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ABSTRACT

Background:  Automatic static analysis (ASA) is performed on 
source  code  with  different  goals:  improve  important 
characteristics  of  code  (such  as  maintainability),  check  a 
standard  compliance  or  detect  possible  defects;  therefore  a 
substantial  impact  of  ASA  on  software  quality  is  expected. 
However, many problems related to their usage, especially the 
high number of false positives and the absence of evidence on 
their impact on code quality, could easily hinder the potential  
benefits of such tools.

Aims:  Assess  the  impact  of  ASA issues  (detections  of  ASA 
tools)  on  code  quality  by  means  of  empirical  analyses  and 
controlled experiments on different software contexts. 

Method:  Goal  Question  Metric  approach  is  used.  Two main 
goals  are  defined:  1)  Assess  the  precision  of  ASA  issues 
(percentage of them actually related to real bugs) from the view 
point  of  a  Java  programmer; 2)  Assess  the  impact  of  code 
refactoring  based  on  ASA  issues  on  ISO  9126  quality 
characteristics from the view point of a Java programmer.

Concerning the first goal, two strategies are defined in order to  
understand which issues are related to real defects: the first one 
is an experiment using source code and bug information coming 
from open  source  and  possibly  industrial  projects,  whilst  the 
second strategy is a case study  to be conducted during Object 
Oriented Programming Courses at the author’s university. At the 
end of the two experiments, those issues that were observed as 
linked to real defects will be included in the input set of defects 
prediction  models:  the  accuracy  of  the  models  with/without 
ASA issues  will be measured.  

The  second  goal  will  be  achieved  through  a  controlled 
experiment  in  which  the  impact  of  the  ASA  issues  will  be 
evaluated  independently  for  each  ASA issue  on  the  different 
ISO 9126 quality characteristics.

Results: Some preliminary results are already obtained from an 
empirical analysis on university Java projects: we observed that 
just  a  very  limited  set  of  issues  have  high  precision  and 
therefore  can  be  considered  as  good  defect  predictors; 
conversely we identified those issues characterized by a  such 
low  precision  that  they  can  be  considered  as  bad  defects 
predictors in the context we studied.

Conclusions:  Effective  use  of  bug  finding  tools  promise  to 
speed  up  the  process  of  source  code  verification.  However, 
many problems related to their usage could hinder the potential  
benefits of such tools. The PHD plan aims at the comprehension 
of the impact  of code refactoring  from ASA issues on code 

quality,  viewed  both  as  defectiveness  and  a  set  of  different 
characteristics.  We  expect  to  obtain,  for  each  perspective  of 
software quality,  a reduced set of ASA issues whose impact in 
the  quality  characteristic  is  empirically  proven.  A  practical  
application of this study is the adoption of the triage/taxonomy 
we want to develop by developers that try to find defects before 
testing or  improve  certain  characteristics  of  their  code (e.g.  : 
maintainability, efficiency, etc.) .  The PHD started on January 
1st , 2010. 

Categories and Subject Descriptors
D.2.5  [Software  Engineering]:  Code  inspections  and  walk 
through

General Terms
Measurement, Experimentation, Verification.

Keywords
Bug finding tools, defects prediction, software quality.

1. INTRODUCTION
Software quality is crucial in many fields and quality assurance 
is  a  critical  activity  [1][2].  It  is  possible  to  adopt  several 
techniques to improve quality: testing, code inspections, formal 
specification  and  verification.  Although  effectiveness  and 
importance of these activities and methodologies is historically 
proved, there are important limitations, such as low easiness of 
use of formal specifications, necessity of having the system (or 
part  of  it)  entirely  built  and  working  for  testing,  and  low 
scalability of code inspections.

Given that the longer the delay of a fault insert-remove is [2],  
the higher the cost of removing that defect is and that testing 
and  code  inspections  need  a  working  code  base,  for  this 
activities there is a consistent delay injection, that means costs 
and  gap  in  reliability.  ASA  tools  promise  to  speed  up  the  
verification  process:  they  evaluate  software  in  the  abstract, 
without running it  or considering a specific  input.  Such tools 
look  for  violations  of  recommended  programming  practice, 
conventions  or  standards  (e.g.:  MISRA-C),  bug  and  design 
patterns,  and they are able to automatically  list  all violations 
(issues, that are supposedly defects of the program that ought to 
be removed),  statically  analyzing  source code or  intermediate 
code  (at  compile  time).  Find  bugs  tools  compensate  the 
disadvantages  of  other  techniques  we  listed  above,  because 
they’re very easy to use (it is just a matter of running the main 
and  check  the  output),  they  are  scalable  (they  can  analyze 
thousands of lines of code in few minutes), and they could be 
used even in a  non working code base.  Despite  the potential  



benefits  listed  above,  several  limitations  were  observed  in 
literature  and  in  the  state  of  the  practice.  The  most  common 
problems are: the high number of false positives the ASA tools 
generate [12][15], the reduced subset of possible bugs that can 
be automatically detected [11][12] (for instance, defects related 
to  requirements  are  not  automatically  detectable,  unless 
requirements could be expressed in a formal way), the dubious 
efficiency  of  the  default  issues  prioritization  [7][17],  the 
questionable economical benefits brought by their usage [9][11]. 

As a consequence companies  and universities  still  need large 
empirical evidence of the efficiency of ASA tool. 

