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STRUCTURES IN HIGH DIMENSIONS
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Abstract. Bivariate aging notions for a vector X of lifetimes based on stochastic com-

parisons between X and Xt, where Xt is the multivariate residual lifetime after time

t > 0, have been studied in Pellerey (2008) under the assumption that the dependence

structure in X is described by an Archimedean survival copula. Similar stochastic com-

parisons between Xt and Xt+s, for all t; s > 0, were considered in Mulero and Pellerey

(2010). In this paper, these results are generalized and extended to the multivariate

case. Two illustrative examples are also provided.
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1. Introduction

Let X be a random variable, and for each real t ∈ {q : P{X > q} > 0} let Xt =

[X − t
∣∣X > t] denote a random variable whose distribution function (df) is the same as

the conditional df of X − t given that X > t. When X is the lifetime of a device, then Xt

can be interpreted as the residual lifetime of the device at time t, given that the device is

alive at time t.

Several characterizations of aging notions for items, components, or individuals, by

means of stochastic comparisons between the residual lifetimes X0, Xt, and Xt+s, with

t, t + s ∈ {q : P (X > q) > 0}, have been considered and studied in the literature.

These characterizations serve a few purposes; for example, they can be used to provide

bounds for the df’s of lifetimes of complex systems having components that satisfy these

notions, or to solve optimization problems dealing with allocation of components in a

system, and they also throw a new light of understanding on the intrinsic meaning of the

aging notions involved (see, e.g., Barlow and Proschan, 1981, or Lai and Xie, 2006, and

references therein).
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Among others, two of the most important notions of aging are the Increasing Failure

Rate (IFR) and Decreasing Failure Rate (DFR) properties, which are satisfied by lifetimes

having absolutely continuous df’s and increasing, or decreasing, hazard rate functions, or,

equivalently, by lifetimes X satisfying Xt ≤st [≥st]Xt+s for all t, s ≥ 0, where the ≤st

denotes the usual stochastic order, defined later (see, for example, Barlow and Proschan,

1891, for this equivalence).

Since in most systems the dependency between lifetimes of components is an unavoid-

able assumption, several generalizations of these notions have been extensively considered

in the literature. For example, the dynamic multivariate increasing failure rate is a known

extension that was introduced in Shaked and Shanthikumar (1991), while different other

multivariate IFR notions have been defined more recently in Durante et al. (2010), or

Arias-Nicols et al. (2009). In particular, a simple extension of the IFR property in

the multivariate setting was introduced in Mulero and Pellerey (2010), generalizing the

inequalities above to the bivariate case.

For similar purposes, it has been found useful to compare lifetimes, or residual lifetimes

of individuals, by means of the usual stochastic order, i.e., to verify whenever X ≤st Y ,

or whenever Xt ≤st Yt for all t ≥ 0. This last case is equivalent to X ≤h Y , where

≤h stands for hazard rate order, since, as well-known and easy to verify, the inequality

Xt ≤st Yt for all t ≥ 0 is satisfied if and only if the hazard rate of X is smaller than

that of Y (assuming absolute continuity). Inequalities of this kind have been considered

in different applied problems in reliability to compare lifetimes of systems, or in decision

theory to compare risks (see, e.g., Shaked and Shantikumar, 2007). For this order also,

several generalizations to the multivariate setting have been defined and studied in the

literature (see, again, Shaked and Shantikumar, 2007, or Hu et al., 2003). Among others,

multivariate stochastic orders defined in Section 2.

When considering dependence between lifetimes, one of most useful tools to describe

and investigate such dependence is the notion of copula, or of survival copula. In fact,

there are two important reasons that have made copulas very popular in modelling sys-

tem’s lifetimes: firstly, parameters of dependency between components can be chosen

distinctly from the parameters of the components’ df’s; secondly, no restrictions should

be given on choosing the df’s of the system’s components. A prominent class of copu-

las that is very popular in applications is the class of Archimedean copulas, that have a

very close relation with Laplace transforms, as noticed by Marshall and Olkin (1988). A

detailed description of Archimedean copulas may be found in Genest and Rivest (1993),

Joe (1997) or Nelsen (2006).

The purpose of this paper is to provide conditions for vectors of lifetimes to satisfy the

multivariate IFR properties introduced in Mulero and Pellerey (2010), or to be comparable

in the multivariate stochastic orders defined in the same paper, under the assumption

that the dependence structure in the components of the random vectors is described by
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an Archimedean survival copula. Since only the bivariate case has been considered in

Mulero and Pellerey (2010), the results described here are more general, dealing with

vectors of dimensions higher than two.

In the next section, Archimedean copulas, multivariate notions of aging (such as the

multivariate IFR notion) and some multivariate stochastic orderings, are recalled. In

Section 3, some conditions under which random vectors whose dependence structure is

described by Archimedean copulas satisfy these notions or stochastic orders are presented.

Finally, in Section 4, two illustrative examples are provided.

