
26 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Empirical Assessment of the Impact of Automatic Static Analysis on Code Quality / Vetro', Antonio. - ELETTRONICO. -
(2010). (Intervento presentato al convegno 5th International Doctoral Symposium on Empirical Software Engineering
tenutosi a Bolzano (IT) nel September 15, 2010).

Original

Empirical Assessment of the Impact of Automatic Static Analysis on Code Quality

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2382207 since:

Empirical Assessment of the Impact of Automatic Static
Analysis on Code Quality

Antonio Vetro’
Politecnico dii Torino

Corso Duca degli Abruzzi, 24
10129 Torino - ITALY

0039 011 5647169

antonio.vetro@polito.it

ABSTRACT

Background: Automatic static analysis (ASA) is performed on
source code with different goals: improve important
characteristics of code (such as maintainability), check a
standard compliance or detect possible defects; therefore a
substantial impact of ASA on software quality is expected.
However, many problems related to their usage, especially the
high number of false positives and the absence of evidence on
their impact on code quality, could easily hinder the potential
benefits of such tools.

Aims: Assess the impact of ASA issues (detections of ASA
tools) on code quality by means of empirical analyses and
controlled experiments on different software contexts.

Method: Goal Question Metric approach is used. Two main
goals are defined: 1) Assess the precision of ASA issues
(percentage of them actually related to real bugs) from the view
point of a Java programmer; 2) Assess the impact of code
refactoring based on ASA issues on ISO 9126 quality
characteristics from the view point of a Java programmer.

Concerning the first goal, two strategies are defined in order to
understand which issues are related to real defects: the first one
is an experiment using source code and bug information coming
from open source and possibly industrial projects, whilst the
second strategy is a case study to be conducted during Object
Oriented Programming Courses at the author’s university. At the
end of the two experiments, those issues that were observed as
linked to real defects will be included in the input set of defects
prediction models: the accuracy of the models with/without
ASA issues will be measured.

The second goal will be achieved through a controlled
experiment in which the impact of the ASA issues will be
evaluated independently for each ASA issue on the different
ISO 9126 quality characteristics.

Results: Some preliminary results are already obtained from an
empirical analysis on university Java projects: we observed that
just a very limited set of issues have high precision and
therefore can be considered as good defect predictors;
conversely we identified those issues characterized by a such
low precision that they can be considered as bad defects
predictors in the context we studied.

Conclusions: Effective use of bug finding tools promise to
speed up the process of source code verification. However,
many problems related to their usage could hinder the potential
benefits of such tools. The PHD plan aims at the comprehension
of the impact of code refactoring from ASA issues on code

quality, viewed both as defectiveness and a set of different
characteristics. We expect to obtain, for each perspective of
software quality, a reduced set of ASA issues whose impact in
the quality characteristic is empirically proven. A practical
application of this study is the adoption of the triage/taxonomy
we want to develop by developers that try to find defects before
testing or improve certain characteristics of their code (e.g. :
maintainability, efficiency, etc.) . The PHD started on January
1st , 2010.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Code inspections and walk
through

General Terms
Measurement, Experimentation, Verification.

Keywords
Bug finding tools, defects prediction, software quality.

1. INTRODUCTION
Software quality is crucial in many fields and quality assurance
is a critical activity [1][2]. It is possible to adopt several
techniques to improve quality: testing, code inspections, formal
specification and verification. Although effectiveness and
importance of these activities and methodologies is historically
proved, there are important limitations, such as low easiness of
use of formal specifications, necessity of having the system (or
part of it) entirely built and working for testing, and low
scalability of code inspections.

Given that the longer the delay of a fault insert-remove is [2],
the higher the cost of removing that defect is and that testing
and code inspections need a working code base, for this
activities there is a consistent delay injection, that means costs
and gap in reliability. ASA tools promise to speed up the
verification process: they evaluate software in the abstract,
without running it or considering a specific input. Such tools
look for violations of recommended programming practice,
conventions or standards (e.g.: MISRA-C), bug and design
patterns, and they are able to automatically list all violations
(issues, that are supposedly defects of the program that ought to
be removed), statically analyzing source code or intermediate
code (at compile time). Find bugs tools compensate the
disadvantages of other techniques we listed above, because
they’re very easy to use (it is just a matter of running the main
and check the output), they are scalable (they can analyze
thousands of lines of code in few minutes), and they could be
used even in a non working code base. Despite the potential

benefits listed above, several limitations were observed in
literature and in the state of the practice. The most common
problems are: the high number of false positives the ASA tools
generate [12][15], the reduced subset of possible bugs that can
be automatically detected [11][12] (for instance, defects related
to requirements are not automatically detectable, unless
requirements could be expressed in a formal way), the dubious
efficiency of the default issues prioritization [7][17], the
questionable economical benefits brought by their usage [9][11].

As a consequence companies and universities still need large
empirical evidence of the efficiency of ASA tool.

The goal of the PHD is to contribute to the effort of the
scientific community towards the assessment of the benefits
deriving from usage of ASA tools and techniques. Our aim is to
evaluate the impact of such technique on software quality.

In the next sections the following terminology will be used :

- ASA : Automatic Static Analysis

- ASA issue : rule/bug pattern/smell detectable by ASA
tools

- detection : the single instance of the issues signalled
on the source code. The relation ASA issue –
detection is (1: N) .

2. RESEARCH GOALS, QUESTIONS,
ISSUES

The first step of the PhD plan is the collection of existing
empirical studies on static analysis and the recognition of the
state of the practice (tools and methodologies). Activities related
to this step are:

- Collect empirical studies in literature in the scope of
ASA .

- Identify tools for ASA, and tools supporting
refactoring.