The  goal  of  the  PHD  is  to  contribute  to  the  effort  of  the  
scientific  community  towards  the  assessment  of  the  benefits 
deriving from usage of ASA tools and techniques. Our aim is to 
evaluate the impact of such technique on software quality.

In the next sections the following terminology will be used : 

- ASA : Automatic Static Analysis

- ASA issue : rule/bug pattern/smell detectable by ASA 
tools

- detection : the single instance of the issues signalled 
on  the  source  code.  The  relation  ASA  issue  – 
detection is (1: N) .

2. RESEARCH GOALS, QUESTIONS, 
ISSUES 

The  first  step  of  the  PhD  plan  is  the  collection  of  existing 
empirical  studies on static analysis and the recognition of the 
state of the practice (tools and methodologies). Activities related 
to this step are: 

- Collect empirical studies in literature in the scope of 
ASA .

- Identify  tools  for  ASA,  and  tools  supporting 
refactoring.

- Identify university, open source or industrial projects 
suitable for the study. Necessary conditions: available 
source code and related process (defects) and product 
(structural metrics) data

- Identify  in  literature  models  for  prediction  of  fault 
prone modules

- Identify in literature efficient inspection techniques

The next activities are the empirical experiments driven by the 
following goal:  assessing  the relationship between issues and 
software quality. We define software quality in two ways: 

- software  quality  meant  as  software  defectiveness 
( defects density ) 

- software  quality  meant  as  the  set  of  6  different 
characteristics,  i.e.  as  described  by  the  ISO-IEC 
standard 9126 (see  Figure 1).

These two definitions are not exhaustive, and we consider them 
as  approximations  of  software  quality.  For  instance,  the  first 
definition has several issues, because it doesn't take into account 
the severity of bugs or their impact on usage scenarios ( e.g. a  

bug  in  code  which  is  rarely  executed  may not  affect  system 
quality as much as a bug in a very commonly used feature).

We  summarize  the  GQM in  Table  1  and  Table  2,  then  the 
detailed description of the GQM and of the experiments follow. 
At the end we give a graphical representation of the PHD plan 
objectives in Figure 2.

GOAL 1  
Purpose Assess

Issue the precision of
Object (process) ASA issues 

View point from the view point of a Java programmer 

RQ1.1 Which  ASA  issues  are  related  to  real  
defects ?

Metric M1.1 Issue  precision  (detections  related  to  
defects/detections)

RQ1.2 Can  ASA  issues  raise  the  accuracy  of  
models to predict fault prone modules? 

Metric M1.2 Precision,  recall  and  F-measure  of  fault  
predictions

RQ1.3 Can ASA issues increase the generality of  
such  models,  not  restricting  them  to  
specific context ?

Metric M1.3 Precision,  recall  and  F-measure  of  fault  
predictions

Table 1: Goal 1

Figure 1. ISO-IEC 9126 Quality Model



GOAL 2 
Purpose Assess

Issue the impact of
Object (process) code refactoring based to ASA issues on 

ISO 9126 quality characteristics
View point from the view point of a Java programmer 

RQ2.1 What  quality  properties  do  ASA  issues  
impact ? 

Metric M2.1 To  be  defined:  for  each  experiment  
different metrics will determine the impact  
of  the  issue  on  the  different  quality  
properties.

RQ2.2 Under what conditions ASA issues should  
be eliminated through refactoring  ?

Metric M2.2 To  be  defined:  for  each  experiment  
different metrics will determine the impact  
of  the  issue  on  the  different  quality  
properties.

Table 2: Goal 2

3. RESEARCH APPROACH
The empirical analysis will be performed on different kinds of 
projects: small projects (mainly students projects, few hundreds 
of  NCSS),  and medium-large  size  projects,  both  open  source 
and proprietary. For the first investigation, it is necessary that 
projects have both source code and bug database available. 

GOAL 1 : Assess the precision of ASA issues    (percentage of   
them actually related to real bugs) from the view point of a 
Java programmer 

RQ1.1. Which ASA issues are related to real defects ?

Metric  M1.1:  issue  precision  (detections  related  to  
defects/detections)

We  will  perform  two  experiments  to  answer  this  research 
question computing the precision for each issue.

Experiment 1.1

Given  a  project’s  software  repository  (Java  language  will  be 
preferred)  and a bug database: 

- analyze past defects, trace them to a source module, 
verify  issues  signalled  on  them.  If  yes  the  issue  is 
assumed to have a positive effect 

- analyze past changes, verify if a change has provoked 
the  deletion  of  issue  previously  detected,  if  yes  the 
issue is assumed to have a positive effect

- analyze code, find issues signalled, verify by manual 
inspection if  defects  are  associated to these parts of 
code, if no the issue is assumed to have no effect

If the software project is small or no bug database is available,  
we will inspect manually the code or a portion of it (following 
the most efficient inspections found in the state of the art) and 
we will identify manually defects. Then we will run on the code 
one or more ASA tools, tracing:  

- manual inspection time and inspection time of ASA 
issues  (useful  to  evaluate  the  possible  advantage  in 

term of time spent in performing automatic inspection 
instead of manual inspection)

- defects identified by both manual inspection and ASA 
tool

- detections of ASA issues that are actually defects and 
are not identified by manual inspection

- detections of ASA issues that are not related to defects

The precision of issues will be available for each issue in both 
cases,  at  the  end  of  the  experiment:  such  ratio  will  be 
transformed  in  response  1/0   (issue  is  related  to  real  defect: 
yes/no) using a threshold (e.g: if precision>50%, then output =1 
else output=0) and different thresholds will be used to evaluate 
their effect  on results through a sensitivity  analysis. For each 
threshold  t, issue  i  and  precision p

i
,  the  following  null 

hypothesis will be tested : 

H0 : p
i
 <  t . 

