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a b s t r a c t

In this paper we introduce the concept of inessential element of a standard basis B(I),
where I is any homogeneous ideal of a polynomial ring. An inessential element is, roughly
speaking, a form of B(I) whose omission produces an ideal having the same saturation
as I; it becomes useless in any dehomogenization of I with respect to a linear form. We
study the properties of B(I) linked to the presence of inessential elements and give some
examples.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The systems of generators of a given ideal I ⊂ K [y0, . . . , yn] = S, satisfying given conditions, are widely studied. In the
special case of homogeneous ideals, it is well known that there exist systems of generators, called standard bases, satisfying
the following condition: their elements of degree d are forms defining a K -basis of the vector space Id/(Id−1S1), for every
d ∈ N [3,2,9]. The standard bases are minimal among the systems of generators of a homogeneous ideal, but they are not
the only interesting ones (for instance, Gröbner bases are not, in general, minimal, but they are of interest for other reasons).
However, in this paper wewill consider only standard bases of homogeneous ideals. The elements of each of themmay be of
twodifferent kinds: essential generators and inessential generators. A generator g is called inessential, with respect to a basis
B(I) containing it, if it lies in the saturation of the ideal generated by B(I) − {g}; this means that any dehomogenization
I∗ of I with respect to a linear form is generated by the image of B(I) − {g}. A generator g not lying in the saturation of
B(I) − {g} is called essential. We needed this concept in our attempt of considering the elements of a standard basis of
I as separators [1] with respect to a convenient ideal L ⊂ I; in fact, we found that such an interpretation is possible iff
the generators are essential. Not all homogeneous ideals, and in particular ideals of 0-dimensional schemes in which we
were originally interested, have a basis whose elements are all essential. This fact suggested it would be helpful to study the
concept of essentiality independently from its use in the link between separating sequences and generators of a sub-ideal
and for ideals of any height. So, we focused our attention not only on the standard bases with the maximum number of
essential elements, but also on those whose inessential elements are all contained in the saturation of the ideal generated
by the essential ones.

Our paper has the following format. In Section 2we recall necessary definitions, notation, and facts. Section 3 contains the
definition of essential and inessential elements, with equivalent formulations and some examples. In Section 4 we consider
the special case of perfect height 2 ideals. In this situation, the essentiality or the inessentiality of a generator can be read as
a property of the ideal generated by the entries of its corresponding column in any Hilbert matrix of I [8,10].

In Section 5 we come back to the study of the general situation. We show that any saturated homogeneous ideal has at
least one basis with the maximum (resp. minimum) number of essential generators in any degree; so, the two sequences
of those numbers are numerical sequences linked to the ideal and their elements are, degree by degree, less than or equal
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to the corresponding graded Betti numbers. We will call those bases e-maximal (resp. e-minimal) and give an algorithm of
construction of one of them starting from any standard basis. An e-maximal (resp. e-minimal) basis is characterized by the
fact that its inessential (resp. essential) elements have their typical property with respect to every standard basis containing
them. The e-maximal bases were the first object of our interest, as we were looking for bases with the greatest number
of generators to be viewed as elements of a separating sequence. We give just a few examples of e-maximal bases, as we
are planning to devote to them another paper. In this second paper we will study a family of perfect height 2 ideals for
which it is possible to compute the number of the essential elements contained in an e-maximal basis, starting from some
properties of their generators in minimal degree. From another point of view, an e-minimal basis seems to be of interest
when we dehomogenize with respect to a linear form; in fact, an inessential element becomes useless as a generator of the
dehomogenized ideal. However, from this point of view, the notion of inessential set (generalizing the one of inessential
element) turns out to be more suitable. In fact, the standard bases giving rise to a basis of minimal cardinality, after a
dehomogenization with respect to a generic linear form, are the ones containing an inessential set of maximal cardinality.
So, the last part of Section 5 is devoted to such bases and to the ones (E-bases) whose set of inessential elements is an
inessential set.

2. Background and notation

Let S = K [y0, . . . , yn], where K is an algebraically closed field, be the coordinate ring of Pn, I =


Id, d ∈ N, a
homogeneous ideal of S, and M = (y0, . . . , yn) be the irrelevant maximal ideal. We recall the following definition.
Definition 2.1 ([3]). A standard basis B(I) of I is an ordered set of forms of S, generating I, such that its elements of degree
d define a K -basis of Id/(Id−1S1).

It is well known [3] that the number of generators of B(I), in a given degree d, depends only on the ideal I; it is the dth
Betti number of I, at the first level. The cardinality of B(I)will be denoted ν(I).

When there is no matter of misunderstanding, we will use the notation (f1, . . . , fr) to denote the ideal generated by the
standard basis (f1, . . . , fr), instead of the heavier notation (f1, . . . , fr)S. Moreover, if we need to point out a subset T ofB(I),
we use the non-standard notation.

B(I) = (t1, . . . , tm, s1, . . . , sp), where T1 = (t1, . . . , tm) and T2 = (s1, . . . , sp) inherit the original ordering of B(I).
If I is perfect of height 2 [2,8,3] , it is useful to consider, for every basis B(I), a Hilbert matrix [8] as follows. We set

B(I) = (g1, . . . , gt), where deg gj ≤ deg gj+1 for j = 1 . . . (t − 1), and let si = (ai1, . . . , ait), i = 1 . . . (t − 1),
denote the ith element of a basis of syzygies with respect to B(I), where deg si = deg(aijgj) for j = 1 . . . t and deg
si < degsi+1.

With this notation M(I) = (aij), i = 1 . . . (t − 1), j = 1 . . . t , is a Hilbert matrix of I related to B(I). Moreover ([8])
(−1)jgj is the minor of M(I) obtained by deleting its jth column Cj. We say that gj is the generator linked to the column Cj
or that Cj is its corresponding column. The ideal generated by Cj will be denoted ICj .

We will be mainly interested in saturated ideals, whose definition we recall.
Definition 2.2 ([5]). The saturation of a homogeneous ideal I ⊂ S is Isat

= {F ∈ S | FMt
⊂ I for some t ∈ N}. The ideal I

is saturated iff Isat
= I or, equivalently , if M is not associated to I.