- Identify university, open source or industrial projects
suitable for the study. Necessary conditions: available
source code and related process (defects) and product
(structural metrics) data

- Identify in literature models for prediction of fault
prone modules

- Identify in literature efficient inspection techniques

The next activities are the empirical experiments driven by the
following goal: assessing the relationship between issues and
software quality. We define software quality in two ways:

- software quality meant as software defectiveness
(defects density)

- software quality meant as the set of 6 different
characteristics, i.e. as described by the ISO-IEC
standard 9126 (see Figure 1).

These two definitions are not exhaustive, and we consider them
as approximations of software quality. For instance, the first
definition has several issues, because it doesn't take into account
the severity of bugs or their impact on usage scenarios (e.g. a

bug in code which is rarely executed may not affect system
quality as much as a bug in a very commonly used feature).

We summarize the GQM in Table 1 and Table 2, then the
detailed description of the GQM and of the experiments follow.
At the end we give a graphical representation of the PHD plan
objectives in Figure 2.

GOAL 1
Purpose Assess

Issue the precision of
Object (process) ASA issues

View point from the view point of a Java programmer

RQ1.1 Which ASA issues are related to real
defects ?

Metric M1.1 Issue precision (detections related to
defects/detections)

RQ1.2 Can ASA issues raise the accuracy of
models to predict fault prone modules?

Metric M1.2 Precision, recall and F-measure of fault
predictions

RQ1.3 Can ASA issues increase the generality of
such models, not restricting them to
specific context ?

Metric M1.3 Precision, recall and F-measure of fault
predictions

Table 1: Goal 1

Figure 1. ISO-IEC 9126 Quality Model

GOAL 2
Purpose Assess

Issue the impact of
Object (process) code refactoring based to ASA issues on

ISO 9126 quality characteristics
View point from the view point of a Java programmer

RQ2.1 What quality properties do ASA issues
impact ?

Metric M2.1 To be defined: for each experiment
different metrics will determine the impact
of the issue on the different quality
properties.

RQ2.2 Under what conditions ASA issues should
be eliminated through refactoring ?

Metric M2.2 To be defined: for each experiment
different metrics will determine the impact
of the issue on the different quality
properties.

Table 2: Goal 2

3. RESEARCH APPROACH
The empirical analysis will be performed on different kinds of
projects: small projects (mainly students projects, few hundreds
of NCSS), and medium-large size projects, both open source
and proprietary. For the first investigation, it is necessary that
projects have both source code and bug database available.

GOAL 1 : Assess the precision of ASA issues (percentage of
them actually related to real bugs) from the view point of a
Java programmer

RQ1.1. Which ASA issues are related to real defects ?

Metric M1.1: issue precision (detections related to
defects/detections)

We will perform two experiments to answer this research
question computing the precision for each issue.

Experiment 1.1

Given a project’s software repository (Java language will be
preferred) and a bug database:

- analyze past defects, trace them to a source module,
verify issues signalled on them. If yes the issue is
assumed to have a positive effect

- analyze past changes, verify if a change has provoked
the deletion of issue previously detected, if yes the
issue is assumed to have a positive effect

- analyze code, find issues signalled, verify by manual
inspection if defects are associated to these parts of
code, if no the issue is assumed to have no effect

If the software project is small or no bug database is available,
we will inspect manually the code or a portion of it (following
the most efficient inspections found in the state of the art) and
we will identify manually defects. Then we will run on the code
one or more ASA tools, tracing:

- manual inspection time and inspection time of ASA
issues (useful to evaluate the possible advantage in

term of time spent in performing automatic inspection
instead of manual inspection)

- defects identified by both manual inspection and ASA
tool

- detections of ASA issues that are actually defects and
are not identified by manual inspection

- detections of ASA issues that are not related to defects

The precision of issues will be available for each issue in both
cases, at the end of the experiment: such ratio will be
transformed in response 1/0 (issue is related to real defect:
yes/no) using a threshold (e.g: if precision>50%, then output =1
else output=0) and different thresholds will be used to evaluate
their effect on results through a sensitivity analysis. For each
threshold t, issue i and precision p

i
, the following null

hypothesis will be tested :

H0 : p
i
 < t .

When hypothesis is rejected the issue is considered to be related
to real defects .

Experiment 1.2

Softeng Research Group teaches 2 Object Oriented (OOP)
Courses, in which Java language and Object Oriented
Programming principles are explained, and where students
develop small Java programs for the exam. The exam procedure
is the following one:

1. Teachers define the project and provide the students
with a textual description and a set of wrapper classes.

2. Students develop a first version of the program in the
laboratory (the “lab” version) and submit it to a
central server by means of an Eclipse Plugin.

3. A tool on the server, PoliGrader, manages the delivery
process and runs a suite of black box acceptance tests
(JUnit classes). Acceptance tests are written by
teachers of the course in such a way all functionalities
are checked; teachers develop also a correct “solution
program”, and they check tests coverage on it.

4. Results of test execution and their source code are sent
back to the students.

5. Students improve the lab version at home, creating a
new version of the program, called “home” version,
that must pass all acceptance tests. This new version is
submitted back to the server.

6. The PoliGrader tool checks that home versions pass
all tests and compute marks taking in considerations
the numbers of tests passed in the lab version and the
diff between lab and home version, quantifying the
changes made to the lab version in order to pass all
tests.

7. All information (marks, source code, tests, changes) is
available to teachers in order to finally evaluate the
students.

As a consequence of this process, for each student two versions
of the same project are available: the lab version, that probably
contains defects (revealed by tests failures), and the home
version, that passes all tests and it's functionally correct.