When hypothesis is rejected the issue is considered to be related 
to real defects .

Experiment 1.2

Softeng  Research  Group  teaches  2  Object  Oriented   (OOP) 
Courses,  in  which  Java  language  and  Object  Oriented 
Programming  principles  are  explained,  and  where  students 
develop small Java programs for the exam. The exam procedure 
is the following one: 

1. Teachers define the project and provide the students 
with a textual description and a set of wrapper classes.

2. Students develop a first version of the program in the 
laboratory  (the  “lab”  version)  and  submit  it  to  a 
central server by means of an Eclipse Plugin.

3. A tool on the server, PoliGrader, manages the delivery 
process and runs a suite of black box acceptance tests 
(JUnit  classes).  Acceptance  tests  are  written  by 
teachers of the course in such a way all functionalities 
are checked; teachers develop also a correct “solution 
program”, and they check tests coverage on it.

4. Results of test execution and their source code are sent 
back to the students.

5. Students improve the lab version at home, creating a 
new version of the program, called “home” version, 
that must pass all acceptance tests. This new version is 
submitted back to the server.

6. The PoliGrader tool checks that home versions pass 
all tests and compute marks taking in considerations 
the numbers of tests passed in the lab version and the 
diff  between  lab  and  home version,  quantifying  the 
changes made to the lab version in order to pass all  
tests. 

7. All information (marks, source code, tests, changes) is 
available  to teachers  in order to finally evaluate  the 
students.

As a consequence of this process, for each student two versions 
of the same project are available: the lab version, that probably 
contains  defects  (revealed  by  tests  failures),  and  the  home 
version, that passes all tests and it's functionally correct.



We  want  to  perform  2  experiments  on  the  top  of  two 
consecutive  sessions  of  OOP  courses,  each  one  including  2 
parallel  courses. In both sessions, only students of one course 
will  be  introduced  to  the  ASA tool  FindBugs  [33],  teaching 
them how to  use  it  during  classes  and  laboratories  (students 
cannot change course inside the same session). The students will 
be  required  to  minimize  the  number  of  FindBugs  issues 
signalled  in  the  Java  projects.  FindBugs  is  choosed  because 
widely  used  in  literature  and  since  we  already  conducted 
research experiments with it [29] .  In the first experiment,  all 
FindBugs issues (more than 350 in current version 1.3.9) will be 
activated, while in the second experiment we will activate only 
those issues whose precision was empirically proved in previous 
empirical studies from the state of the art and in our works. To 
sum up, there are 2 exam sessions (the second one occurs after  
the first one), each of one having 2 courses : 

• Session 1 

◦ Course A1 : no FindBugs

◦ Course B1 : FindBugs – all issues activated

• Session 2

◦ Course A2 : no FindBugs 

◦ Course B2 : FindBugs – only most precise issues 
activated

Students of session 1 will be different from students of  session 
2, and the same for projects: however, the difficulty level of the 
assignment and number and type of functionalities will be the 
same  to  make  the  two  sessions  comparable.  Instead  courses 
belonging  to  the  same  session  will  have  the  same  projects 
requirements. 

The following metrics will be collected from projects developed 
at the exam : 

− FindBugs issues in both versions (lab, home)

− Test failures in lab versions 

− FindBugs  issues  related  to  portion  of  code  that  is 
activated by tests failures

− Changes between lab and home versions

− Changes  done  expressly  to  delete  FindBugs  issues 
(students will be asked to provide this information) 

Since  we  expect  a  large  number  of  projects  and  issues,  the 
relationship  between defects  (test  failures)  and  issues will  be 
investigated  following  the  same  procedure  described  in 
experiment  1,  and  a  manual  validation  of  a  representative 
sample will be also performed. 

Statistical  analysis  of   data  collected  will  permit  to  test  the  
following null hypotheses: 

− HA0  :  External  quality  of  projects  of  session  1  is 
different from external quality of projects  of session 2

− HB0 : External quality of projects A1 is higher than 
external quality of projects B1

− HC0 : External quality of projects A2 is higher than 
external quality of projects B2

− HD0 : External quality of projects B1 is higher than 
external quality of projects B2

The  external  quality  is  measured  as  the  percentage  of  tests 
failed: the lower is the percentage of failed tests, the higher is  
the external quality of a project.

The  aim  of  HA0  is  to  test  whether  the  Java  programming 
capabilities  of  students  of  the  two  sessions  are  comparable 
(given that the 2 projects have the same difficulty level and the 
same number and type of functionalities to implement). 

Possibly rejecting HB0 and HC0 will be instead the statistical 
proof  that  FindBugs  issues  are  precise  predictors  of  defects, 
therefore  developing/refactoring  a  small  project  driven  by 
FindBugs issues likely leads to a higher external quality of the 
code.

Additionally,  rejecting fourth null  hypothesis (HD0) will  be a 
statistical proof that triage of issues is necessary to make usage 
of  FindBugs more efficient. 

Finally, further analysis of data let we investigate side aspects 
related to the main goal:

− number and type of FindBugs issues in home versions: 
these  issues will  be  considered  to  be  not  related  to 
functionality  since  home  versions  are  functionally 
correct;

− correlation among FindBugs issues

− differences  between  code  changes  not  related  to 
FindBugs issues and changes made purposely to delete 
FindBugs issues.