Some conventions and notations that are used throughout the paper are given in the

following. The notation =st means equality in law. For any random variable (or vector)

X and an event A, [X |A ] denotes a random variable whose df is the conditional df of X

given A. Throughout this paper we write “increasing” instead of “non-decreasing” and

“decreasing” instead of “non-increasing”. Given two real valued vectors x = (x1, . . . , xn)

and y = (y1, . . . , yn), the notation x ≤ [<] y means xi ≤ [<] yi ∀i = 1, . . . , n. Also, a

function ϕ : ℜn → ℜ is said to be increasing if x ≤ y implies ϕ(x) ≤ ϕ(y). Finally, we

will denote with d ∈ {2, 3, . . .} the dimension of the vectors considered.

2. Some Preliminaries and auxiliary results

The following two multivariate generalizations of the usual stochastic order are well

known (see Shaked and Shanthikumar, 2007, for related properties, equivalent definitions

and applications). Considered two multivariate random vectors, X and Y, we say that

• X is smaller than Y in the usual stochastic order (denoted by X ≤st Y) if, and

only if, E[h(X)] ≤ E[h(Y)] for every increasing function h : ℜd → ℜ provided

that the two expectations exist;

• X is smaller than Y in the lower orthant order (X ≤lo Y) if, and only if,

FX(x1, . . . , xd) ≥ FY(x1, . . . , xd) for all (x1, . . . , xd) ∈ ℜd.

It is a well known fact that X ≤st Y ⇒ X ≤lo Y, while the opposite is not true.

Given a vector X = (X1, . . . , Xd) of lifetimes, let

Xt = [(X1 − t, . . . , Xd − t)|X1 > t, . . . ,Xd > t]

be the multivariate residual lifetimes at time t ≥ 0. Mulero and Pellerey (2010) introduced

a bivariate generalization of the IFR notion, mentioning that it can be extended to any

dimension, by the stochastic inequalities

Xt+s ≤st [≥st] Xt for all t, s ≥ 0,(2.1)

and

Xt+s ≤lo [≥lo] Xt for all t, s ≥ 0,(2.2)
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respectively. We will denote the class of multivariate lifetimes that satisfy (2.1) by

A+
FR [A−

FR], and the class of multivariate lifetimes that satisfy (2.2) by Aw+
FR [Aw−

FR] (here

w means weakly).

Examples of application of these multivariate aging notions in reliability theory may be

provided in the analysis of coherent systems, which they are often considered to describe

the structure and the performance of complex systems. Recall that a system is said to

be coherent whenever every component is relevant (i.e., it affects the working or failure

of the system) and the structure function is monotone in every component (i.e., replacing

a failed component by a working component cannot cause a working system to fail). For

example, k-out-of-n systems, and series and parallel systems in particular, are coherent

systems (see Esary and Marshall, 1970, or Barlow and Proschan, 1981, for a detailed

introduction to coherent systems and related properties and applications). Also recall that

for any coherent system having d components, the relationship between the vector X of

component’s lifetimes and the system’s lifetime TX is described by the relation TX = τ(X),

where the coherent life function τ : ℜd → ℜ is increasing and τ(t1 − s, . . . , td − s) =

τ(t1, . . . , td) − s for every s ≥ 0 and ti ≥ s. Consider now any coherent system having

coherent life function τ . By the above mentioned properties of coherent life functions,

and by Theorem 6.B.16(a) in Shaked and Shanthikumar (2007), it can be immediately

observed that if X satisfies the property A+
FR [A−

FR], then TXt = τ(Xt) is stochastically

decreasing [increasing] in the set {t ≥ 0 : Xi > t, ∀i = 1, . . . , d}, i.e., the residual lifetime

of the system stochastically decreases [increases] along time conditioning on the fact that

all its components are in a working state at time t.

Two examples of application of the weaker properties Aw+
FR and Aw−

FR are the following.

Let X and Y be two vectors of lifetimes, and observe that X ≤lo Y ⇒ E[X] ≤ E[Y],

where E[X] and E[Y] denote the corresponding vectors of the expected lifetimes. Thus, if

X satisfies Aw+
FR [Aw−

FR], then the vector E[Xt] = (E[X1 − t|Xi > t], . . . , E[Xd − t|Xi > t])

of the expected residual lifetimes is decreasing [increasing] in the set {t ≥ 0 : Xi > t, ∀i =
1, . . . , d}. Moreover, it is interesting to observe that X ≤lo Y ⇒ Xi ≤st Yi, ∀i = 1, . . . , d,

i.e., corresponding univariate components of vectors ordered in the lower orthant sense are

ordered in the usual stochastic order. Thus, if X satisfies the property Aw+
FR [Aw−

FR], then

every marginal residual lifetime [Xk − t|Xi > t, ∀i = 1, . . . , d] is stochastically increasing

[decreasing] in t. Consider, for example, d different items working together and performing

the same task, having dependent lifetimes. If the vector X of their lifetimes satisfies the

property Aw+
FR [Aw−

FR], then the residual lifetime of each one of the items stochastically

increases along time, if all the items do not fail.

Conditions such that a vector X of lifetimes satisfies the multivariate IFR notions,

defined above, will be provided when the dependence between the lifetimes is described

by an Archimedean survival copula. Recall that a copula associated to a multivariate df

F is a df C : [0, 1]d 7→ [0, 1] satisfying: F (x) = C(F1(x1), . . . , Fd(xd)), where the Fi’s, for



THE MULTIVARIATE AGING 5

1 ≤ i ≤ d, are the univariate marginal df’s. Similarly, a survival copula associated to a

multivariate df F is a df C : [0, 1]d 7→ [0, 1] satisfying: F (x) = C(F 1(x1), . . . , F d(xd)),

where the F i’s, for 1 ≤ i ≤ d, are the univariate survival functions.