We want to perform 2 experiments on the top of two
consecutive sessions of OOP courses, each one including 2
parallel courses. In both sessions, only students of one course
will be introduced to the ASA tool FindBugs [33], teaching
them how to use it during classes and laboratories (students
cannot change course inside the same session). The students will
be required to minimize the number of FindBugs issues
signalled in the Java projects. FindBugs is choosed because
widely used in literature and since we already conducted
research experiments with it [29] . In the first experiment, all
FindBugs issues (more than 350 in current version 1.3.9) will be
activated, while in the second experiment we will activate only
those issues whose precision was empirically proved in previous
empirical studies from the state of the art and in our works. To
sum up, there are 2 exam sessions (the second one occurs after
the first one), each of one having 2 courses :

• Session 1

◦ Course A1 : no FindBugs

◦ Course B1 : FindBugs – all issues activated

• Session 2

◦ Course A2 : no FindBugs

◦ Course B2 : FindBugs – only most precise issues
activated

Students of session 1 will be different from students of session
2, and the same for projects: however, the difficulty level of the
assignment and number and type of functionalities will be the
same to make the two sessions comparable. Instead courses
belonging to the same session will have the same projects
requirements.

The following metrics will be collected from projects developed
at the exam :

− FindBugs issues in both versions (lab, home)

− Test failures in lab versions

− FindBugs issues related to portion of code that is
activated by tests failures

− Changes between lab and home versions

− Changes done expressly to delete FindBugs issues
(students will be asked to provide this information)

Since we expect a large number of projects and issues, the
relationship between defects (test failures) and issues will be
investigated following the same procedure described in
experiment 1, and a manual validation of a representative
sample will be also performed.

Statistical analysis of data collected will permit to test the
following null hypotheses:

− HA0 : External quality of projects of session 1 is
different from external quality of projects of session 2

− HB0 : External quality of projects A1 is higher than
external quality of projects B1

− HC0 : External quality of projects A2 is higher than
external quality of projects B2

− HD0 : External quality of projects B1 is higher than
external quality of projects B2

The external quality is measured as the percentage of tests
failed: the lower is the percentage of failed tests, the higher is
the external quality of a project.

The aim of HA0 is to test whether the Java programming
capabilities of students of the two sessions are comparable
(given that the 2 projects have the same difficulty level and the
same number and type of functionalities to implement).

Possibly rejecting HB0 and HC0 will be instead the statistical
proof that FindBugs issues are precise predictors of defects,
therefore developing/refactoring a small project driven by
FindBugs issues likely leads to a higher external quality of the
code.

Additionally, rejecting fourth null hypothesis (HD0) will be a
statistical proof that triage of issues is necessary to make usage
of FindBugs more efficient.

Finally, further analysis of data let we investigate side aspects
related to the main goal:

− number and type of FindBugs issues in home versions:
these issues will be considered to be not related to
functionality since home versions are functionally
correct;

− correlation among FindBugs issues

− differences between code changes not related to
FindBugs issues and changes made purposely to delete
FindBugs issues.

D1.1. Deliverable

Activities related to the two experiments will produce a reduced
set of ASA issues, actually linked to defects in the software
projects we studied. We expect that a small portion of all issues
are actually linked to defects.

RQ1.2. Can ASA issues raise the accuracy of models to predict
fault prone modules?

RQ1.3. Can ASA issues increase the generality of such models,
not restricting them to specific context ?

Metric M1.2: precision, recall and F-measure of fault
predictions

Models to predict fault prone modules will be built to answer
RQ1.2 and RQ1.3 ; the possibility to import existing defects
prediction models from literature will be evaluated after state of
the art activities. The dependent variable of model(s) is the
likelihood the module is defect-prone: such probability will be
transformed in response 1/0 (module defect prone: yes/no)
using a threshold (e.g: if probability>50%, then output =1 else
output=0). Different thresholds will be used and a sensitivity
analysis will evaluate their effect on results.

Each model will be ran with two different sets of the inputs: the
first one will be composed exclusively by traditional
independent variables (source code metrics, past defects, etc.),
whilst the second set of inputs will be obtained adding the
information about ASA issues signalled on source code
(number, type, etc...) to the previous variables, and considering
only the reduced set of ASA issues identified in RQ1.1. Then
the comparison between the accuracy of the two versions will
indicate whether the ASA issues could improve the prediction

power of such models or not. Summarizing, the procedure will
be the following one:

− Define in detail what is meant by module in the
project (function, file, class, other)

− Identify most fault prone modules by analyzing
past defects

− Verify if, over time, the subset of fault prone
modules remains the same or changes

− Build model(s). Input variables per each module:
source code metrics, effort, other relevant
information if available. Output variable: module
is / is not fault prone.

− Verify models on past data: evaluate accuracy in
predicting fault prone modules.

− Choose best model

− Enhance model integrating most precise ASA
issues found in RQ1.1

− Verify model on past data evaluating its accuracy

− Compare precision of models with and without
ASA issues

− Verify whether accuracy of both models types
holds in different contexts (application type, open
source/off the shelf, size,...)

D2 - Deliverable:

− Empirical assessment of the impact of ASA
issues on the prediction power of defects
prediction models

− A prediction model for faulty modules, using as
input source code metrics, defects, effort, and in
case ASA issues

GOAL 2 : Assess the impact of code refactoring based to
ASA issues on ISO 9126 quality characteristics from the
view point of a Java programmer.

RQ2.1. What quality properties do ASA issues impact ?

RQ2.2 Under what conditions they should be eliminated
through refactoring ?

Metrics to be defined: for each experiment different metrics will
determine the impact of the issue on the different quality
properties.

The goal is to evaluate the impact of ASA issues on quality
characteristics referring to ISO-IEC 9126 model. No author has,
until now and up to our knowledge, proposed a comprehensive
taxonomy of ASA issue – code quality property impacted based
on empirical experimentation.