D1.1. Deliverable

Activities related to the two experiments will produce a reduced 
set  of  ASA issues,  actually  linked  to  defects  in  the  software 
projects we studied.  We expect that a small portion of all issues 
are actually linked to defects.

RQ1.2. Can ASA issues raise the accuracy of models to predict  
fault prone modules? 

RQ1.3. Can ASA issues increase the generality of such models,  
not restricting them to specific context ?

Metric  M1.2:  precision,  recall  and  F-measure  of  fault  
predictions

Models to predict fault prone modules will be built to answer 
RQ1.2 and RQ1.3 ; the  possibility to import existing defects 
prediction models from literature will be evaluated after state of 
the  art  activities.  The  dependent  variable  of  model(s)  is  the 
likelihood the module is defect-prone: such probability will be 
transformed  in  response  1/0   (module  defect  prone:  yes/no) 
using a threshold (e.g:  if probability>50%,  then output =1  else 
output=0).  Different  thresholds will  be  used and a  sensitivity 
analysis will evaluate their effect on results.

Each model will be ran with two different sets of the inputs: the  
first  one  will  be  composed  exclusively  by  traditional 
independent variables (source code metrics, past defects, etc.), 
whilst  the  second  set  of  inputs  will  be  obtained  adding  the 
information  about  ASA  issues  signalled  on  source  code 
( number, type, etc... ) to the previous variables, and considering 
only the reduced set of ASA issues identified in RQ1.1. Then 
the comparison between the accuracy of the two versions will 
indicate whether the ASA issues could improve the prediction 



power of such models or not. Summarizing, the procedure will 
be the following one:

− Define in detail what is meant by module in the 
project (function, file, class, other)

− Identify most fault  prone modules by analyzing 
past defects

− Verify  if,  over  time,  the  subset  of  fault  prone 
modules remains the same or changes

− Build model(s). Input variables per each module: 
source  code  metrics,  effort,  other  relevant 
information if available. Output variable: module 
is / is not fault prone.

− Verify models on past data: evaluate accuracy in 
predicting fault prone modules.

− Choose best model

− Enhance  model  integrating  most  precise  ASA 
issues found in RQ1.1

− Verify model on past data evaluating its accuracy

− Compare precision of models  with and without 
ASA issues

− Verify  whether  accuracy  of  both  models  types 
holds in different contexts (application type, open 
source/off the shelf, size,...)

D2 - Deliverable:

− Empirical  assessment  of  the  impact  of  ASA 
issues  on  the  prediction  power  of  defects 
prediction models 

− A prediction model for faulty modules, using as 
input source code metrics, defects, effort, and   in 
case ASA issues

GOAL 2 : Assess the impact of  code refactoring based to 
ASA  issues  on  ISO  9126  quality  characteristics  from  the 
view point of a Java programmer. 

RQ2.1. What quality properties do ASA issues impact ? 

RQ2.2  Under  what  conditions  they  should  be  eliminated  
through refactoring  ?

Metrics to be defined: for each experiment different metrics will  
determine  the  impact  of  the  issue  on  the  different  quality  
properties.

The goal  is  to  evaluate  the impact  of  ASA issues on quality 
characteristics referring to  ISO-IEC 9126 model. No author has, 
until now and up to our knowledge, proposed a comprehensive 
taxonomy of ASA issue – code quality property impacted based 
on empirical experimentation. 

We identify three steps in the empirical experimentation. Given 
a set of ASA issues I and the set of quality characteristics C, the  
procedure is the following one:  

1. for each i∈ I  and each c∈C  do 

− determine manually by expert judgement whether 
issue  i could  impact  characteristic  c.  In  this 
context  any  of  the  following  is  considered  as 
expert: a professor, a research assistant or a PHD 

student,  that  teaches in  a University  course the 
programming language used  in the experiment; a 
programmer  from  industry  that  programs 
frequently with the programming language used 
in the experiment (e.g: Java programming for at 
least  3 days a week in the last  3 years). In the 
case  multiple  experts  disagree,  the  impact  is 
considered as not present. An impact matrix IM 
will  store  experts  judgements,  while  a  second 
matrix  (validation  matrix  VM)  will  trace 
empirical validations of the judgements. Matrices 
are initialized in the following way:

− for each i∈ I  and  each c∈C  do 

− if issue  i is  thought  by  experts  to  have 
impact  on  characteristic  c   then   IM

ic
 =1 

else IM
ic 

 =0 

− for each i∈ I  and  each c∈C , do 

− if  IM
ic

=0 then VM
ic

 = 0  else VM
ic

 = -1 ;

2. Experimentation:

for each i∈ I  and each c∈C  where VM
ic

= -1 

do

− plan one or more experiments where the impact 
on  c of  having/not  having  issue  i can  be 
measured.   We  provide  the  reader  with  an 
example  of  experiment;  let's  consider  the 
FindBugs  issue  Inefficient_Integer_Constructor 
(IBC)  that  is  signalled  when  the  new 
Integer() constructor  is  used  instead  of 
Integer.valueOf().  It  is  expected  that 
issue  IBC  impacts  characteristic  Efficiency.  A 
possible experiment to verify the impact is :

− write  a  piece  of  code  where  issue  IBC is 
signalled;

− refactor the previous piece of code obtaining 
a second version, functionally identical, but 
where the issue IBC is no longer signalled;

− prepare  the  environment  in  which  to  run 
both versions of the code: the environment 
should be as much isolated as possible (e.g: 
disable  network,  disable  routine  tasks,  no 
other  programs  running...),  in  order  to 
minimize  the possibility  that  executions of 
the  code  are  interrupted/delayed  by  other 
programs/routines; 

− run  a  very  high  number  of  times  (to 
eliminate  random  effects  -  e.g.:  1000000) 
the  two  codes  (independently  and 
sequentially),  measuring  their  total 
execution time; 

− compare the two measurements by statistical 
analysis:  if  code  without  IBC  performs 
better,  its  impact  on   Efficiency  is 
demonstrated and confirmed.