Also recall that a function ψ : ℜ+ 7→ [0, 1] is called d-alternating if (−1)kψ(k) ≥ 0

for k ∈ {1, . . . , d}, and if it is d-alternating for all d ∈ {1, 2, . . .}, it is called completely

monotone. A copula Cψ is called an Archimedean copula if

Cψ(u1, . . . , ud) = ψ

(
d∑
i=1

ψ−1(ui)

)
,(2.3)

where ψ : ℜ+ 7→ [0, 1] is an d-alternating function such that ψ(0) = 1, and limx→∞ ψ(x) =

0. Here, ψ is called the generator function of the copula (see Joe, 1997, or Nelsen, 2006, for

more details). Whenever the generator of an Archimedean copula is completely monotone,

the Archimedean copula (2.3) can be written as

Cψ(u1, . . . , ud) =

∫ ∞

0

d∏
i=1

Gα(ui)dMψ(α),(2.4)

where G(x) = exp
(
− ψ−1(x)

)
and Mψ(.) is the df of a positive random variable having

Laplace transform ψ (see Joe, 1997, page 93). In a similar manner, we can write the

survival function of a vector X = (X1, . . . , Xd) having an Archimedean survival copula in

the form

Fψ(x1, . . . , xd) = ψ

(
d∑
i=1

ψ−1(F i(xi))

)
,(2.5)

where F
′
is are the marginal survival functions of the random variables Xi, i = 1, . . . , d.

3. Main Results

In this section, we assume that X = (X1, . . . , Xd) is a random vector with multivariate

survival function defined as in (2.5), where ψ is a d-alternating function, having univariate

survival functions and density functions F i and fi, respectively. The following result

provides some conditions for comparing multivariate residual lifetimes at different ages t

and t+ s in the lower orthant order.

Theorem 3.1. If (−1)dψ(d)(t)
ψ(t) is a decreasing [increasing] function of t, ψ−1

(
F i(xi)

)
is

a concave [convex] function and (−1)dψ(d)(t) is a log-concave [log-convex] function of t,

then X ∈ Aw−
FR [X ∈ Aw+

FR].

Proof. We give the proof for the case that (−1)dψ(d)(t)
ψ(t) is decreasing, ψ−1

(
F i(xi)

)
is

concave and (−1)dψ(d)(t) is log-concave. The proof for the alternative case is similar. We

should show that Ft+s(x) ≤ Ft(x), for all t, s ≥ 0, where Ft(x) denotes the df of Xt. We

have

Ft(x) =
P (t < X1 < t+ x1, . . . , t < Xd < t+ xd)

P (X1 > t, . . . ,Xd > t)
.
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Now, since f(x1, . . . , xd) = (−1)d ∂d

∂x1···∂xdF (x1, . . . , xd) and

(−1)d
∂d

∂x1 · · · ∂xd
F (x1, . . . , xd) = (−1)dψ(d)

( d∑
i=1

ψ−1
(
F i(xi)

)) d∏
i=1

−fi(xi)

ψ′
(
ψ−1

(
F i(xi)

)) ,

Ft(x) equals the ratio

∫ t+x1

t
· · ·
∫ t+xd

t
(−1)dψ(d)

(∑d
i=1 ψ

−1
(
F i(yi)

))∏d
i=1

−fi(yi)

ψ′

(
ψ−1

(
F i(yi)

))dy1 · · · dyd
ψ

(∑d
i=1 ψ

−1
(
F i(t)

))(3.6)

=

∫ x1

0
· · ·
∫ xd

0
(−1)dψ(d)

(∑d
i=1 ψ

−1
(
F i(yi + t)

))∏d
i=1

−fi(yi+t)

ψ′

(
ψ−1

(
F i(yi+t)

))dy1 · · · dyd
ψ

(∑d
i=1 ψ

−1
(
F i(t)

)) .

Thus, by assumption, Ft+s(x) ≤ Ft(x) if we have

(−1)dψ(d)

(∑d
i=1 ψ

−1
(
F i(yi + t+ s)

))∏d
i=1

−fi(yi+t+s)

ψ′

(
ψ−1

(
F i(yi+t+s)

))
ψ

(∑d
i=1 ψ

−1
(
F i(t+ s)

))(3.7)

≤

(−1)dψ(d)

(∑d
i=1 ψ

−1
(
F i(yi + t)

))∏d
i=1

−fi(yi+t)

ψ′

(
ψ−1

(
F i(yi+t)

))
ψ

(∑d
i=1 ψ

−1
(
F i(t)

)) ,

or, equivalently, if the last term is a decreasing function of t. By the assumption, we have

that ψ−1
(
F i(xi)

)
is a concave function of xi, thus

d∏
i=1

−fi(yi + t)

ψ′
(
ψ−1

(
F i(yi + t)

))

is a decreasing function of t. So, it is sufficient to show that the function

h(t) :=

(−1)dψ(d)

(∑d
i=1 ψ

−1
(
F i(yi + t)

))
ψ

(∑d
i=1 ψ

−1
(
F i(t)

)) .(3.8)
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is decreasing or equivalently, g(t) =

(
ψ

(∑d
i=1 ψ

−1
(
F i(t)

)))2

h′(t) is non-positive.