We identify three steps in the empirical experimentation. Given
a set of ASA issues I and the set of quality characteristics C, the
procedure is the following one:

1. for each i∈ I and each c∈C do

− determine manually by expert judgement whether
issue i could impact characteristic c. In this
context any of the following is considered as
expert: a professor, a research assistant or a PHD

student, that teaches in a University course the
programming language used in the experiment; a
programmer from industry that programs
frequently with the programming language used
in the experiment (e.g: Java programming for at
least 3 days a week in the last 3 years). In the
case multiple experts disagree, the impact is
considered as not present. An impact matrix IM
will store experts judgements, while a second
matrix (validation matrix VM) will trace
empirical validations of the judgements. Matrices
are initialized in the following way:

− for each i∈ I and each c∈C do

− if issue i is thought by experts to have
impact on characteristic c then IM

ic
 =1

else IM
ic

 =0

− for each i∈ I and each c∈C , do

− if IM
ic

=0 then VM
ic

 = 0 else VM
ic

 = -1 ;

2. Experimentation:

for each i∈ I and each c∈C where VM
ic

= -1

do

− plan one or more experiments where the impact
on c of having/not having issue i can be
measured. We provide the reader with an
example of experiment; let's consider the
FindBugs issue Inefficient_Integer_Constructor
(IBC) that is signalled when the new
Integer() constructor is used instead of
Integer.valueOf(). It is expected that
issue IBC impacts characteristic Efficiency. A
possible experiment to verify the impact is :

− write a piece of code where issue IBC is
signalled;

− refactor the previous piece of code obtaining
a second version, functionally identical, but
where the issue IBC is no longer signalled;

− prepare the environment in which to run
both versions of the code: the environment
should be as much isolated as possible (e.g:
disable network, disable routine tasks, no
other programs running...), in order to
minimize the possibility that executions of
the code are interrupted/delayed by other
programs/routines;

− run a very high number of times (to
eliminate random effects - e.g.: 1000000)
the two codes (independently and
sequentially), measuring their total
execution time;

− compare the two measurements by statistical
analysis: if code without IBC performs
better, its impact on Efficiency is
demonstrated and confirmed.

− if impact of i on c is empirically demonstrated,
then VM

ic
 =1 else VM

ic
 =0.

Having validated the taxonomy, it is possible to define a set of
heuristics to improve a specific property of source code, using
the most effective related refactoring.

D3 - Deliverable:

- A validated taxonomy of the relationship ASA issue –
quality property

- A prioritization of ASA issues and a set of heuristics
for refactoring code, in function of the software
quality property impacted

Figure 2. PHD Plan Overview

4. INITIAL RESULTS
In our previous work [29] we faced Research Question 1.1 for
the issues of the ASA tool FindBugs v1.3.8, signalled on 85
Java assignments from the 2009 OOP course. We considered
issues grouped according to two dimensions: category (Bad
Practice, Correctness, Style, Performance, and Malicious Code
are the categories with at least one issue signalled in our code
base) and priority (Low, Medium, High). For each issue group
(combination of category and priority) we computed its
precision. The number of detections related to defects was
determined through the Spatial + Temporal technique,
previously presented in literature in [5]. The technique is the
following one: we have temporal coincidence when one or more
issues disappear in the evolution from the lab to the home
version, and in the same time one or more defects are fixed:
probably those issues were related to the fixed defects. In this
context, as explained in Goal 1 - Experiment 2, defects fixed are
revealed when a test that in lab version fails instead in home
version succeeds. The possibility that a disappearing issue was
not related to the disappearing defect is the noise of this metric,
that is filtered out by adding spatial coincidence: we observe
spatial coincidence when an issue's location corresponds to lines
in the source code that have been modified in the evolution from
the lab to the home versions. In practice, the combination of
temporal and spatial coincidence is interpreted as a change
intended to remove the issue, that is linked to the defect.

Defining precision p of the issue group g as p
g
, we decided that

an issue was related to real defects if the null hypothesis that p
g

< 30% was rejected. Such a low threshold was justified by the
exploratory nature of the work and it compensated for the large
precision variability in each group. The analysis of precision
measures obtained demonstrated that only 2 out of 15 groups of
issues could be considered as related to actual defects in our
code base. Moreover, one group of issues had a precision that
was practically negligible.

In a subsequent and more detailed experiment, still not
published, we repeated the study enlarging the code base (we
analyzed 301 Java Projects) and computing precisions at single
issues level (instead of groups). We observed again that few
issues were related to real defects. The precision threshold used
in this study was stricter (50%), but the sensitivity analysis
demonstrated that results held for precision > 21% (that is a very
low threshold). As a consequence we can consider results stable.

The findings of this second study are :

- The 20% of issues made the 80% of total detections,
and just 5 issues represented about half of total
detections.

- 80% of detections were related to 5 categories of
problems: objects and references, violation of naming
conventions, no effect of fields, variables or methods .

- Distribution of issues among Java classes was
inhomogeneous: detections were concentrated in a few
classes.

- The analysis of issues precisions demonstrated that
only 4 issues could be considered as reliable
predictors of real defects in the context the research
was conducted .

- The same analysis let us identify 16 issues whose
precision was practically negligible: they were
responsible of about the 45% of issues detections.

We will try to extend prior work repeating the study both in
industrial and open source systems, and facing also research
question 1.2.