A process of computation of Isat , starting from I, can be found in [5]. To every projective scheme V of Pn we can associate
a unique saturated ideal I, which is usually denoted I(V ).

Now we pass from the projective situation to the affine one. For every linear form L ∈ S, the ideal I∗, obtained from a
homogeneous ideal I by dehomogenizationwith respect to L, is the image of I in the localization of Swith respect to L.With a
change of coordinates, it is possible to choose L = y0; in this situation, the localization of S is isomorphic to R = K [x1, . . . , xn]
under the map associating to every form F(y0, . . . , yn) ∈ S the polynomial F∗(x1, . . . , xn) = F(1, x1, . . . , xn) ∈ R (see [4,
11]) and I∗ can be identified with the image of I under that morphism. Vice versa, the homogenization L∗

⊂ S of any ideal
L ⊂ R is the ideal generated by F(x1, . . . , xn)∗ = yd0F(y1/y0, . . . , yn/y0), where F(x1, . . . , xn) is any polynomial of L and d
is its degree. Let us observe that (L∗)∗ = L, while (I∗)

∗
= I only if y0 is regular for S/I. The operation of dehomogenization

can be made on a set of generators of I, but the analogous is not true for the homogenization.
Let us recall the following definition.

Definition 2.3. A basis of an ideal L in a polynomial ring K [x1, . . . , xn] is a set of generators that fails to generate L if one of
its elements is omitted.

Two different bases of L may have a different cardinality.

3. Equivalent conditions and examples

Let I be a homogeneous ideal of S = K [y0, . . . , yn] such that Isat & M = (y0, . . . , yn), and f be an element of a standard
basis B(I). Denote by H(f ,B) the ideal generated by B(I)− {f }.
Definition 3.1. An element f of a standard basis B(I) of I is called an inessential generator of I with respect to B(I) iff
f ∈ (H(f ,B))

sat . Otherwise, we say that f is an essential generator of I with respect to B(I).
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The following proposition gives conditions equivalent to inessentiality.
Proposition 3.1. Let H = (g1, . . . , gr) be a homogeneous ideal of S = K [y0, . . . , yn] such that Hsat & M = (y0, . . . , yn). Let f
be any form of M and I = (H, f ). The following facts are equivalent.
(i) There exists t ∈ N such that fMt

⊆ H (in other words, f ∈ Hsat ).
(ii) S/I and S/H have the same Hilbert polynomial (see [5,9,6,7]).
(iii) There exists a linear form z ∈ S regular for S/Hsat such that a dehomogenization with respect to z gives H∗ = I∗.
(iv) H∗ = I∗ for every dehomogenization with respect to any linear form z ∈ M.
Proof. The equivalence between (i) and (ii) is obvious.

(i) ⇒ (iv) Condition (i) implies fzt ∈ H for every z ∈ M. As a consequence, f∗ ∈ H∗ or, equivalently, H∗ = I∗.
(iv)⇒ (iii) The conditionHsat

≠ M assures the existence of an element z regular for S/Hsat (as the union of its associated
primes cannot be M), so that the implication is obvious.

(iii) ⇒ (i) f∗ ∈ H∗ means f∗ = Σαi(gi)∗, αi ∈ R = K [x1, . . . , xn] (see Section 2), so that (∃t) fzt = Σβigi ∈ H ⊂

Hsat , βi ∈ S. As z is regular for S/Hsat , we get f ∈ Hsat . �
Remarks. 1. Let us observe that it is sufficient to verify condition (iv) for a set of linear forms generating M; equivalently,

the condition f ∈ Hsat is verified iff, for every linear form L of a set of generators of M, there exists n ∈ N such that
fLn ∈ H.

2. In (iii) the condition ‘‘z is regular for S/Hsat ’’ cannot be replaced by ‘‘z is regular for S/I’’, as we can see in the following
example.

Let: S = K [x, y, z], I = (g1, g2, g3, g4), H = (g1, g2, g4), f = g3, where

g1 = x5, g2 = xy5, g3 = y7, g4 = y3(−x4 − y2z2)

are the maximal minors of the matrix 0 x3 z2 −y2

0 y2 −x 0
y3 z2 0 −x

 .
It is easy to verify that z is regular for S/I and that, in the dehomogenization with respect to z, we have: (g3)∗ =

y7 = −y2(g4)∗ − x3(g2)∗ which implies that (g3)∗ ∈ H∗. However, g3 does not satisfy the equivalent conditions of
Proposition 3.1 (see Proposition 4.1 for a quicker check). The reason is that z is not regular for Hsat . In fact, z2y5 =

−g4 − x4y3 so that z(zy7) = −g4y2 − g2x3 ∈ H ⊆ Hsat and zy7 /∈ Hsat , as zyk /∈ H,∀k ∈ N.
3. It may be difficult to compute Hsat , and hence condition (iv) and Remark 1. become of some interest. �

We give a statement equivalent to the essentiality of f ∈ Id, with respect to a standard basis B(I) = {f ,B1}.
Proposition 3.2. Let B = {f ,B1} be a standard basis of an ideal I ⊂ S = K [y0, . . . , yn], where f ∈ Id. The following facts are
equivalent:
(i) f is essential with respect to B;
(ii) there exists a set {L∗

1, . . . , L
∗
n,N} of linear forms, generating M, such that:

(a) N is a regular form both for S/Hsat , where H = (B1)S, and for S/Isat ;
(b) ∀t ∈ N, fN t /∈ L, where L = (B1, L∗

1f , . . . , L
∗
nf ) .

Proof. (i) ⇒ (ii) As the union of the primes associated to Hsat or to Isat cannot coincide with M, we choose N ∈ M regular
both for S/Hsat and S/Isat . Let us remark that

(+) N does not divide f ; otherwise f = f1Nu
∈ I and N regular for S/I would imply f1 ∈ I, so that f would not satisfy

the condition f /∈ (Id−1)S.
A dehomogenization with respect to N gives that I∗ = (f∗,H∗) and H∗ are different (see Proposition 3.1(iii)) and, as a

consequence, there exists a maximal ideal P = (L1, . . . , Ln) ⊂ R = S∗ such that

(∗) I∗RP ≠ H∗RP.