Clearly, we have

g(t) = (−1)dψ(d+1)

( d∑
i=1

ψ−1
(
F i(yi + t)

)) d∑
i=1

−fi(yi + t)

ψ′
(
ψ−1

(
F i(yi + t)

))ψ( d∑
i=1

ψ−1
(
F i(t)

))

−(−1)dψ(d)

( d∑
i=1

ψ−1
(
F i(yi + t)

))
ψ′
( d∑
i=1

ψ−1
(
F i(t)

)) d∑
i=1

−fi(t)

ψ′
(
ψ−1

(
F i(t)

)) .
Since ln

(
(−1)dψ(d)(t)

)
is a concave function of t, in view of the fact that ψ−1

(
F i(yi+ t)

)
is increasing and (−1)dψ(d)(t)

ψ(t) is decreasing in t, we obtain

(−1)dψ(d+1)

(∑d
i=1 ψ

−1
(
F i(yi + t)

))
(−1)dψ(d)

(∑d
i=1 ψ

−1
(
F i(yi + t)

))

≤
(−1)dψ(d+1)

(∑d
i=1 ψ

−1
(
F i(t)

))
(−1)dψ(d)

(∑d
i=1 ψ

−1
(
F i(t)

))

≤
ψ′
(∑d

i=1 ψ
−1
(
F i(t)

))
ψ

(∑d
i=1 ψ

−1
(
F i(t)

)) .
This obviously implies that g(t) ≤ 0 because 0 ≤ −fi(yi+t)

ψ′

(
ψ−1

(
F i(yi+t)

)) ≤ −fi(t)

ψ′

(
ψ−1

(
F i(t)

))
and, thus, the proof is completed. �

The particular case in which ψ is a completely monotone function is considered in the

following Theorem; In this case, under appropriate conditions on the marginals, we show

that X ∈ Aw−
FR.

Theorem 3.2. If ψ(t) is a completely monotone function and ψ−1
(
F i(xi)

)
is a concave

function, then X ∈ Aw−
FR.

Proof. With similar argument as in the proof of the Theorem 3.1, it is sufficient to

show that h(t) in (3.8) is a decreasing function of t. Observe that, by (2.4), (−1)dψ(d)(t) =∫∞
0 αde−αtdMψ(α), so that

h(t) =

(−1)dψ(d)

(∑d
i=1 ψ

−1
(
F i(yi + t)

))
ψ

(∑d
i=1 ψ

−1
(
F i(t)

)) =

αd−1

∫ ∞

0
αe

−α
∑d

i=1 ψ
−1

(
F i(yi+t)

)
dMψ(α)

ψ

(∑d
i=1 ψ

−1
(
F i(t)

))
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Moreover, since

−ψ′
( d∑
i=1

ψ−1
(
F i(yi + t)

))
=

∫ ∞

0
αe

−α
∑d

i=1 ψ
−1

(
F i(yi+t)

)
dMψ(α),

then h(t) is a decreasing function of t if

−k(t) :=
−ψ′

(∑d
i=1 ψ

−1
(
F i(yi + t)

))
ψ

(∑d
i=1 ψ

−1
(
F i(t)

))
is a decreasing function of t.

Observe that

(
ψ

(∑d
i=1 ψ

−1
(
F i(t)

)))2

k′(t) is equal to

ψ′′
( d∑
i=1

ψ−1
(
F i(yi + t)

))
ψ

( d∑
i=1

ψ−1
(
F i(t)

)) d∑
i=1

−fi(yi + t)

ψ′
(
ψ−1

(
F i(yi + t)

))

−ψ′
( d∑
i=1

ψ−1
(
F i(t)

))
ψ′
( d∑
i=1

ψ−1
(
F i(yi + t)

)) d∑
i=1

−fi(t)

ψ′
(
ψ−1

(
F i(t)

)) .(3.9)

Since the function Q(t) :=
∑d

i=1 ψ
−1
(
F i(yi + t)

)
is an increasing function of t, for any

yi, i = 1, . . . , d, its derivative

Q′(t) =
d∑
i=1

−fi(yi + t)

ψ′
(
ψ−1

(
F i(yi + t)

))
is positive, and also decreasing in t. Moreover, ψ(t),−ψ′(t) and ψ′′(t) are decreasing

functions of t. Then, it follows that, since yi > 0 for i = 1, . . . , d, (3.9) is greater than or

equal to

ψ′′
( d∑
i=1

ψ−1
(
F i(t+ yi)

))
ψ

( d∑
i=1

ψ−1
(
F i(t+ yi)

)) d∑
i=1

−fi(t+ yi)

ψ′
(
ψ−1

(
F i(t+ yi)

))

−ψ′
( d∑
i=1

ψ−1
(
F i(t+ yi)

))
ψ′
( d∑
i=1

ψ−1
(
F i(t+ yi)

)) d∑
i=1

−fi(t+ yi)

ψ′
(
ψ−1

(
F i(t+ yi)