5. THREATS TO VALIDITY
Here we identify external and internal threats for each planned
experiment .

Goal 1- Experiment 1.1 In the case the fault database is
available, the major construct thread is the fact that the relation
between issues and defects is determined with statistical
techniques, checking whether issues are signaled in lines that
changed due to a faults located on them. In order to control it,
the manual inspection of links faults-issues should include a
significant number of samples, and one or more reviewer should
validate it. On the contrary, if the fault database is not available,
manually find a significant number of defects by means of
manual inspection could be a long and error prone task (internal
threat): having one or more reviewers will permit to control the
threat also in this case.

Goal 1 – Experiment 1.2. An important external threat is: we
study small student projects, hence the application of findings in
industrial context is debatable. However, this weakness is
balanced by the fact that this experiment, differently to many
others in the literature, eliminates the effect of developer style

on the results, because a large pool of developers is used for the
same projects. A further threat is a construct one: it is
concerning the identification of defects. In this second
experiment, no bug database is available: we make the
assumption that all changes between lab and home version are
done in order to fix a defect; actually, it could be possible that
some changes are not related to real defects, but to other
motivations (cleaner code, more readable code, and so on).
Nevertheless, we don't expect that this kind of noise could
change results and ranking, because usually students correct the
lab versions in a quick and dirty way, doing as few changes as
possible, for two reasons:

- the home version is the last version of the project,
actually no maintenance has to be done subsequently;

- students are discouraged in doing many changes,
because the mark suggested by PoliGrader decreases
with the quantity of changes made (see details in
[34]).

Goal 2 – Experiments 2.x. We observe two important internal
threats related to the experiments that should verify the impact
of an issue on a code quality characteristic. The first one is the
difficulty to minimize the noise introduced by different
confounding factors in the experiments results (e.g.: measure
the performance of two different pieces of code inside an
operating system could be highly affected by the presence of
other running processes). The second threat is: for
characteristics such as maintainability and usability, it could be
hard to find non-subjective metrics: for instance, if the
maintainability is measured computing 2 maintenance tasks
performed by 2 different teams, the programmers capability
could be a deviant factor. This threat could be controlled
repeating the experiment with different teams. We plan to
control these threats increasing the number of samples and
executing the experiments in different machines / operating
systems.

6. RELATED WORK
In this section we want to report the work already done in
literature in the scope of the PHD plan. The present section is a
partial result of the step 1 of the PHD plan, that is the
recognition of state of the art, that will continue in the following
months. The related work we report here mainly refers to Goal 1
– RQ1.1 .

The first research we cite is the one of Boogerd and Moonen [5]:
they tried to empirically assess the relation between violations
of coding standard rules and actual faults. They analyzed the
relationship between defects in an industrial software project
and MISRA-C 2004 rules violations, using history of project
(code versions) and problem report database. They introduced
the concepts of temporal and spatial coincidence: if a fault
disappears from one version to another one, and a violation too,
probably that violation was related to the fault that disappeared;
this is temporal coincidence. However, temporal coincidence is
affected by noise: some violations can disappear as a
consequence of a change in a portion of code not directly related
to it or to another defect. Authors decided to assess the impact
of this noise by means of spatial coincidence: using information
from Software Configuration Management System and from
problems reports database, they were able to individualize only
the lines changed related to a fault that disappeared from two
consecutive versions, and to count as effective only that
violations that were in those lines of code. These violations were

considered as true positive. The experiment of Boogerd and
Moonen showed that a reduced set of rules (12 over 72)
performed significantly better (true positive rate between 23%
and 100 %), while about one third of the rules (25 over 72) had
zero positive rate: so, taken together with Adams' law [13] , it
means that it is better to don't apply the smell. They repeated the
experiment with another system [28], however, the set of
efficient rules found in [5] have a few intersections with the one
found in [28].

Boogerd and Moonen tried to assess the value of ASA issues for
fault detection by means of statistical inference, guessing that a
violation in a defect fixing changed line is really related to that
issue. On the contrary, Pugh et al. [6] tried to understand the
efficiency of the static analysis tool FindBugs by manually
checking the issues signalled on projects: experiments showed
higher true positive ratios. The authors classified issues in 4
categories, based on their impact on code. They got that, in JDK
1.6.0-b105, almost 50% of medium/high priority issues of
category correctness had impact, and 10% had a serious impact.
160/379 were trivial, while 5 issues were due to bad analysis of
FindBugs. A similar experiment with the same category of
issues was performed at Google, with similar high percentages
of true positive issues, while a further experiment conducted on
Glassifish v2 showed that 50 defects over 58 disappeared due to
small edits designed to specifically address the issue raised by
FindBugs.

High percentage of true positive found by FindBugs were also
found by Cole et al. [7], asserting that the rate of false warnings
reported by FindBugs is generally lower than 50% but they
didn't prove it. Almossawi, Lim and Sinha [8] provided a third
party evaluation of Coverity Prevent and reported an overall
evaluation that 13% of the warnings seemed be infeasible and
64% seemed very likely to result in faults.

Wagner et al. [9] evaluated FindBugs and PMD on two software
projects. They found out that very few of defects (post-release
and actually correlated to documented failures in deployed
software) were identified by these tools. On a total of 91 defect
removals, comparing two successive versions of software, they
found only 4 that corresponded to remedying a problem that
caused a failure in the deployed software.

Robert OCallahan told in his blog1 about his experience with
Klocwork and Coverity, and noted that many of the defects
found did not seem to be significant. Konstantin Boundnik also
blogged2 about his experience with Klocwork and Coverity,
asserting that false positive rates were respectively 10 and 15%.
In order to contrast the false positive ratio, Hovemeyer et al.
[10] introduced the use of Java annotations by the programmer
in order to explicitly inform FindBugs about which values must
not be null and which on the contrary may be null. They
performed experiments on both production software and
students projects, obtaining false positive rates of 20% on
production software and identifying 50% to 80% of issues
dealing with null pointer exceptions at run time in students
projects.