Let us set L = (H, fL∗

1, . . . , fL
∗
n) and consider L∗ = (H∗, f∗L1, . . . , f∗Ln); we prove that

L∗RP ≠ I∗RP.

Otherwise, in RP, we would have

f∗ =


n−

i=1

aiLi


f∗ + h∗ for some h∗ ∈ H∗RP,

so that (1 −
∑n

i=1 aiLi)f∗ ∈ H∗RP. As 1 −
∑n

i=1 aiLi is invertible in RP, this implies f∗ ∈ H∗RP, a contradiction to (∗). As a
consequence, we have I∗ ≠ L∗. Hence, (∀t) fN t /∈ L, for, otherwise, we would find, by dehomogenization with respect to
N , that f∗ ∈ L∗, which implies I∗ = L∗.

(ii) ⇒ (i) This implication comes immediately as (b) implies: (∀t) fN t /∈ (B1)S and, as a consequence, (∀t) fMt
⊄ H; so,

condition (ii) (b) is sufficient to imply (i). �
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Remark 1. Clearly it is enough to verify condition (b) for t ≫ 0.

Remark 2. If dim S/I = 1, condition (b) can be replaced by the following: (b′) f is a separator for S/L( see [1] ). In fact, in this
case the definition of separator is meaningful and condition (b) can be restated as: dim K (S/L)t = dim K (S/I)t + 1, t ≥ d.
This relation, with condition (+), is equivalent to saying that f is a separator for S/L. �

With the same notation of Proposition 3.2 and with the assumption that f is an essential generator, we can state the
following proposition.

Proposition 3.3. If I is saturated, then so is L.

Proof. Let us prove thatL = Lsat . If not,we could find an element u ∈ M, u /∈ L and a number s ∈ N such that uMs
⊂ L ⊂ I.

As I is saturated, u must be in I; as a consequence, u = aN t f + j, a ∈ K ∗, j ∈ L. But this implies fN tMs
⊂ L ⊂ I, a

contradiction, as N is regular for S/I and f is essential. �

The essentiality of an element f depends on the basis in which it is considered, as we can see in the following example.

Example 3.1. Let I ⊆ K [x, y, z] be the ideal generated by the maximal minors of the matrix

M =

z 0 0 −x
0 x 0 −y
0 0 y −z


.

A standard basis of I is B(I) = (g1, g2, g3, f ), where

g1 = x2y, g2 = y2z, g3 = xz2, f = xyz.

Wecan easily check that f is inessentialwith respect toB(I). In fact: fx = x2yz = zg1, fy = xy2z = xg2, fz = xyz2 = yg3,
so that fM ⊂ (g1, g2, g3) = H.

Let us produce a new basis, with respect to which f is essential. Choose in P2 a point not lying on f = 0, for instance
P(1, 1, 1), and replace g1, g2, g3 with generators vanishing at P , so obtaining the new basisB ′(I) = (g1− f , g2− f , g3− f , f ).
Clearly H′

= (g1 − f , g2 − f , g3 − f ) is such that (H′)sat ≠ I, as the underlying schemes differ for one point.
We observe that it is also possible to produce a standard basis B ′′(I) such that every element of it is inessential: it is

enough to replace, inM , the first three columns with the sum of each of them with the fourth (see Proposition 4.1). �

There are also situations in which a generator of I is inessential with respect to any basis containing it and every basis
contains at least an inessential element in the degree of f . This is demonstrated in the following example.

Example 3.2. Let I ⊂ K [x, y, z] be the (saturated) ideal generated by the maximal minors of the matrix

M =

y2 0 0 −x
0 z2 0 −y
0 0 x2 −z

 .
We have: B(I) = (g1, g2, g3, f ), where

g1 = x3z2, g2 = x2y3, g3 = y2z3, f = x2y2z2.

It is immediate to see that fx = y2g1, fy = z2g2, fz = x2g3, so that fM ⊆ H = (g1, g2, g3).
In this case, every standard basis of I must contain an element f ′ in degree 6, giving rise to the same ideal H; moreover,

f ′ must satisfy the relation f ′
= kf + h, k ∈ K , h ∈ H. As a consequence, f ′M ⊆ H is still verified, so that f ′ is inessential

with respect to any basis containing it. �

Taking into account the situation described in Example 3.2, we give the following definition.

Definition 3.2. An element f ∈ Id is strongly inessential (s.i.) iff f /∈ (Id−1)S and it is inessential with respect to any standard
basis containing it. Analogously, an element f ∈ Id is strongly essential (s.e.) iff f /∈ (Id−1)S and it is essential with respect
to any standard basis containing it.

Proposition 3.4. A strongly inessential generator cannot have the minimal degree α(I).

Proof. Let us consider a basis B(I) = (f , h1, . . . , hr), where deg f ≤ deg h1 ≤ · · · ≤ deg hr . We prove that if f is
inessential then it is possible to replace each hi with an h′

i such that the behaviour of h′

i with respect to essentiality is equal
to the one of hi and f is essential with respect to B ′(I) = (f , h′

1, . . . , h
′
r). To this aim, we choose a point P ∈ Pn and a linear

form z such that f (P) ≠ 0 and z(P) ≠ 0. In every linear system hi + λizti f , where ti = deg hi − deg f and λi ∈ K , there is
a form h′

i = hi + aizti f such that h′

i(P) = 0. As a consequence, f is essential with respect to B ′(I). �

Corollary 3.1. If I is generated in minimal degree, then I admits a standard basis of essential elements.
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Proof. If B = (f1, . . . , fr) is any standard basis for I and if fi is its first inessential generator, then, thanks to Proposition 3.4,
we can find a basis B ′

= (f ′

1, . . . , f
′

i , . . . , f
′
r ), where f ′

j = fj + ajfi with ai = 0, to which fi = f ′

i is essential. Moreover, it is
easy to check that f ′

j is still essential for j < i ( see Lemma 5.1). So, at any step, the basis B can be replaced by another basis
with one more essential element. �

With a reasoning very similar to the one of Proposition 3.4, we can prove the following proposition.