)) .
Therefore, h(t) is a decreasing function of t if ψ′′(t)ψ(t)−

(
ψ′(t)

)2
is non-negative. Recall-

ing that ψ′′(t) = E(X2e−tX), ψ′(t) = E(Xe−tX) and ψ(t) = E(e−tX), for a random vari-

able having df Mψ, it follows that ψ
′′(t)ψ(t)−

(
ψ′(t)

)2
reduces to E(X2e−tX)E(e−tX)−(

E(Xe−tX)
)2

, which is positive by Cauchy-Schwarz inequality. Thus h(t) is decreasing

in t, and this completes the proof. �
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Next, we consider conditions for the stronger aging notion X ∈ A−
FR [X ∈ A+

FR]. To

this aim, two preliminary results are needed. The first one follows reasoning as in the

proof of Theorem 2.8 in Müller and Scarsini (2005).

Lemma 3.3. (−1)d−1ψ(d−1)(t) is a log convex [log concave] function if, and only if,

(−1)iψ(i)(t) is log convex [log concave] for any i = 1, . . . , d− 1.

The second preliminary result is Theorem 6.B.3 in Shaked and Shanthikumar (2007),

which describes conditions under which a random vector X can be compared in the usual

stochastic order with respect to another vector Y

Lemma 3.4. If X1 ≤st Y1 and if, for k = 1, . . . , d,

[Xk|Xk−1 = xk−1, . . . , X1 = x1] ≤st [Yk|Yk−1 = yk−1, . . . , Y1 = y1](3.10)

whenever xj ≤ yj, j = 1, . . . , k − 1, then X ≤st Y.

Conditions for the comparison Xt ≤st Xt+s are described in the next result.

Theorem 3.5. If (−1)d−1ψ(d−1)(t) is a log convex [log concave] function of t, ψ−1
(
F i(xi)

)
is a concave [convex] function and F̄1 is log convex [log concave], then X ∈ A−

FR [X ∈
A+
FR].

Proof. We prove the statement outside of the brackets, the other being similar. Let

Xt =st (X̃
t
1, . . . , X̃

t
d) be a vector having df Ft(x). From Lemma 3.4, the inequality Xt ≤st

Xt+s is satisfied if X̃t
1 ≤st X̃

t+s
1 and if, for k = 1, . . . , d,

[X̃t
k| X̃t

k−1 = xk−1, . . . , X̃
t
1 = x1] ≤st [X̃

t+s
k | X̃t+s

k−1 = yk−1, . . . , X̃
t+s
1 = y1](3.11)

holds whenever xj ≤ yj for j = 1, . . . , k−1. Let us observe that the condition X̃t
1 ≤st X̃

t+s
1

is equivalent to F̄1(x+t)
F̄1(t)

≤ F̄1(x+t+s)
F̄1(t+s)

, which means that F̄1 is log convex. Moreover,

P (X̃t
k ≤ xk|X̃t

k−1 = xk−1, . . . , X̃
t
1 = x1) =

∂k

∂x1···∂xk
F 1,...,k
t (x1, . . . , xk)

∂k−1

∂x1···∂xk−1
F 1,...,k−1
t (x1, . . . , xk−1)

,(3.12)
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where

F 1,...,i
t (x1, . . . , xi) =

∫ x1

0
· · ·
∫ xi

0

∫ ∞

0
· · ·
∫ ∞

0

(−1)dψ(d)

(∑d
j=1 ψ

−1
(
F j(yj + t)

))
ψ

(∑d
j=1 ψ

−1
(
F j(t+ s)

))

·
d∏
j=1

−fj(yj + t)

ψ′
(
ψ−1

(
F j(yj + t)

))dy1 · · · dyd
=

∫ x1

0
· · ·
∫ xi

0
(−1)iψ(i)

( i∑
j=1

ψ−1
(
F j(yj + t)

)
+

d∑
j=i+1

ψ−1
(
F j(t)

))

·

∏i
j=1

−fj(yj+t)

ψ′

(
ψ−1

(
F j(yj+t)

))
ψ

(∑d
j=1 ψ

−1
(
F j(t+ s)

))dy1 · · · dyi.

Thus, (3.12) is equal to

∏k−1
j=1

−fj(xj+t)

ψ′

(
ψ−1

(
F j(xj+t)

))
ψ

(∑d
j=1 ψ

−1
(
F j(t)

)) ·
ψ

(∑d
j=1 ψ

−1
(
F j(t)

))
∏k−1
j=1

−fj(xj+t)

ψ′

(
ψ−1

(
F j(xj+t)

)) ·

·
∫ xk

0

(−1)kψ(k)

(∑k
j=1 ψ

−1
(
F j(xj + t)

)
+
∑d

j=k+1 ψ
−1
(
F j(t)

))
−fk(x+t)

ψ′

(
ψ−1

(
Fk(x+t)

))
(−1)k−1ψ(k−1)

(∑k−1
j=1 ψ

−1
(
F j(xj + t)

)
+
∑d

j=i ψ
−1
(
F j(t)

)) dx.