Zheng and al. [11] tried to go deeper in the topic of ASA tools
efficiency, answering to the question: for which kind of defects
are ASA tools effective? They performed a study on static
analysis faults, tests and customer-reported failures for three

1See http://weblogs.mozillazine.orgrocarchives200609static
analysis and scary head.html
2 See http://weblogs.java.netblogcos archive200610static

analyzer.html

large-scale industrial software systems developed at Nortel
Networks. They found that automated static analysis is effective
at identifying low level bugs like assignment and checking
faults, and that they're complimentary to the other fault
detection techniques. They also asserted that automatic static
analysis defect removal yield is similar to the one of inspections
and that the faults signalled by automatic static analysis tools
are good fault predictors; however, the hypothesis that quality
with automatic static analysis is higher than without was
rejected. Another study attempted to understand the added value
of ASA tools with respect to the traditional fault detection
techniques: Wagner et al. [12] compared bug finding tools with
reviews and tests. They found that bugs signalled by smell tools
are a subset of those found by reviews, and different from
dynamic testing. The authors analyzed 5 projects and 5
categories of defects (with respect of their effect on system
behaviour). They manually determined the ratio of false positive
issues, and results were : 47% for FindBugs, 31% for PMD,
96% for QJPro. This result suggest another consideration: are
bug finding tools able to predict the same defects ? So, are they
equivalent ?

A study conducted by Rutar et al. [13] classified issues of 5
different ASA tools (JLint, Bandera, ESC/Java, FindBugs,
PMD), and ran them on different projects. They were able to
cross-check their issue reports and warnings, and they
discovered that tools generally find non-overlapping issues.
Finally, they proposed a meta tool for combining the results of
different smell tools, in order to cover all the bugs categories.

A similar conclusion was found by Wagner et al. [14] : authors
compared FindBugs and PMD, running them on 2 industrial
projects. They demonstrated that the 2 tools have a small
intersection of issues, and they suggested to use them in
combination. They also studied the economical efficiency of the
usage of ASA tools: estimating direct and indirect costs, they
asserted that, in order to be cost efficient, the tools must
individualize 3-4 potential field-defects. Economical
considerations were also done by Zheng et al. [11]: the cost of
automatic static analysis per detected fault is of the same order
of magnitude as the cost of inspections per fault detected.
Coming back to Wagner's research, he also studied the technical
efficiency of the tools : even if the number of issues could be a
good predictor for faulty modules (again, as in [11]), the true
positive ratio of smell tools issues in his experiment is very low.
Analysing a sample of 72 real bugs from the bug repository of
the projects, Wagner et al. found out that in the first project
none of the bugs was revealed by the static analysis tools, while
in the other one just 16% of them was found. They motivated
this results saying that the majority of issues had its roots in the
semantic. The same last finding is present in Zhenmin Li et al.
[15]. The authors tried to identify which bugs categories are
present in Mozzilla and Apache software, automatically
analyzing Bugzilla repositories by means of natural language
text classification. Results of their study showed that the
majority of bugs were semantic, thus they could be revealed
only by dynamic testing. Yet another finding concerned the
presence of a lot of simple memory related bugs such as NULL
pointer references (12.2 - 16%), that should have been detected
by static analysis tools : this indicates that the tools have not
been used with their full capacity.

This last issue (how ASA tools are used) was investigated by
Ayewah et al. [16], too. The authors experienced in Google that
the more the usage of the tool appears within the code
production work flow, the higher the efficiency of the tool is:

when they were able to incorporate FindBugs in the review
process, more than 200 users suppressed thousand of warnings
signalled by FindBugs in 6 months. However, they observed
that the situation out of Google is quite different. Authors tried
to understand how FindBugs is used by means of a survey with
tool's users: they discovered that the 81% of users have no exact
policies in their companies on how to run FindBugs, and in the
76% of the cases, running FindBugs was not required by the
process. However, the majority of users reviews at least high
priority issues (thus it seems that these are the most e
effective issues), but generally they don't have policies for
handling issues designated as not real bugs, or low priority
warnings.

Management of issues priorities is also discussed by Kim and
Ernst [17]. They combined, in their experiments on 3 open
source projects and 3 bug finding tools, source code changes
and bugs information from bug repository, individualizing
which lines contain fix changes (if the changed line contains a
bug disappeared from a version to the following one, the change
is a fix change), checking the ratio of ASA issues in those lines.
The experiment showed that very low percentages of warnings
were removed by a fix change, and yet lower percentages
considering only high priority warnings (6%, 9% and 9%). So
they proposed an algorithm based on the history of removed
warnings in order to modify priority of issues, and repeating the
experiment with the new obtained priorities, they were able to
have higher percentages of high priority issues removed by fix
changes (up to 17%, 25% and 67%).

Even if the first static analysis tool appeared more then 30 years
ago (Lint, by Stephen Johnson of Bell Labs [18]) the research
field is wide and literature doesn't fit all open issues and
contexts. For instance, studies on ASA tools in university
context is one of them, and this is the field in which I and my
supervisor conducted the first experiments. We found two
examples of researches conducted in University in a similar
scope. Hristova et al. [19] noticed that students of Java
introductory courses usually do common errors: they created a
small taxonomy of them and they built an educational tool able
to capture these common errors, providing additional
information to the error messages of the Java compiler. Starting
from the same consideration, Truong et al. [20] built a whole
framework to check common students' errors and help them in
writing better code. The underlying idea that we liked is that
such common errors can be automatically detected, but in our
opinion there's no need to build new tools or frameworks:
several ASA tools already exist, they can be customized and
used in an educational context. The achievement of the goals of
this PHD plan will give the possibility to better customize the
tools and to activate only issues with higher precision. A further
study in the university environment was done by Jaime Spacco,
Jaymie Strecker, David Hovemeyer, and William Pugh in the
context of the Marmoset Project [24] [25] [26] [27]. Marmoset
is a platform that allows students to submit versions of their
Java projects to a central server, which automatically tests them
and records the results. It also collects code snapshots of the
projects: each time a student saves the work, it is automatically
committed to a CVS repository. They declared correlations
between warnings signalled by FindBugs and tests outcomes,
and between three types of FindBugs issues (ClassCast,
StackOverow, Null Pointer) and Java Exceptions, but they
didn't do any deep statistical analysis. Precision and recall can
be obtained by their tables: precisions are, with respect to issue
type, 23%, 71%, 45% , and recall values are 28%, 44%, 18%.