− if impact of  i on  c is empirically demonstrated, 
then VM

ic
 =1 else VM

ic
 =0.



Having validated the taxonomy, it is possible to define a set of 
heuristics to improve a specific property of source code, using 
the most effective related refactoring.

D3 - Deliverable:

- A validated taxonomy of the relationship ASA issue – 
quality property

- A prioritization of ASA issues and a set of heuristics 
for  refactoring  code,  in  function  of  the  software 
quality property impacted

Figure 2. PHD Plan Overview

4. INITIAL RESULTS
In our previous work [29] we faced Research Question 1.1 for 
the issues of  the  ASA tool  FindBugs v1.3.8,  signalled  on 85 
Java assignments  from the 2009 OOP course.  We considered 
issues  grouped  according  to  two  dimensions:  category  (Bad 
Practice, Correctness, Style, Performance, and Malicious Code 
are the categories with at least one issue signalled in our code 
base) and priority (Low, Medium, High). For each issue group 
(combination  of  category  and  priority)  we  computed  its 
precision.  The  number  of  detections  related  to  defects  was 
determined  through  the  Spatial  +  Temporal  technique, 
previously presented in  literature  in [5].  The technique  is  the 
following one: we have temporal coincidence when one or more 
issues  disappear  in  the  evolution  from  the  lab  to  the  home 
version,  and in the same time one or more defects are fixed:  
probably those issues were related to the fixed defects. In this  
context, as explained in Goal 1 - Experiment 2, defects fixed are 
revealed when a test that in lab version fails instead in home 
version succeeds. The possibility that a disappearing issue was 
not related to the disappearing defect is the noise of this metric, 
that  is  filtered out by adding spatial  coincidence:  we observe 
spatial coincidence when an issue's location corresponds to lines 
in the source code that have been modified in the evolution from 
the lab to  the home versions.  In  practice,  the combination  of 
temporal  and  spatial  coincidence  is  interpreted  as  a  change 
intended to remove the issue, that is linked to the defect. 

Defining precision p of the issue group g as p
g
, we decided that 

an issue was related to real defects if the null hypothesis that p
g 

< 30% was rejected.  Such a low threshold was justified by the 
exploratory nature of the work and it compensated for the large 
precision  variability  in  each  group.  The  analysis  of  precision 
measures obtained demonstrated that only 2 out of 15 groups of 
issues could be considered as related to actual  defects  in our 
code base. Moreover, one group of issues had a precision that 
was practically negligible. 

In  a  subsequent  and  more  detailed  experiment,  still  not 
published, we repeated the study enlarging the code base ( we 
analyzed 301 Java Projects ) and computing precisions at single 
issues level  (instead  of  groups).  We observed again  that  few 
issues were related to real defects. The precision threshold used 
in  this  study  was  stricter  (50%),  but  the  sensitivity  analysis 
demonstrated that results held for precision > 21% (that is a very 
low threshold). As a consequence we can consider results stable. 

The findings of this second study are  :

- The 20% of issues made the 80% of total detections, 
and  just  5  issues  represented  about  half  of  total 
detections.

- 80%  of  detections  were  related  to  5  categories  of 
problems: objects and references, violation of naming 
conventions, no effect of fields, variables or methods .

- Distribution  of  issues  among  Java  classes  was 
inhomogeneous: detections were concentrated in a few 
classes. 

- The  analysis  of  issues  precisions  demonstrated  that 
only  4  issues  could  be  considered  as  reliable 
predictors of real defects in the context the research 
was conducted . 

- The  same  analysis  let  us  identify  16  issues  whose 
precision  was  practically  negligible:  they  were 
responsible of about the 45% of issues detections.

We will  try to extend prior work repeating the study both in 
industrial  and  open  source  systems,  and  facing  also  research 
question 1.2.  

5. THREATS TO VALIDITY
Here we identify external and internal threats for each planned 
experiment . 

Goal  1-  Experiment  1.1  In  the  case  the  fault  database  is  
available, the major construct thread is the fact that the relation 
between  issues  and  defects  is  determined  with  statistical 
techniques,  checking whether issues are signaled in lines that 
changed due to a faults located on them. In order to control it,  
the  manual  inspection  of  links  faults-issues  should  include  a 
significant number of samples, and one or more reviewer should 
validate it. On the contrary, if the fault database is not available, 
manually  find  a  significant   number  of  defects  by  means  of 
manual inspection could be a long and error prone task (internal 
threat): having one or more reviewers will permit to control the 
threat also in this case.