Let K1(t, x1, . . . , xk−1) =
∑k−1

j=1 ψ
−1
(
F j(xj + t)

)
+
∑d

j=k+1 ψ
−1
(
F j(t)

)
. Then (3.12) is

equal to

(−1)k−1ψ(k−1)

(
K1(t, x1, . . . , xk−1) + ψ−1

(
F k(xk + t)

))
(−1)k−1ψ(k−1)

(
K1(t, x1, . . . , xk−1) + ψ−1

(
F k(t)

)) − 1.(3.13)

Therefore, (3.11) holds if, and only if, (3.13) is a decreasing function of t and of xj ,

for j = 1, . . . , k − 1. Since K1(t, x1, . . . , xk−1) is an increasing function of x1, . . . , xk−1,

(3.13) is a decreasing function of xj for j = 1, . . . , k − 1 if, and only if, (−1)k−1ψ(k−1)(y+z)

(−1)k−1ψ(k−1)(y)

is an increasing function of y for any positive constant z. This holds, equivalently, if
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(−1)k−1ψ(k−1) is log convex. Also, (3.13) is a decreasing function of t if

(−1)kψ(k)

(
K2(t) + ψ−1

(
F k(x+ t)

))
(−1)k−1ψ(k−1)

(
K2(t) + ψ−1

(
F k(t)

))
·

( k−1∑
j=1

−fj(xj + t)

ψ′
(
ψ−1

(
F j(xj + t)

)) +
−fj(x+ t)

ψ′
(
ψ−1

(
F j(x+ t)

)) +

d∑
j=k+1

−fj(t)

ψ′
(
ψ−1

(
F j(t)

)))

−(−1)kψ(k−1)

(
K2(t) + ψ−1

(
F k(x+ t)

))
(−1)k−1ψ(k)

(
K2(t) + ψ−1

(
F k(t)

))
·

( k−1∑
j=1

−fj(xj + t)

ψ′
(
ψ−1

(
F j(xj + t)

)) +
d∑
j=i

−fj(t)

ψ′
(
ψ−1

(
F j(t)

))) ≤ 0,

where K2(t) := K1(t, x1, . . . , xk−1). Therefore, (3.13) is a decreasing function of t, if

(−1)kψ(k)

(
K2(t) + ψ−1

(
F k(x+ t)

))
(−1)k−1ψ(k−1)

(
K2(t) + ψ−1

(
F k(x+ t)

)) and
fj(x+ t)

ψ′
(
ψ−1

(
F j(x+ t)

))
are two decreasing functions of x. Since ψ−1(F̄ (x)) is an increasing function, the first

quotient is a decreasing function of x if − ∂
∂x log

(
(−1)k−1ψ(k−1)(x)

)
is a decreasing

function of x. Therefore, (3.13) is a decreasing function of t if ψ−1(F̄ (x)) is concave

and log
(
(−1)k−1ψ(k−1)(x)

)
is convex. From Lemma 3.3, this holds if, and only if,

(−1)d−1ψ(d−1)(x), is log convex. This completes the proof. �

Corollary 3.6. If ψ is a completely monotone function and, for all i = 1, . . . , d, the

composition ψ−1(F i) is a concave function and F̄1 is log convex, then X ∈ A−
FR.

Proof. Since ψ is a completely monotone function, then (−1)dψ(d)(u) = E(Xde−uX)

for some variable X. Hence, by Cauchy-Schwarz inequality, E(Xd+2e−uX)E(Xde−uX)−(
E(Xd+1e−uX)

)2
≥ 0, which means that (−1)dψ(d)(u) is log convex. The assertion now

follows from previous results. �

We conclude the section presenting conditions for the comparison in the lower orthant

sense between the vectors of the residual lifetimes corresponding to two vectors X =

(X1, . . . , Xd) and Y = (Y1, . . . , Yd) defined as in (2.5). Let X and Y have the same

generator function ψ and marginal survival functions, and density functions, F i, fi and

Gi, gi, respectively.

Theorem 3.7. Let Si(t) = ψ−1(F̄i(t+yi))−ψ−1(Ḡi(t+yi)), i = 1, . . . , d and assume that

ψ(d+1)(t) exists for any t ≥ 0. If the function (−1)dψ(d)(t) [ (−1)dψ(d)(t+s)
ψ(t) ; for any s ∈ ℜ]

is an increasing [decreasing] function of t, and if, for every i = 1, . . . , d, Xi ≥st [≤st] Yi

and the function Si(t) is decreasing [increasing], then, Xt ≥lo [≤lo] Yt for every t ≥ 0.
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Proof. We prove the case Xt ≥lo Yt for every t; the other case is proved similarly.

Fix t ≥ 0, and let FX,t(x) and GY,t(x) be the df’s of the residual lifetimes X and Y at

time t, respectively. We should prove that FX,t(y) ≤ GY,t(y) for any y = (y1, . . . , yd).

By (3.6), it is sufficient to prove that

(−1)dψ(d)

(∑d
i=1 ψ

−1
(
F i(yi + t)

))∏d
i=1

−fi(yi+t)

ψ′

(
ψ−1

(
F i(yi+t)

))
ψ

(∑d
i=1 ψ

−1
(
F i(t)

))

≤

(−1)dψ(d)

(∑d
i=1 ψ

−1
(
Gi(yi + t)

))∏d
i=1

−gi(yi+t)

ψ′

(
ψ−1

(
Gi(yi+t)

))
ψ

(∑d
i=1 ψ

−1
(
Gi(t)

)) .