Proposition 3.5. Let B(I)= (h1, . . . , hm, f , g1, . . . , gk), where deg h1 ≤ · · · ≤ deg hm < deg f ≤ deg g1 ≤ · · · ≤ deg gk
and f is inessential with respect to B(I). If there exists a point P ∈ Pn such that hi(P) = 0, i = 1 . . .m, and f (P) ≠ 0, then
there exist g ′

1, . . . , g
′

k such that f is essential for B ′(I) = (h1, . . . , hm, f , g ′

1, . . . , g
′

k).

Let us observe that the requirement of Proposition 3.5 implies f /∈ (h1, . . . , hm)
sat ; on the other hand, f ∈ (h1, . . . , hm)

sat

implies f is s.i., but the converse is not true (which we will see in Example 4.1, where g3 /∈ (g1, g2)sat , and g3 is s.i.).
More generally, we would like to investigate the following problems:

A. Given a standard basis B(I), find all its elements of a given degree which are essential with respect to it.
B. Check how the ‘‘nature’’ (essentiality–inessentiality) of f varies with the basis containing it.
C. Check how the number of essential elements in a given degree varies with the chosen basis.

4. The case of perfect height 2 ideals

If I is a perfect codimension 2 ideal (for instance, the ideal of a 0-dimensional scheme in P2), we can give an answer to
both problems A. and B. in terms of a Hilbert–Burch matrixM(I)with respect to B(I). If fr is the rth element of B(I), let us
denote ICr ⊂ S = K [y0, . . . , yn] the ideal generated by the entries of the rth column of M(I). Also, let M be the irrelevant
maximal ideal of S. With this notation, we can state the following proposition.

Proposition 4.1. Let I be a perfect codimension 2 ideal of S. Then fr ∈ B(I) is inessential for B(I) iff the following condition is
satisfied

∃t ∈ N such that Mt
⊆ ICr . (1)

Proof. From the definition of ICr we get

ICr fr ⊆ H = (B(I)− fr). (2)

Conditions (1) and (2) imply

Mt fr ⊆ H, (3)

which says that fr is inessential.
Vice versa, (3) implies the existence of syzygies whose rth components generate Mt , so that Mt

⊆ ICr . �

Remark 4.1. Proposition 4.1 can be restated reducing the problem to the affine situation. Let L be any linear form of S,
regular for S/Hsat , and let I∗,H∗, ICr∗ be the dehomogenization of I,H, ICr , respectively. Then fr is inessential iff ICr∗ = R,
where R is the dehomogenization of S with respect to L.

Let us now pass to problem B. It is well known that a change of a standard basisB(I)= (g1, . . . , gr , . . . , gm) is equivalent
to a change of its matrix M(I), realized by repeatedly replacing a column Cr with C ′

r =
∑

i tirCi, where T = (tir) is an
invertible matrix with trr ∈ K ∗ and tir = 0 if deg gi < deg gr . So, Proposition 4.1 gives rise to the following corollary.

Corollary 4.1. Let gr ∈ B(I) be the generator corresponding to the column Cr of M(I). Then gr is s.i. iff the entries of every
C ′
r =

∑
j trjCj, trr ∈ K ∗, generate an ideal IC ′

r
satisfying condition (1) of Proposition 4.1.

Let us consider again Examples 3.1 and 3.2 from this point of view. In Example 3.1, the ideals generated by the entries of
the columns Ci, i = 1 . . . 4, are respectively: IC1 = (z), IC2 = (x), IC3 = (y), IC4 = (x, y, z). The only one satisfying the
condition of Proposition 4.1 is IC4 , so that the only inessential element is f .

Now, let us replace C4 with a new column C ′

4, so that the fourth generator becomes essential. We have :
tC ′

4 = (−x + t1z − y + t2x − z + t3y), ti ∈ K .

The ideal IC ′
4
generated by C ′

4’s entries cannot contain a power of M iff the linear system
−x + t1z = 0
−y + t2x = 0
−z + t3y = 0

has proper solutions, that is iff t1t2t3 = 1. In particular, choosing t1 = t2 = t3 = 1, we find again the basis B ′(I) already
obtained with another technique.

In Example 3.2 the column corresponding to f is the fourth; it cannot be changed (apart from the multiplication by a
scalar) for degree reasons. So, we find again that any standard basis has an inessential generator in degree 6. Let us observe
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that, in this example, the inessential generator is the only generator of maximal degree, so that its corresponding ideal H

does not depend on the standard basis. In the following example the considered ideal I has, in every standard basis, an
inessential element of degree 11, even if 11 is not the greatest degree of its generators and another inessential element in
the maximal degree in which there are two generators.
Example 4.1. Let I ⊂ K [x, y, z] be the ideal generated by the maximal minors of the matrix

M(I) =

 0 x5 0 −y3 0
0 0 x3 z2 −y2

0 0 y2 −x 0
y3 0 z2 0 −x

 .
We have B(I)= (gi), i = 1 . . . 5, where

g1 = x10, g2 = y10, g3 = x6y5, g4 = x5y7, g5 = x5y5z2 + x9y3.

The ideals generated by the entries of the columns Ci, i = 1 . . . 5, are respectively

IC1 = (y3), IC2 = (x5), IC3 = (x3, y2, z2), IC4 = (y3, z2, x), IC5 = (x, y2).

This gives: IC3 ⊃ M5, IC4 ⊃ M4, while IC1 , IC2 , IC5 do not contain any power of M. As a consequence, g1, g2, g5 are
essential, while g3 and g4 are inessential. Perform a general basis change of I by replacing only the third column C3 with
C ′

3 = kC3 + PC4 + QC5, where k ∈ K ∗, P and Q are linear forms. Then

IC ′
3

= (Py3, kx3 + Pz2 − Qy2, ky2 − Px, kz2 − xQ ).

It is immediate to verify that the system obtained by annihilating the generators of IC ′
3
has the unique solution x = y =

z = 0, for every choice of k, P,Q . This means that the only prime ideal associated to IC ′
3
is M, so that g3 is still inessential.

Analogously, perform a general change of basis by replacing only the fourth column C4 with C ′

4 = k1C4+k2C5, k1 ∈ K ∗, k2 ∈

K , so that

IC ′
4

= (−k1y3, k1z2 − k2y2,−k1x,−k2x) = (x, y3, k1z2 − k2y2).

Also in this case the generators of IC ′
4
are annihilated only by x = y = z = 0, so that g4 is still inessential.