Furthermore, we would like to cite some study that investigated
the correlation between smells and code quality. Code smell is
any symptom in the source code of a program that possibly
indicates a deeper problem: something that is not working
properly or a problem that could be resolved in others way,
simplifying the code, making it faster or decreasing the resource
usage. From the point of view of a programmer charged with
performing refactoring, code smells are heuristics to indicate
when to refactor, and what specific refactoring techniques to
use. Thus, a code smell is a driver for refactoring [3], and
refactoring improves code maintainability and flexibility. The
debate about automatic detection of code smell is still open in
literature, and it will be investigated. We found a work by Li
and Shatnavi [21] in which they investigated the relationship
between the class error probability and bad smells based on
three versions of the Eclipse project. Their result showed that
classes which are infected with the code smells Shotgun
Surgery, God Class or God Methods have a higher class error
probability than not infected classes.

Deligiannis et al. investigated the impact of God Classes, based
on Riels Definition [22] on the maintainability of object oriented
design [23]. They built two functional identical software
systems, one containing the god class smell (Design B) and the
other one without (Design A). An identical maintenance task
was assigned to two student groups (Group A and Group B),
whereas one group had to perform the task on Design A and the
other on Design B. After the study, a questionnaire was
performed, and analysis of answers questionnaire showed that
the students of group A had fewer problems with the
understandability of the design as well as the modification of the
design. Furthermore, a quality analysis was performed on both
the delivered solutions, showing differences towards the 2
solutions.

Finally, in several empirical studies (we cite [30], [31] and
[32]), static analysis issues are used in conjunction with code
and history metrics as factors in defects prediction models: since
while we're writing the PHD in step 1, we still have to explore
this area of the field.

7. AKNOWLEDGEMENTS
I would like to thank my supervisors Maurizio Morisio and
Marco Torchiano for their precious advices, and the reviewers
of IDOESE 2010 for their observations that let me improve my
PHD plan.

8. BIBLIOGRAPHY
[1] B. W. Boehm. Software process management: lessons
learned from history. In ICSE '87: Proceedings of the 9th
international conference on Software Engineering, pages
296{298, Los Alamitos, CA, USA, 1987. IEEE Computer
Society Press.

[2] Barry Boehm and Victor R. Basili. Software defect reduction
top 10 list. Computer, 34(1):135-137, 2001.

[3] M. Fowler, K. Beck, J. Brant, and D. Roberts. Refactoring:
improving the design of existing code.

[4] Edward N. Adams. Optimizing preventive service of
software products. IBM Journal of Research and Development,
28(1):214, 1984.

[5] C. Boogerd and L. Moonen. Assessing the value of coding
standards:An empirical study. Software Maintenance, 2008.
ICSM 2008. IEEE International Conference on, pages 277-286,
28 2008-Oct. 4 2008.

[6] Nathaniel Ayewah, William Pugh, J. David Morgenthaler,
John Penix,and YuQian Zhou. Evaluating static analysis defect
warnings on production software. In PASTE '07: Proceedings of
the 7th ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering, pages 18, New
York, NY, USA, 2007. ACM.

[7] Brian Cole, Daniel Hakim, David Hovemeyer, Reuven
Lazarus, William Pugh, and Kristin Stephens. Improving your
software using static analysis to find bugs. In OOPSLA '06:
Companion to the 21st ACM SIGPLAN symposium on Object-
oriented programming systems, languages, and applications,
pages 673-674, New York, NY, USA, 2006. ACM.

[8] Ali Almossawi, Kelvin Lim, and Tanmay Sinha. Analysis
Tool Evaluation: Coverity Prevent. Technical report, Carnegie
Mellon University,May 2006.

[9] Stefan Wagner, Florian Deissenboeck, Michael Aichner,
Johann Wimmer, and Markus Schwalb. An evaluation of two
bug pattern tools for java. In ICST ’08: Proceedings of the 2008
International Conference on Software Testing, Verification, and
Validation, pages 248–257, Washington, DC, USA, 2008. IEEE
Computer Society.

[10] David Hovemeyer, Jaime Spacco, and Bill Pugh.
Evaluating and tuning a static analysis to find null pointer bugs.
Lisbon, Portugal, September 5-6, 2005. ACM.

[11] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P.
Hudepohl, and M. A. Vouk. On the value of static analysis for
fault detection insoftware. Software Engineering, IEEE
Transactions on, 32(4):240-253,2006.

[12] Stefan Wagner, Jan Jrjens, Claudia Koller, Peter
Trischberger, and Technische Universitt Mnchen. Comparing
bug finding tools with reviews and tests. 2008.

[13] Nick Rutar, Christian B. Almazan, and Jerey S. Foster. A
comparison of bug finding tools for java. In ISSRE '04:
Proceedings of the 15th International Symposium on Software
Reliability Engineering (ISSRE'04), pages 245-256,
Washington, DC, USA, 2004. IEEE ComputerSociety.