Since Si(t) is a decreasing function of t for every i = 1, . . . , d, then

d∏
i=1

−fi(yi + t)

ψ′
(
ψ−1

(
F i(yi + t)

)) ≤
d∏
i=1

−gi(yi + t)

ψ′
(
ψ−1

(
Gi(yi + t)

)) .
Hence, what we actually should prove is that

(−1)dψ(d)

(∑d
i=1 ψ

−1
(
F i(yi + t)

))
ψ

(∑d
i=1 ψ

−1
(
F i(t)

)) ≤
(−1)dψ(d)

(∑d
i=1 ψ

−1
(
Gi(yi + t)

))
ψ

(∑d
i=1 ψ

−1
(
Gi(t)

))
Let, t1 =

∑d
i=1 ψ

−1
(
F i(t)

)
and t2 =

∑d
i=1 ψ

−1
(
Gi(t)

)
. Obviously, by Xi ≥st Yi, we have

t1 ≤ t2. Clearly, there exist s1 and s2 such that

d∑
i=1

ψ−1
(
F i(yi + t)

)
= t1 + s1,

and
d∑
i=1

ψ−1
(
Gi(yi + t)

)
= t2 + s2.

Therefore,

s1 − s2 =

(
d∑
i=1

ψ−1
(
F i(yi + t)

)
−

d∑
i=1

ψ−1
(
Gi(yi + t)

)
−

d∑
i=1

ψ−1
(
F i(t)

)
+

d∑
i=1

ψ−1
(
Gi(t)

))

=

d∑
i=1

(
ψ−1

(
F i(yi + t)

)
− ψ−1

(
Gi(yi + t)

)
− ψ−1

(
F i(t)

)
+ ψ−1

(
Gi(t)

))
≤ 0,

because Si(t) = ψ−1
(
F i(yi + t)

)
− ψ−1

(
Gi(yi + t)

)
is a decreasing function of t, for all

i = 1, . . . , d. By assumption, (−1)dψ(d)(t+ s) is an increasing function of t. Thus, clearly,
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(−1)dψ(d)(t+s)
ψ(t) is also increasing in t, for any s ∈ ℜ. Therefore, we have

(−1)dψ(d)

(
t1 + s1

)
ψ

(
t1

) ≤
(−1)dψ(d)

(
t2 + s1

)
ψ

(
t2

) ≤
(−1)dψ(d)

(
t2 + s2

)
ψ

(
t2

) ,

This completes the proof. �

The corollary below follows from Theorems 3.2 and 3.7.

Corollary 3.8. If Xi ≤st Yi for i = 1, . . . , d, if ψ is completely monotone and if

ψ−1(F̄i(t+yi))−ψ−1(Ḡi(t+yi)) is an increasing function of t for every i = 1, . . . , d, then

Xt ≤lo Yt for every t ≥ 0.

An example for the application of the previous corollary follows immediately from the

definition of lower orthant order. Consider two parallel systems, each one composed by

d components, and assume that lifetimes of the components depend on a common envi-

ronmental random parameter having Laplace transform ψ, so that the two corresponding

vectors of component’s lifetimes X and Y have joint survivals

F (x1, . . . , xd) = ψ

(
d∑
i=1

ψ−1(F i(xi))

)
and G(y1, . . . , yd) = ψ

(
d∑
i=1

ψ−1(Gi(yi))

)
,

respectively, where F i and Gi denote the marginal survival functions of the random vari-

ables Xi, i = 1, . . . , d and Yi, i = 1, . . . , d. Since Xt ≤lo Yt clearly implies

P [X1 − t ≤ s, . . . , Xd − t ≤ s|Xi > t, ∀i] ≥ P [Y1 − t ≤ s, . . . , Yd − t ≤ s|Xi > t, ∀i]

for all t, s ≥ 0, if the assumptions of Corollary 3.8 are satisfied, then

P [max(X1, . . . , Xd) ≤ t+ s|Xi > t, ∀i] ≥ P [max(Y1, . . . , Yd) ≤ t+ s|Yi > t, ∀i]

for all t, s ≥ 0, i.e., the residual lifetime of the first parallel system will remain smaller

in univariate stochastic order than those of the second parallel system whenever all the

components in the two systems are in the working state.

4. Some examples

The following example illustrates same cases where the assumptions of Theorems 3.1,

3.5 and 3.7 may be satisfied.

Example 4.1. Let us consider the example already considered in Remark 2.13 in Müller

and Scarsini (2005) with some modifications. Let Φ(x) =
∫ x
−∞

1
2πe

−t2/2dt be the standard

normal df and ψ : ℜ+ → ℜ be such that ψ(2)(x) = ce−g(x) with

g(x) :=

{
−2Φ(x)− 1, x > a;

αx+ β, x ≤ a,
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where c−1 =
∫∞
0 e−g(x)dx, a is a large constant, and α and β are such that g is contin-

uously differentiable in a, so that g : ℜ+ → ℜ is concave and log(−ψ(2)) is convex. Let

ψ2(x) = ψ(2)(x) and ψd =
∫∞
x ψd−1(t)dt∫∞
0 ψd−1(t)dt

. It is easy to verify that ψd is a d-alternating

function. Thus, we have

(−1)dψ
(d)
d (x)