5. The general case

Now, we go back to the general case of a homogeneous ideal I ⊂ S = K [y0, . . . , yn], not necessarily generated by the
maximal minors of anm × (m + 1)-matrix. As usual, M will denote the irrelevant ideal of S.

Let f ∈ Id be any form that can be included in a standard basis B(I), or, equivalently, that does not lie in Id−1S. As we
just noticed, the fact that f is essential depends on the basis B(I). Our aim is to investigate how the nature of f with respect
to essentiality (briefly: the nature of f) changes with B(I). Some lemmas will be useful.
Lemma 5.1. Let B = (f1, . . . , fi−1, f , fi+1, . . . , fm), B ′

= (f ′

1, . . . , f
′

i−1, f + h, f ′

i+1, . . . , f
′
m) be two standard bases of I, where

h, f ′

j ∈ H(f , B) = (f1, . . . , f̂ , . . . , fm). Then f ∈ Id is essential (resp. inessential) with respect toB iff f +h is so with respect toB ′.
Proof. It is enough to observe that: H(f , B) = H(f+h, B′). As a consequence

(f + h)Mt
⊂ H(f+h, B′) ⇔ fMt

⊂ H(f , B). �

Hence a basis change acting only on B(I)−{f } does not modify f ’s nature, as it does not modify H(f , B). In particular, this
situation happens for a basis change acting on elements of degree different from d.
Lemma 5.2. The nature of f = fi ∈ B(I) = (f1, . . . , fm), with respect to another basis B ′(I) containing it, is the same as with
respect to a basis of the type B = (fj + ajf ), where j = 1 . . .m, ai = 0 and the aj are properly chosen.
Proof. Let B ′(I) = (f ′

1, . . . , f
′

i−1, f , f
′

i+1, . . . , f
′
m) be any other basis linked to B(I) by the relation B ′(I) = B(I)T , where T

is an invertible matrix. The submatrix Tii, obtained from T by deleting the row and the column of index i, is still invertible
and acts on B1 = (f1, . . . , f̂i, . . . , fm). The basis change acting on B ′(I) with T−1

ii produces a basis B as described in the
statement and the nature of f with respect to it is the same that it had with respect to B ′(I), thanks to Lemma 5.1. �

The previous lemma gives immediately the following statement.
Proposition 5.1. To decide the nature of f = fi ∈ B = (f1, . . . , fm) when B is replaced by any B ′ containing it, it is enough to
consider just the bases B obtained from B by replacing fj with (fj + ajf ), j ≠ i, for all (degree-allowed) forms aj.
Remark. Let us observe that Corollary 4.1 can be viewed as a consequence of the previous Proposition, as the replacement
of Cr with C ′

r corresponds to a replacement of gi with gi − trigr , i = 1 . . .m, i ≠ r.
Lemma 5.3. Let c, c1 be elements of B(I) in the same degree d, both inessential (resp. essential), and c s.i. (resp. s.e.). Then a
replacement of c with c + αc1, α ∈ K , cannot change the nature of c1.
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Proof. Let us consider the new basis B ′(I) in which c is replaced by c + αc1 = c ′, α ≠ 0. The nature of its element c1
does not change if we replace it with c1 − α−1c ′

= −α−1c; this shows that c1 preserves its former nature with respect to
B ′(I). �

Now we point our attention to the bases having the greatest (respectively, smallest) number of essential generators in a
chosen degree d; let us denote any such basis B(d)(I) ( resp. C(d)(I)) and νe(d) (resp. µe(d)) the number of their essential
entries in degree d.
Proposition 5.2. There exist bases BMax(I) (resp. Bmin(I) ) having, in every degree d, exactly νe(d) (resp. µe(d)) essential
generators.
Proof. Wewill prove the statement forBMax ; the same reasoning can be repeated forBmin. As usual, we letα be theminimal
degree of an element of I. Let us denote by Bd

M a basis satisfying the required condition for every degree ≤d. We will prove
the existence of a Bd

M , for every d, using induction on d. For d = α, we can chose Bα
M = B(α), for some choice of B(α).

Now, let us suppose the existence of a Bd
M and produce a Bd+1

M . To obtain Bd+1
M it is sufficient to replace in B(d+1) the part of

degree ≤d with the analogous of the chosen Bd
M and modify the generators of larger degree as follows. Let us denote by φi

any element ofBd
M of degree> d andψi any element ofB(d+1) of degree>d. We canwriteψi =

∑
j ajφj+δi, where δi ∈ IdS.

Let us setψ ′

i = ψi − δi =
∑

j ajφj. We claim that we obtain a Bd+1
M by replacing the generators of Bd

M of degree ≥d+ 1 with
the ψ ′

i . In fact, with respect to this basis, any ψ ′

i has the same nature of the corresponding ψi with respect to Bd+1
M , so that

in degree d + 1 we have the maximum number of essential elements; moreover, the elements of degree ≤d have the same
nature with respect to Bd

M and with respect to Bd+1
M , as the change we made in degree>d does not involve them. �

Definition 5.1. Every basis satisfying the condition of Proposition 5.2 will be called maximal (resp. minimal ) with respect
to essentiality or, briefly, an e-maximal basis (resp. e-minimal basis). Its number of essential elements will be denoted νe(I)
(resp. µe(I)).

As a consequence of Proposition 4.1, using the standard notation ν(I) to denote the cardinality of B(I), we can state the
following corollary.
Corollary 5.1. If I ⊂ K [y0, . . . , yn], n ≥ 2, is a perfect height 2 ideal satisfying the condition ν(I) ≤ n + 1 , then every B(I)
is an e-maximal basis (more precisely, no basis contains inessential elements).
Proof. As every Hilbert matrix of I has at most n rows, it is enough to observe that Mh, for every natural number h, cannot
be contained in an ideal generated by at most n forms. �
Remark. Thanks to Dubreil’s Theoremwhich says that ν(I) ≤ α(I)+1, the condition of Corollary 5.1 is necessarily verified
if α(I) ≤ n, that is if the minimal degree of a hypersurface containing the corresponding scheme is ≤n.