[14] S. Wagner, F. Deissenboeck, M. Aichner, J. Wimmer, and
M. Schwalb. An evaluation of two bug pattern tools for java. In
Software Testing, Verification, and Validation, 2008 1st
International Conference on, pages 248-257, 2008.

[15] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan
Zhou, and Chengxiang Zhai. Have things changed now? An
empirical study of bug characteristics in modern open source
software. In ASID '06: Proceedings of the 1st workshop on
Architectural and system support for improving software
dependability, October 2006.

[16] Nathaniel Ayewah, David Hovemeyer, J. David
Morgenthaler, JohnPenix, and William Pugh. Using static
analysis to find bugs. IEEE Software, 25(5):22-29, 2008.

[17] Sunghun Kim and Michael D. Ernst. Which warnings
should I fix first ? In ESEC-FSE '07: Proceedings of the the 6th
joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of
software engineering, pages 45-54, NewYork, NY, USA, 2007.
ACM.

[18] S. C. Johnson. Lint, a c program checker. In COMP. SCI.
TECH.REP, pages 78-1273, 1978.

[19] Maria Hristova, Ananya Misra, Megan Rutter, and Rebecca
Mercuri. Identifying and correcting java programming errors for
introductory computer science students. In SIGCSE '03:
Proceedings of the 34th SIGCSE technical symposium on
Computer science education, pages 156, New York, NY, USA,
2003. ACM.

[20] Nghi Truong, Paul Roe, and Peter Bancroft. Static analysis
of students' java programs. In ACE '04: Proceedings of the sixth
conference on Australasian computing education, pages 317-
325, Darlinghurst, Australia, Australia, 2004. Australian
Computer Society, Inc.

[21] Wei Li and Raed Shatnawi. An empirical study of the bad
smells and class error probability in the post-release object-
oriented system evolution. J. Syst. Softw., 80(7):1120-1128,
2007.

[22] Arthur J. Riel. Object-Oriented Design Heuristics.
Addison-WesleyLongman Publishing Co., Inc., Boston, MA,
USA, 1996.

[23] Ignatios Deligiannis, Martin Shepperd, Manos Roumeliotis,
and Ioannis Stamelos. An empirical investigation of an object-
oriented design heuristic for maintainability. J. Syst. Softw.,
65(2):127-139, 2003.

[24] Jaime Spacco, David Hovemeyer, and William Pugh. An
eclipse-based course project snapshot and submission system. In
3rd Eclipse Technology Exchange Workshop (eTX),
Vancouver, BC, October 24, 2004.

[25] Jaime Spacco, Jaymie Strecker, David Hovemeyer, and
William Pugh. Software repository mining with Marmoset: An
automated programming project snapshot and testing system. In
Proceedings of the Mining Software Repositories Workshop
(MSR 2005), St. Louis, Missouri, USA, May 2005.

[26] Jaime Spacco, David Hovemeyer, William Pugh, Je
 Hollingsworth,Nelson Padua-Perez, and Fawzi Emad.
Experiences with marmoset: Designing and using an advanced
submission and testing system for programming courses. In
ITiCSE '06: Proceedings of the 11th annual conference on
Innovation and technology in computer science education. ACM
Press, 2006.

[27] Jaime Spacco, David Hovemeyer, Bill Pugh, J
Hollingsworth, Nelson Padua-Perez, and Fawzi Emad.
Experiences with marmoset. Technical report, 2006.

[28] Cathal Boogerd and Leon Moonen. Evaluating the relation
between coding standard violations and faults within and across
software versions. In MSR ’09: Proceedings of the 2009 6th
IEEE International Working Conference on Mining Software
Repositories, pages 41–50, Washington, DC, USA, 2009. IEEE
Computer Society.

[29] A. Vetro’, M. Torchiano, and M. Morisio. Assessing the
precision of findbugs by mining java projects developed at a
university. In IEEE CS Press, editor, Proceedings of MSR 2010,
pages 110–113, 2010.

[30] Sarah Heckman and Laurie Williams. A model building
process for identifying actionable static analysis alerts. In ICST
’09: Proceedings of the 2009 International Conference on
Software Testing Verification and Validation, pages 161–170,
Washington, DC, USA, 2009. IEEE Computer Society.

[31] Chadd C. Williams and Jeffrey K. Hollingsworth.
Automatic mining of source code repositories to improve bug
finding techniques. IEEE Trans. Softw. Eng., 31(6):466–480,
2005.

[32] Joseph R. Ruthruff, John Penix, J.David Morgenthaler,
Sebastian Elbaum, and Gregg Rothermel. Predicting accurate
and actionable static analysis warnings: an experimental
approach. In ICSE ’08: Proceedings of the 30th international
conference on Software engineering, pages 341–350, New
York, NY, USA, 2008. ACM.

[33] HOVEMEYER, D., AND PUGH, W. Finding bugs is easy. In
OOPSLA ’04: Companion to the 19th annual ACM SIGPLAN
conference on Object-oriented programming systems,
languages, and applications (New York, NY, USA, 2004),
ACM, pp.132–136.

[34] M.Torchiano and M.Morisio. A fully automatic approach
to the assessment of programming assignments.
INTERNATIONAL JOURNAL OF ENGINEERING
EDUCATION, 24 (4)(0):814–829, 2009.

	1. INTRODUCTION
	2. RESEARCH GOALS, QUESTIONS, ISSUES
	3. RESEARCH APPROACH
	4. INITIAL RESULTS
	5. THREATS TO VALIDITY
	6. RELATED WORK
	7. AKNOWLEDGEMENTS
	8. BIBLIOGRAPHY

