular motors have
brought the increasing realization that noise can play a constructive role. This
paper provides an illustration that the presence of randomness in the construction
of coherent systems may improve the system reliability in some suitable criteria.
The main result presented in Section 2 can thus be viewed as a new alternative
version of Parrondo’s paradox in the field of reliability theory. In fact, as an
immediate corollary of Theorem 1, we can show that the reliability of a series
system constituted by an even number 2n of components coming from different
batches can be improved by randomly choosing the number of components coming
from the batches. Assume that it is impossible to verify which one of the two
batches contains the better performing components. Indeed, let us consider a
series system constituted by a number n of components taken from the batch BX

and by n components taken from a different batch BY , and assume that X and Y
are stochastically ordered (in any one of the two directions). Now assume that the
fixed number n of components taken from BX can be replaced (through any kind of
randomization procedure) by a random numberK2 of components of the same type
satisfying the constraint E[K2] = n. The remaining n−K2 components are taken
from BY . Thus, in this case, letting K1 = n a.s., by Theorem 3.A.24 in Shaked
and Shanthikumar [17] it follows K1 ≤cx K2, and therefore also K1 ≤icx K2.
As a consequence, if in addition we assume X ≥st Y , then from Theorem 1 we
immediately obtain that the reliability of the resulting system is improved, i.e.
SK1 ≤st SK2 . We notice that, by symmetry, an analogous result can be proved
also under the assumption Y ≥st X. Thus, roughly speaking, we get that if the
fixed number n of components taken from any one of the two batches is replaced
by a random number having the same mean, then the reliability of the overall
system improves in usual stochastic order sense.

The above stochastic structure can be reformulated as follows. Consider a
series system formed by 2 subsystems in series, each having n components. The
components of the first subsystem are taken from batch BX , whereas those of
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the second subsystem are taken from batch BY . Let K0 denote the number of
components of the whole system whose lifetimes are distributed as X; hence, K0 =
n a.s.

Assume now that the components of the system can be changed according to
the following randomizing procedure: We perform 2j independent Bernoulli trials
by flipping 2j unbiased coins (j = 1, . . . , n). For each of the first j coins giving
‘head’ a component of the first subsystem is changed into another component
taken from batch BY , whereas for the last j coins giving ‘head’ a component of
the second subsystem is changed into another component taken from batch BX .
Of course, we assume that all lifetimes are independent. Denote by Kj the random
number of components of the system whose lifetimes are distributed as X after the
randomizing procedure has been performed. Clearly, for j = 0, 1, . . . , n we have

Kj = K0 +

j∑
i=1

Ui −
j∑

i=1

Vi, (7)

where the Ui’s and Vi’s are i.i.d. random variables having Bernoulli distribution
with parameter 1/2. Thus, Kj − n+ j has binomial distribution with parameters
(2j, 1/2), so that

P(Kj = k) =

(
2j

k − n+ j

)(
1

2

)2j

, n− j ≤ k ≤ n+ j

and

E(Kj) = n, Var(Kj) =
j

2
(j = 0, 1, . . . , n).

Hence, the mean number of components whose lifetimes are distributed as X is
constant, whereas the randomness becomes greater as j increases. Now consider
the mixture SKj of the family of lifetimes {Sn−j , Sn−j+1, . . . , Sn+j} defined as in
(1) with respect to the random number Kj . Recalling (2) it follows that the
survival function of SKj , for j = 0, 1, . . . , n, is given by

P(SKj > t) =
[
FX(t)F Y (t)

]n−j
[
FX(t) + F Y (t)

2

]2j
, t ≥ 0. (8)

We have Kj ̸≤st Kj+1 but Kj ≤cx Kj+1 for j = 0, 1, . . . , n − 1 (by (7) and
Theorem 3.A.34 in Shaked and Shanthikumar [17]), so that Kj ≤icx Kj+1. Hence,
if X ≥st Y then from Theorem 1 we obtain SKj ≤st SKj+1 for j = 0, 1, . . . , n− 1.
This means that the insertion of randomness in the above scheme produces an effect
that improves the reliability of the overall system, similarly as for the Parrondo’s
paradox.
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Finally, it should be pointed out that the opposite conclusion is obtained when
dealing with parallel systems. In fact, introducing randomness in the number of
components coming from one of the two batches, the reliability of a parallel system
decreases due to Theorem 2. Thus, for parallel systems where it is impossible to
recognize which one of the batches contains the better performing components,
the maximal reliability is obtained by taking exactly half of the components from
the first batch and the remaining half from the second one.
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