Goal 1 – Experiment 1.2. An important external threat is: we 
study small student projects, hence the application of findings in 
industrial  context  is  debatable.  However,  this  weakness  is 
balanced by the fact that this experiment,  differently to many 
others in the literature, eliminates the effect of developer style 



on the results, because a large pool of developers is used for the 
same  projects.  A  further  threat  is  a  construct  one:  it  is  
concerning  the  identification  of  defects.  In  this  second 
experiment,  no  bug  database  is  available:  we  make  the 
assumption that all changes between lab and home version are 
done in order to fix a defect; actually, it could be possible that 
some  changes  are  not  related  to  real  defects,  but  to  other 
motivations  (cleaner  code,  more  readable  code,  and  so  on). 
Nevertheless,  we  don't  expect  that  this  kind  of  noise  could 
change results and ranking, because usually students correct the 
lab versions in a quick and dirty way, doing as few changes as  
possible, for two reasons: 

- the  home version  is  the  last  version  of  the  project, 
actually no maintenance has to be done subsequently; 

- students  are  discouraged  in  doing  many  changes, 
because the mark suggested by PoliGrader decreases 
with  the  quantity  of  changes  made  (see  details  in 
[34]). 

Goal 2 – Experiments 2.x. We observe two important internal 
threats related to the experiments that should verify the impact 
of an issue on a code quality characteristic. The first one is the 
difficulty  to  minimize  the  noise  introduced  by  different 
confounding factors  in the experiments results (e.g.: measure 
the  performance  of  two  different  pieces  of  code  inside  an 
operating system could be highly affected by the presence of 
other  running  processes).  The  second  threat  is:  for 
characteristics such as maintainability and usability, it could be 
hard  to  find  non-subjective  metrics:  for  instance,  if  the 
maintainability  is  measured  computing  2  maintenance  tasks 
performed  by  2  different  teams,  the  programmers  capability 
could  be  a  deviant  factor.  This  threat  could  be  controlled 
repeating  the  experiment  with  different  teams.  We  plan  to 
control  these  threats  increasing  the  number  of  samples  and 
executing  the  experiments  in  different  machines  /  operating 
systems.

6. RELATED WORK
In  this  section  we  want  to  report  the  work  already  done  in 
literature in the scope of the PHD plan. The present section is a 
partial  result  of  the  step  1  of  the  PHD  plan,  that  is  the 
recognition of state of the art, that will continue in the following 
months. The related work we report here mainly refers to Goal 1 
– RQ1.1 .

The first research we cite is the one of Boogerd and Moonen [5]: 
they tried to empirically assess the relation between violations 
of coding standard rules  and actual  faults.  They analyzed the 
relationship  between  defects  in  an  industrial  software  project 
and MISRA-C 2004 rules  violations,  using  history of  project 
(code versions) and problem report  database. They introduced 
the  concepts  of  temporal  and  spatial  coincidence:  if  a  fault  
disappears from one version to another one, and a violation too, 
probably that violation was related to the fault that disappeared; 
this is temporal coincidence. However, temporal coincidence is 
affected  by  noise:  some  violations  can  disappear  as  a 
consequence of a change in a portion of code not directly related 
to it or to another defect. Authors decided to assess the impact 
of this noise by means of spatial coincidence: using information 
from  Software  Configuration  Management  System  and  from 
problems reports database, they were able to individualize only 
the lines changed related to a fault that disappeared from two 
consecutive  versions,  and  to  count  as  effective  only  that 
violations that were in those lines of code. These violations were 

considered  as  true  positive.  The  experiment  of  Boogerd  and 
Moonen  showed  that  a  reduced  set  of  rules  (12  over  72) 
performed significantly better (true positive rate between 23% 
and 100 %), while about one third of the rules (25 over 72) had 
zero positive rate: so, taken together with Adams' law [13] , it 
means that it is better to don't apply the smell. They repeated the 
experiment  with  another  system  [28],  however,  the  set  of 
efficient rules found in [5] have a few intersections with the one 
found in [28].

Boogerd and Moonen tried to assess the value of ASA issues for 
fault detection by means of statistical inference, guessing that a 
violation in a defect fixing changed line is really related to that 
issue. On the contrary, Pugh et  al.  [6] tried to understand the 
efficiency  of  the  static  analysis  tool  FindBugs  by  manually 
checking the issues signalled on projects: experiments showed 
higher  true  positive  ratios.  The  authors  classified  issues  in  4 
categories, based on their impact on code. They got that, in JDK 
1.6.0-b105,  almost  50%  of  medium/high  priority  issues  of 
category correctness had impact, and 10% had a serious impact.  
160/379 were trivial, while 5 issues were due to bad analysis of 
FindBugs.  A  similar  experiment  with  the  same  category  of 
issues was performed at Google, with similar high percentages 
of true positive issues, while a further experiment conducted on 
Glassifish v2 showed that 50 defects over 58 disappeared due to 
small edits designed to specifically address the issue raised by 
FindBugs.

High percentage of true positive found by FindBugs were also 
found by Cole et al. [7], asserting that the rate of false warnings 
reported  by  FindBugs  is  generally  lower  than  50% but  they 
didn't prove it. Almossawi, Lim and Sinha [8] provided a third 
party  evaluation  of  Coverity  Prevent  and  reported  an  overall 
evaluation that 13% of the warnings seemed be infeasible and 
64% seemed very likely to result in faults.

Wagner et al. [9] evaluated FindBugs and PMD on two software 
projects. They found out that very few of defects (post-release 
and  actually  correlated  to  documented  failures  in  deployed 
software) were identified by these tools. On a total of 91 defect 
removals, comparing two successive versions of software, they 
found only 4 that  corresponded to  remedying  a  problem that 
caused a failure in the deployed software.