ψd(x)
= (−1)d

−ψ(d−1)
d−1 (x)∫∞

0 ψd−1(t)dtψd(x)

= · · · = (−1)d
(−1)d−2ψ

(2)
2 (x)∫∞

0 ψd−1(t)dt · · ·
∫∞
0 ψ2(t)dtψd(x)

=
ce−g(x)∫∞

0 ψd−1(t)dt · · ·
∫∞
0 ψ2(t)dtψd(x)

=

{
A(x)e2Φ(x)+1, x > a;

A(x)e−α(x)−β, x ≤ a.

where ϕ = Φ′ and where A(x) = [
∫∞
0 ψd−1(t)dt · · ·

∫∞
0 ψ2(t)dtψd(x)]

−1 is increasing in x.

Observe that for negative α, the function e−α(x)−β and e2Φ(x)+1 are increasing. Therefore,

for sufficiently large a the ratio
(−1)dψ

(d)
d (x)

ψd(x)
is an increasing and (−1)dψ

(d)
d (x) is a log

convex function of x, which can be used in Theorems 3.1 and 3.7. Let g(x) = ψ−1(F̄i(x)).

Thus, if f ′(x) > 0, then

g′′(x) =
−f ′(x)ψ′(ψ−1(F̄i(x)))− f2(x)ψ

′′(ψ−1(F̄i(x)))
ψ′(ψ−1(F̄i(x)))

(ψ′(ψ−1(F̄i(x))))2

is positive. In this case, Xi’s can be distributed as truncated normal standard on (−∞, 0),

truncated Cauchy standard on (−∞, 0), truncated logistic standard on (−∞, 0) or trun-

cated standard double-exponential on (−∞, 0). Also, in this case, if we redefine ψ′(x) =

−ce−g(x), then we have (−1)(d−1)ψd−1 is log concave and the assumptions of Theorem 3.5

are satisfied. Now, let g(x) be as

g(x) :=

{
2Φ(x)− 1, x ≤ a;

αx+ β, x > a.

Then, this time (−1)(d−1)ψd−1 would be log convex. Thus the opposite assumptions in

Theorem 3.5 are satisfied.

The following example illustrates that the assumptions of Theorem 3.2 and Corollary

3.6 may be satisfied.

Example 4.2. Let us now restrict our attention to the case when Cψ is a Clayton survival

copula, i.e., X is a multivariate vector having joint survival function defined as in (2.5),

where ψ(s) = (1 + s)−θ for s > 0 and some positive constants θ (see Clayton, 1978).

Relevance of Clayton copulas has been pointed out, for example, in Javid (2009). Let

g(x) = ψ−1(F̄ (x)) = (F̄ (x))−1/θ − 1. Thus,

g′′(x) =
1

θ
(1 +

1

θ
)(F̄ (x))−

1
θ
−2f2(x) +

1

θ
(F̄ (x))−

1
θ
−1f ′(x)

=
1

θ
(F̄ (x))−

1
θ
−2((1 +

1

θ
)f2(x) + F̄ (x)f ′(x)) .
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Now, let hθ(x) = (1+ 1
θ )f

2(x)+ F̄ (x)f ′(x). Clearly, ψ−1(F̄ (x)) is concave if, and only if,

hθ(x) is negative. Assume that K(x) = log(F̄ (x)) so that,

K ′′(x) = −f
′(x)F̄ (x) + f2(x)

F̄ 2(x)
≥ − hθ(x)

F̄ 2(x)
.

Thus, if hθ(x) is negative, K
′′(x) is positive, which yields that F̄ (x) is log convex. There-

fore, if hθ(x) is negative the conditions of Theorem 3.2 and Corollary 3.6 are satisfied.

If we choose

F (x) =
ebx

−a
0 − ebx

−a

ebx
−a
0 − 1

, x ∈ (x0,∞), a, b, x0 > 0,

the required conditions hold, because in this case, hθ(x) equals

1

ebx
−a
0 − 1

(
(1 +

1

θ
)(abx−a−1ebx

−a
)2 − (ebx

−a − 1)
(
ab(a+ 1)x−a−2ebx

−a
+ (abx−a−1)2ebx

−a
))

=
1

ebx
−a
0 − 1

(abx−a−1ebx
−a
)2
(
1 +

1

θ
− (1− e−bx

−a
)(
a+ 1

ab
xa + 1)

)
.

Now, we can select a, b, θ and x0 such that hθ(x) < 0 for x > x0. For example, let

a = b = 1 and θ ≥ 2. Then we have

hθ(x) =
1

ex
−1
0 − 1

(x−2ex
−1
)2
(
1 +

1

θ
− (1− e−x

−1
)(2x+ 1)

)
≤ 1

ex
−1
0 − 1

(x−2ex
−1
)2
(
1.5 + e−x

−1
+ 2xe−x

−1 − 2x− 1
)
.

But, as we see in Figure 1, the last function is negative for x > x0 = 0.268558. Therefore,

hθ(x) is negative for x > x0.

Figure 1. Plot of the function hθ(x) = 0.5+e−x
−1

+2xe−x
−1−2x for x ∈ (0, 5).

This function is a decreasing function and converges to −0.5 as x→ ∞.
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