Now we come back to the general situation.
Proposition 5.3. Let B(I) and B ′(I) be two bases such that, in degree d, all their inessential (resp. essential) elements are s.i.
(resp. s.e). Then the subspace of Id/(Id−1S1) generated by the inessential (resp. essential) elements ofB(I) coincides with the one
generated by the inessential (resp. essential) elements of B ′(I).
Proof. Let us consider the elements of B(I) and B ′(I) in degree d:

Bd(I) = (b1, . . . , bh, c1, . . . , ck); B ′

d(I) = (b′

1, . . . , b
′

h′ , c ′

1, . . . , c
′

k′),

where bi, b′

i are essential and cj, c ′

j are strongly inessential.
In Id/Id−1 we have

c ′

j =

k−
i=1

γici +
h−

i=1

βibi.

Let us prove that βi = 0, i = 1 . . . h, so that the subspace generated by (c ′

1, . . . , c
′

k′) shall be inside the one generated by
(c1, . . . , ck). As we can exchange the role of B(I) and B ′(I), that will be enough to complete the proof. So, let us suppose
βi ≠ 0 for some i and get a contradiction. In fact βi ≠ 0 implies that, in B(I), bi can be replaced by c ′

j without changing its
nature, against the hypothesis that c ′

j is inessential with respect to every basis containing it.
By chance, let us observe that h = h′, k = k′.
Interchanging inessential and essentialwe prove the other part of the statement. �
Proposition 5.3 gives immediately the following consequences.

Corollary 5.2. Two baseswhose inessential (resp. essential) elements are s.i. (resp. s.e.)must have the same number of inessential
(resp. essential) elements, degree by degree.
Theorem 5.1. A standard basis is e-maximal (resp. e-minimal) iff its inessential (resp. essential) elements are strongly inessential
(resp. strongly essential).
Proof. We prove the statement for the e-maximal case, as the e-minimal one is analogous.

First we prove that the inessential elements of an e-maximal basis BM are s.i. Let c ∈ BM be inessential; thanks to
Proposition 5.1, it is enough to check that c is still inessential with respect to the basis obtained from BM by replacing each
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of its elements different from c , say fi, with fi +aic = f ′

i . After such a replacement the nature of f ′

i is the same as the one of fi,
so that a change of nature of c would imply the existence of a basis with onemore essential element, against themaximality
of BM .

Vice versa, let B be any basis whose inessential elements are s.i. We just proved that every e-maximal basis BM has such
a property, so that Corollary 5.2 states that B and BM have the same number of s.i. elements. As a consequence, B is also
e-maximal. �

Now, let us give a construction of an e-maximal (resp. e-minimal) basis.

Proposition 5.4. Starting from any basis B(I) it is possible to produce an e-maximal basis (resp. e-minimal basis) containing all
the s.i. (resp. s.e.) elements of B(I).

Proof. Let us consider first the case of an e-maximal basis.
Thanks to Theorem 5.1, the aim is to produce a basis whose inessential elements are s.i. So, we start to consider the

inessential, but not s.i., generators of lowest degree, following the order in which they appear in B(I): let c1, deg c1 = d,
be the first of them. The replacement of some other elements fi ∈ B(I)with f ′

i = fi + aic1 makes c1 essential ( Lemma 5.2),
while f ′

i , with respect to the new basis, has the same nature as fi (Lemma 5.1). We observe that the s.i. elements of degree
d are not impacted, thanks to Lemma 5.3. Let us denote B1(I) the new basis at this step, in which c1 is essential and, as a
consequence, the number of inessential, but non-s.i., elements has decreased . Then we go on dealing with B1(I) just as we
did with B(I). After a finite number of steps, we get a basis Bu(I)whose inessential elements are s.i.

Analogously, it is possible to produce an e-minimal basis, starting from any basis B(I): it is enough to replace inessential
with essential in the previous construction. �

Now we turn our attention to the dehomogenization I∗ of I with respect to a generic linear form L and to the system of
generators B∗ obtained from B(I) by dehomogenizing every form appearing in it. In general, B∗ is not a basis for I∗ and
our aim is to find its subsets that are bases and, among them, the ones of minimal cardinality.

The definition of inessential element can be generalized as follows.

Definition 5.2. A subset T of B(I) is inessential iff Isat
= (B(I)− T )sat .

Let us observe that if T = {t}, then T is an inessential subset of B(I) iff t is inessential as an element.
The following proposition, similar to Proposition 3.1, gives conditions equivalent to the one defining an inessential set

T = {c1, . . . , ck}.

Proposition 5.5. Let B(I)= (b1, . . . , bh, c1, . . . , ck),where ci is inessential and degci ≤ degci+1 for i = 1 . . . k. The following
facts are equivalent.

(i) For any i = 1 . . . k, ci is inessential with respect to the basis Bi = (b1, . . . , bh, c1, . . . , ci), generating an ideal Ai.
(ii) If A is the ideal generated by (b1, . . . , bh), then Isat

= Asat .
(iii) For every form αij, where degαij = degcj −degci, i = 1 . . . k and j = (i+1) . . . k, the element ci is inessential with respect

to the standard basis B(αij) = (b1, . . . , bh, c1, . . . , ci, ci+1 + αi,i+1ci, . . . , ck + αikci) of I.
(iv) For any i = 1 . . . k, ci is inessential with respect to every standard basis of I of the type (b1, . . . , bh, c1, . . . , ci, fi+1, . . . , fk).

Proof. (i) → (ii) It is enough to observe that ci+1 ∈ Asat
i implies (Ai+1)

sat
= Asat

i .
(ii) → (i) The hypothesis implies that ci is inessential with respect to (b1, . . . , bh, ci) and, as a consequence, with respect

to (b1, . . . , bh, c1, . . . , ci).
(i)→ (iii) This is obvious, because (b1, . . . , bh, c1, . . . , ci−1)S ⊂ (b1, . . . , bh, c1, . . . , ci−1, ci+1 +αi,i+1ci, . . . , ck +αikci)S.
(iii) → (i) We use induction on k − i.
If k − i = 0 both conditions say that ck is inessential with respect to B(I).
Let us suppose the implication is true for values less than or equal to k − (i + 1) and prove it for k − i. Induction says

that ci+1, . . . , ck ∈ (b1, . . . , bh, c1, . . . , ci)sat . So, it is enough to prove that ci ∈ (b1, . . . , bh, c1, . . . , ci−1)
sat or, equivalently,

that ci is inessential with respect to Bi. If not, according to Proposition 3.2 the essentiality of ci with respect to Bi would
mean that there exists a set {L1, . . . , Ln,N} of linear forms generating M such that N is regular both for S/(Ai−1)

sat and for
S/(Ai)

sat , and moreover

∀t ∈ N, ciN t /∈ (Bi−1, ciL1, . . . , ciLn), t ≫ 0. (4)