Robert  OCallahan told in his blog1 about his experience with 
Klocwork  and  Coverity,  and  noted  that  many  of  the  defects 
found did not seem to be significant. Konstantin Boundnik also 
blogged2 about  his  experience  with  Klocwork  and  Coverity, 
asserting that false positive rates were respectively 10 and 15%. 
In order to contrast  the false positive ratio,  Hovemeyer  et  al. 
[10] introduced the use of Java annotations by the programmer 
in order to explicitly inform FindBugs about which values must 
not  be  null  and  which  on  the  contrary  may  be  null.  They 
performed  experiments  on  both  production  software  and 
students  projects,  obtaining  false  positive  rates  of  20%  on 
production  software  and  identifying  50%  to  80%  of  issues 
dealing  with  null  pointer  exceptions  at  run  time  in  students 
projects.

Zheng and al. [11] tried to go deeper in the topic of ASA tools 
efficiency, answering to the question: for which kind of defects 
are  ASA  tools  effective?  They  performed  a  study  on  static 
analysis  faults,  tests  and  customer-reported  failures  for  three 

1See  http://weblogs.mozillazine.orgrocarchives200609static 
analysis and scary head.html
2 See  http://weblogs.java.netblogcos  archive200610static 

analyzer.html 



large-scale  industrial  software  systems  developed  at  Nortel 
Networks. They found that automated static analysis is effective 
at  identifying  low  level  bugs  like  assignment  and  checking 
faults,  and  that  they're  complimentary  to  the  other  fault 
detection  techniques.  They  also  asserted  that  automatic  static 
analysis defect removal yield is similar to the one of inspections 
and that the faults signalled by automatic static analysis tools 
are good fault predictors; however, the hypothesis that quality 
with  automatic  static  analysis  is  higher  than  without  was 
rejected. Another study attempted to understand the added value 
of  ASA  tools  with  respect  to  the  traditional  fault  detection 
techniques: Wagner et al. [12] compared bug finding tools with 
reviews and tests. They found that bugs signalled by smell tools  
are  a  subset  of  those  found  by  reviews,  and  different  from 
dynamic  testing.  The  authors  analyzed  5  projects  and  5 
categories  of  defects  (with  respect  of  their  effect  on  system 
behaviour). They manually determined the ratio of false positive 
issues,  and results  were :  47% for  FindBugs,  31% for  PMD, 
96% for QJPro. This result  suggest another consideration: are 
bug finding tools able to predict the same defects ? So, are they  
equivalent ?

A study conducted by Rutar et  al.  [13]  classified issues of 5 
different  ASA  tools  (  JLint,  Bandera,  ESC/Java,  FindBugs, 
PMD), and ran them on different projects. They were able to 
cross-check  their  issue  reports  and  warnings,  and  they 
discovered  that  tools  generally  find  non-overlapping  issues. 
Finally, they proposed a meta tool for combining the results of  
different smell tools, in order to cover all the bugs categories.

A similar conclusion was found by Wagner et al. [14] : authors 
compared  FindBugs  and  PMD,  running  them on  2  industrial 
projects.  They  demonstrated  that  the  2  tools  have  a  small 
intersection  of  issues,  and  they  suggested  to  use  them  in 
combination. They also studied the economical efficiency of the 
usage of ASA tools:  estimating direct and indirect costs, they 
asserted  that,  in  order  to  be  cost  efficient,  the  tools  must 
individualize  3-4  potential  field-defects.  Economical 
considerations were also done by Zheng et al. [11]: the cost of 
automatic static analysis per detected fault is of the same order 
of  magnitude  as  the  cost  of  inspections  per  fault  detected. 
Coming back to Wagner's research, he also studied the technical 
efficiency of the tools : even if the number of issues could be a 
good predictor for faulty modules (again, as in [11] ), the true 
positive ratio of smell tools issues in his experiment is very low. 
Analysing a sample of 72 real bugs from the bug repository of 
the projects,  Wagner  et  al.  found out that  in  the first  project  
none of the bugs was revealed by the static analysis tools, while 
in the other one just 16% of them was found. They motivated 
this results saying that the majority of issues had its roots in the 
semantic. The same last finding is present in Zhenmin Li et al.  
[15].  The  authors  tried  to  identify  which  bugs categories  are 
present  in  Mozzilla  and  Apache  software,  automatically 
analyzing  Bugzilla  repositories  by means of  natural  language 
text  classification.  Results  of  their  study  showed  that  the 
majority  of  bugs  were  semantic,  thus they  could be revealed 
only  by  dynamic  testing.  Yet  another  finding  concerned  the 
presence of a lot of simple memory related bugs such as NULL 
pointer references (12.2 - 16%), that should have been detected 
by static analysis tools :  this indicates that the tools have not  
been used with their full capacity.

This last issue (how ASA tools are used) was investigated by 
Ayewah et al. [16], too. The authors experienced in Google that  
the  more  the  usage  of  the  tool  appears  within  the  code 
production work flow, the higher the efficiency of the tool is:  

when  they  were  able  to  incorporate  FindBugs  in  the  review 
process, more than 200 users suppressed thousand of warnings 
signalled  by FindBugs in  6 months.  However,  they  observed 
that the situation out of Google is quite different. Authors tried 
to understand how FindBugs is used by means of a survey with 
tool's users: they discovered that the 81% of users have no exact 
policies in their companies on how to run FindBugs, and in the 
76% of the cases,  running FindBugs was not required by the 
process.  However,  the majority  of users reviews at  least  high 
priority  issues  (thus  it  seems  that  these  are  the  most  e
effective  issues),  but  generally  they  don't  have  policies  for 
handling  issues  designated  as  not  real  bugs,  or  low  priority 
warnings. 