Hence, we will prove that it is possible to find vj ∈ K , j = (i + 1) . . . k, such that

ciN t /∈ (Bi−1, ci+1 + vi+1Nui+1ci, . . . , ck + vkNukci, ciL1, . . . , ciLn), t ≫ 0, (5)

so that ci is essential with respect to B(αij), where αij = vjNujci, uj = deg cj − deg ci ≥ 0, contradicting condition (iii).
To this aim, it is enough to prove that the vj’s can be chosen to realize the inclusion ((cj + vjNujci)S)t ⊆

(Bi−1, ciL1, . . . , ciLn), t ≫ 0, j > i, or equivalently

(cj + vjNujci)Ltw ∈ (Bi−1, ciL1, . . . , ciLn), t ≫ 0, j > i, w = 1 . . . n (6)
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and
(cj + vjNujci)N t

∈ (Bi−1, ciL1, . . . , ciLn), t ≫ 0, j > i. (7)
Now, (6) is equivalent to : cjLtw ∈ (Bi−1, ciL1, . . . , ciLn, ciN) = Bi, t ≫ 0, w = 1 . . . n. But we already observed that

induction implies cj ∈ (b1, . . . , bh, c1, . . . , ci)sat , j > i, hence (6) is true.
Let us consider (7). Using induction, we have: ∃t0, cjN t0 = h1 + ciP + αciN t1 , where h1 ∈ Ai−1, P ∈ (L1, . . . , Ln), α ∈ K

and t1 = t0 + (deg cj − deg ci). So, to realize (7), it is enough to choose vj = −α.
(iii) ↔ (iv) It is enough to use Lemma 5.2. �
An immediate consequence of the previous proposition and of Theorem 5.1 is the following corollary.

Corollary 5.3. If B(I) is an e-maximal basis, then the set of all its inessential elements is an inessential set.
In the special case of perfect height 2 ideals, Proposition 4.1, Corollary 4.1 and Proposition 5.5 give rise to the following

proposition.
Proposition 5.6. Let M(I) be a Hilbert matrix with respect to the basis B(I). The subset T , |T | = s, of B(I) corresponding
to the columns Ci1 , . . . , Cij , . . . , Cis , i1 < i2 < · · · < is, of M(I) is inessential iff, ∀ij ∈ (i1, . . . , is), the following condition is
satisfied:

(*) For every choice of the forms tij,ih , where h ≥ j and deg tij,ih = deg gh − deg gj, the entries of

C ′

ij =

−
h≥j

tij,ihCih , tij,ij = 1

generate an ideal IC ′
ij
containing some power of the irrelevant ideal M.

Definition 5.3. A subset T ⊂ B(I) is called amaximal inessential set ofB(I) iff it is inessential and it is not properly included
in any other inessential set of B(I).
Remark 5.1. An inessential set of maximal cardinality will be clearly amaximal inessential set, but, in general, the converse
is not true.

The interest of maximal inessential sets lies in the following statement.
Proposition 5.7. Let B(I) = (b1, . . . , bh, c1, . . . , ck), where T = (c1, . . . , ck) is a maximal inessential set. Then, in any
dehomogenization I∗ of I with respect to a linear form L, the set BL(I∗) = ((b1)∗, . . . , (bh)∗) is a set of generators of I∗.
Moreover, in the K-space M1, the subset of the linear forms L such that BL(I∗) is not a basis of I∗ is a finite union of proper linear
subspaces (briefly, we can say that BL(I∗) is generically a basis).
Proof. The first assertion comes immediately from the definition of inessential set. In fact, ci ∈ (b1, . . . , bh)sat means that

∀L ∈ M1, (∃t) ciLt ∈ (b1, . . . , bh).

As a consequence, (ci)∗ ∈ ((b1)∗, . . . , (bh)∗), in the dehomogenization with respect to L.
The second part of the statement can be proved by observing that (bi)∗ ∈ ((b1)∗, . . . , (bh)∗) is equivalent to biLt ∈

(b1, . . . , b̂i, . . . , bh), for some t . As

biL
tj
j ∈ (b1, . . . , b̂i, . . . , bh), j = 1, 2 ⇒ bi(L1 + L2)2sup(t1,t2) ∈ (b1, . . . , b̂i, . . . , bh),

the set of all the linear forms L for which BL(I∗) is not a basis is a finite union of linear subspaces Vi of M1. The equality
Vi = M1 cannot hold, as it would imply bi ∈ (b1, . . . , b̂i, . . . , bh)sat , against the hypothesis on the maximality of T . �

As a consequence of Proposition 5.7, we can say that a subset of a standard basis B(I) gives rise to a minimal basis for
the dehomogenization of I with respect to a generic linear form iff it is the complement, in B(I), of an inessential subset
with maximal cardinality.
Lemma 5.4. Let B(I)= (b1, . . . , bh, c1, . . . , ck), where T = (c1, . . . , ck) is an inessential set. In a basis B ′(I) = (b′

1, . . . , b
′

h,
c ′

1, . . . , c
′

k), where (b′

1, . . . , b
′

h)S = (b1, . . . , bh)S = L, the subset T ′
= (c ′

1, . . . , c
′

k) is still inessential.
Proof. The hypothesis says that T ⊂ Lsat . As a consequence, the inclusion T ′

⊂ Lsat also holds. �
The following proposition says that we can find an inessential set of maximal cardinality among the inessential sets of

the e-minimal bases.
Proposition 5.8. Let Bm(I) be the e-minimal basis produced for B(I) according to Proposition 5.4. For every inessential subset
V ⊂ B(I), there exists an inessential subset V ′

⊂ Bm(I) with the same cardinality as V .
Proof. Bm(I) is obtained from B(I) by replacing every element f ∈ B(I)with f ′

= f +
∑

ajfj, where the fj’s are elements
outside V . As a consequence, V is replaced by V ′ so that V and V ′ have the same cardinality. We can now apply Lemma 5.4
where T = V . �

From the previous proposition it is immediate to get the following corollary.
Corollary 5.4. The maximal cardinality of the inessential subsets of Bm(I) is not less than the one of the inessential subsets
of B(I).
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Now we point our attention to the bases whose inessential elements form an inessential set.

Definition 5.4. A basis B(I) whose essential elements generate an ideal E such that Esat
= Isat is called an essential basis

(briefly: E-basis).

Let us produce an ideal with an E-basis containing exactly two inessential elements, both in maximal degree, each of
which is s.i.

Example 5.1. Let I ⊂ K [x, y, z] be the ideal generated by the maximal minors of the matrix

M(I) =

z2 0 0 y x
0 x2 + y2 0 0 y
0 0 0 x z
0 0 x2 − y2 z 0

 .
Any linear combination of the last two columns produces a newcolumngeneratingM; thismeans that the two generators

of maximal degree are strongly inessential. More precisely, I = (g1, . . . , g5), where: g1 = (x4 − y4)(x2 − yz), g2 =

xyz2(x2 − y2), g3 = z4(x2 + y2), g4 = z3(x4 − y4), g5 = xz2(x4 − y4) and L = (g1, g2, g3) is such that Lsat
= I = Isat , as

can be seen with a direct computation; however, the last assertion is a consequence of Definition 5.2 and Proposition 5.6.

Now, our aim is to produce, starting from any standard basisB(I), an E-basisBE(I), containing all the essential elements
of B(I).

Lemma 5.5. Let B(I) = (b1, . . . , bh, c1, . . . , ck) be any standard basis for I, where bi is essential for i = 1 . . . h and ci is
inessential for i = 1 . . . k. There exists a maximal inessential set V ⊂ B(I) such that

ci /∈ V ⇒ {ci, V ∩ (ci+1, . . . , ck)} is not inessential. (8)

Proof. We define V , step by step, by means of the following conditions:

(i) ck ∈ V ;
(ii) ci ∈ V for i < k ⇔ ci ∈ (B(I)− {ci, V ∩ (ci+1, . . . , ck)})sat .

Condition (8) coincides with (ii) and the inessentiality of V is an immediate consequence of the definition of inessential set.
Moreover, condition (8) implies the maximality of V . �

Proposition 5.9. Starting from any basisB(I), it is possible to produce an E-basisBE(I), whose set of essential elements includes
the ones of B(I).

Proof. Let us focus our attention on themaximal inessential set V = (v1, . . . , vr) defined in Lemma 5.5. Condition (8) says
that every inessential element ci outside V becomes essential by a replacement of vj with v′

j = vj +
∑

aijci, where the aij
are properly chosen step by step (see Proposition 5.5). Moreover, Lemma 5.4 assures that the subset V ′

= (v′

j), j = 1 . . . r
is inessential in BE(I). As a consequence, BE(I) turns out to be an E-basis. �

Remark 5.2. Let us observe that themaximal inessential set V ⊂ B(I) satisfying condition (8) is not, in general, of maximal
cardinality among the inessential sets of B(I). However, it may happen that, in another basis B ′(I), there exists an
inessential set of maximal cardinality satisfying condition (8). To understand this situation, let us consider the following
example.

Example 5.2. We consider the ideal I ⊂ S = K [x, y, z], generated by the maximal minors of the matrix

M =

yz 0 0 x2 x
0 x2 y2 0 y
0 0 x2 z2 z
0 0 z y 0

 .
I is a perfect height 2 ideal withM as amatrix of syzygies. In fact its generators g1, . . . , g5, corresponding to the columns

C1, . . . , C5, are respectively:

g1 = x3(−xz2 − x2y + z3), g2 = y2z(y2z − x2y + z3),
g3 = −x2y2z2, g4 = x2yz3, g5 = x2yz(x2y − z3)

and they do not have a common factor.
Thanks to Proposition 4.1, we see that, with respect to the basis B(I)= (g1, . . . , g5), g1, g2 are essential, while g3, g4, g5

are inessential. More precisely, by means of Proposition 5.6, we can verify that T1 = {g3, g4} and T2 = {g5} are maximal
inessential sets. Moreover, I cannot have an inessential set with three elements; otherwise, I would be the saturation of an
ideal L generated by two elements, but such a L is already saturated. So, T1 is an inessential set of maximal cardinality that
does not satisfy condition (8), while T2 is the maximal inessential set of B(I) satisfying condition (8).
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Concretely, the situation is as follows. In the generic dehomogenization I∗ of Iwith respect to a regular linear form,B(I)
gives rise to two different bases of I∗:

B1(I∗) = ((g1)∗, (g2)∗, (g5)∗), B2(I∗) = ((g1)∗, (g2)∗, (g3)∗, (g4)∗).

In S, B1 = (g1, g2, g5) generates an ideal I1, defining the same projective scheme as I, whose saturation is I. In I1, the basis
B1 consists of essential elements; however, in B(I) g5 is not essential.

Similarly, B2 = (g1, g2, g3, g4) generates an ideal I2, defining the same projective scheme as I, that is such that
(I2)

sat
= I. The entries of B2 are essential and they remain essential in BE(I) = (g1, g2, g3, g4, g5 + yg3 − xg4), which

turns out to be an E-basis; unfortunately, B2(I∗) is not of minimal cardinality.
Now, let us consider the new basis B ′(I) = (g ′

1, . . . , g
′

5), where

g ′

1 = g1, g ′

2 = g2 + g4, g ′

3 = g3 + g4, g ′

4 = g4, g ′

5 = g5,

corresponding to the following matrix of syzygies

M ′(I) =

yz 0 0 x2 x
0 x2 y2 −x2 − y2 y
0 0 x2 z2 − x2 z
0 0 z y − z 0

 .
Proposition 5.6 says that {g ′

4, g
′

5} is an inessential set of B ′(I), which turns out to be of maximal cardinality. Moreover,
{g ′

4, g
′

5}, as a subset of B ′(I), satisfies condition (8). So, B ′(I) is an E-basis, whose essential elements give rise to a basis of
I∗ of minimal cardinality.
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