Management of issues priorities is also discussed by Kim and 
Ernst  [17].  They  combined,  in  their  experiments  on  3  open 
source projects  and 3 bug finding tools,  source code changes 
and  bugs  information  from  bug  repository,  individualizing 
which lines contain fix changes (if the changed line contains a 
bug disappeared from a version to the following one, the change 
is a fix change), checking the ratio of ASA issues in those lines. 
The experiment showed that very low percentages of warnings 
were  removed  by  a  fix  change,  and  yet  lower  percentages 
considering only high priority warnings (6%, 9% and 9%). So 
they proposed an algorithm based on the  history of  removed 
warnings in order to modify priority of issues, and repeating the  
experiment with the new obtained priorities, they were able to 
have higher percentages of high priority issues removed by fix 
changes (up to 17%, 25% and 67%). 

Even if the first static analysis tool appeared more then 30 years 
ago (Lint, by Stephen Johnson of Bell Labs [18] ) the research 
field  is  wide  and  literature  doesn't  fit  all  open  issues  and 
contexts.  For  instance,  studies  on  ASA  tools  in  university 
context is one of them, and this is the field in which I and my 
supervisor  conducted  the  first  experiments.  We  found  two 
examples  of  researches  conducted  in  University  in  a  similar  
scope.  Hristova  et  al.  [19]  noticed  that  students  of  Java 
introductory courses usually do common errors: they created a 
small taxonomy of them and they built an educational tool able 
to  capture  these  common  errors,  providing  additional 
information to the error messages of the Java compiler. Starting 
from the same consideration,  Truong et al.  [20] built a whole 
framework to check common students' errors and help them in 
writing better  code. The underlying idea that we liked is that  
such common errors can be automatically detected, but in our 
opinion  there's  no  need  to  build  new  tools  or  frameworks: 
several  ASA tools  already  exist,  they can  be  customized  and 
used in an educational context. The achievement of the goals of 
this PHD plan will give the possibility to better customize the 
tools and to activate only issues with higher precision. A further  
study in the university environment was done by Jaime Spacco, 
Jaymie Strecker,  David Hovemeyer,  and William Pugh in the 
context of the Marmoset Project [24] [25] [26] [27]. Marmoset 
is  a  platform that  allows students  to  submit  versions of  their 
Java projects to a central server, which automatically tests them 
and records the results.  It  also collects  code snapshots of the  
projects: each time a student saves the work, it is automatically  
committed  to  a  CVS  repository.  They  declared  correlations 
between warnings signalled  by FindBugs and tests  outcomes, 
and  between  three  types  of  FindBugs  issues  (  ClassCast, 
StackOverow,  Null  Pointer  )  and  Java  Exceptions,  but  they 
didn't do any deep statistical analysis. Precision and recall can 
be obtained by their tables: precisions are, with respect to issue 
type, 23%, 71%, 45% , and recall values are 28%, 44%, 18%.



Furthermore, we would like to cite some study that investigated 
the correlation between smells and code quality. Code smell  is 
any  symptom in  the  source  code  of  a  program that  possibly 
indicates  a  deeper  problem:  something  that  is  not  working 
properly  or  a  problem that  could  be  resolved  in  others  way,  
simplifying the code, making it faster or decreasing the resource 
usage. From the point of view of a programmer charged with  
performing  refactoring,  code  smells  are  heuristics  to  indicate 
when to refactor,  and  what  specific  refactoring  techniques  to 
use.  Thus,  a  code  smell  is  a  driver  for  refactoring  [3],  and 
refactoring  improves code maintainability  and flexibility.  The 
debate about automatic detection of code smell is still open in  
literature, and it will be investigated.  We found a work by Li 
and Shatnavi  [21]  in  which they investigated  the  relationship 
between  the  class  error  probability  and  bad  smells  based  on 
three versions of the Eclipse project. Their result  showed that 
classes  which  are  infected  with  the  code  smells  Shotgun 
Surgery, God Class or God Methods have a higher class error 
probability than not infected classes. 

Deligiannis et al. investigated the impact of God Classes, based 
on Riels Definition [22] on the maintainability of object oriented 
design  [23].  They  built  two  functional  identical  software 
systems, one containing the god class smell (Design B) and the  
other  one without  (Design A).  An identical  maintenance  task 
was assigned to two student groups (Group A and Group B), 
whereas one group had to perform the task on Design A and the 
other  on  Design  B.  After  the  study,  a  questionnaire  was 
performed, and analysis of answers questionnaire showed that 
the  students  of  group  A  had  fewer  problems  with  the 
understandability of the design as well as the modification of the 
design. Furthermore, a quality analysis was performed on both 
the  delivered  solutions,  showing  differences  towards  the  2 
solutions. 

Finally,  in  several  empirical  studies  (we  cite  [30],  [31]  and 
[32]), static  analysis issues are used in conjunction with code 
and history metrics as factors in defects prediction models: since 
while we're writing the PHD in step 1, we still have to explore 
this area of the field. 
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