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Abstract

In this work a nine-nodes shell finite element, formulated in the framework of Carrera’s Unified
Formulation (CUF), is presented. The exact geometry of cylindrical shells is considered. The
Mixed Interpolation of Tensorial Components (MITC) technique is applied to the element in order
to overcome shear and membrane locking phenomenon. High-order equivalent single layer theories
contained in the CUF are used to perform the analysis of shell structures. Benchmark solutions
from the open literature are taken to validate the obtained results. The mixed-interpolated shell
finite element shows good properties of convergence and robustness by increasing the number of
used elements and the order of expansion of displacements in the thickness direction.

1 Introduction

The efficient load-carrying capabilities of shell structures make them very useful in a variety
of engineering applications. The continuous development of new structural materials leads to
ever increasingly complex structural designs that require careful analysis. Although analytical
techniques are very important, the use of numerical methods to solve shell mathematical models
of complex structures has become an essential ingredient in the design process. The finite element
method has been the fundamental numerical procedure for the analysis of the shells.
The most common mathematical models used to describe shell structures may be classified in
two classes according to different physical assumptions. The Koiter model [1] is based on the
Kirchhoff hypothesis. The Naghdi model [2] is based on the Reissner-Mindlin assumptions that
take into account the transverse shear deformation. It is known that when a finite element
method is used to discretize a physical model, the phenomenon of numerical locking may arise
from hidden constrains that are not well represented in the finite element approximation. In
the Naghdi model both transverse shear and membrane constraints appear as the shell thickness
becomes very small, thus the locking may arise. A locking phenomenon that is particularly well
understood is the shear locking of plates [3]. In shells the shear locking is still present, but
another and more severe type of locking, referred to as membrane locking, appears [4][5]. The
most common approaches proposed to overcome the locking phenomenon are the use of standard
displacement formulation with higher-order elements (see [6],[7]). The numerical results show
that high-order elements are able to contrast locking for the shell problem in its displacement
formulation. However, in the case of very small thickness and when the element is not of degree
as high as needed, the numerical solution exhibits a loss in the rate of convergence [5]. Another
remedy for the locking is the use of several techniques of reduced-selective integration (see [8],[9])
but they fail because the additional degrees of freedom at the center of the element produce
spurious modes. Finally, in scientific literature it is possible to find many examples of modified
variational forms to overcome the locking problem (see [10]-[15]) and they provide good results.

In this paper we propose a new shell finite element based on the refined Equivalent Single
Layer (ESL) theories contained in the Carrera’s Unified Formulation [16]-[20]. The classical
models, such as Koiter and Naghdi models, can be also obtained from an ESL theory with linear
expansion of displacements along the thickness by applying penalty techniques. In the wake of
Bathe et al. [21]-[24], the Mixed Interpolation of Tensorial Components (MITC) method has
been extended to variable kinematic models for the case of shell elements with nine nodes. The
aim of the work is to prove that the extension of MITC to high-order ESL shell elements is
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feasible and to show that such an extension is numerically efficient. The performance of the new
element is tested by solving benchmark problems involving very thin shells. The results show
both the properties of convergence and robustness.
The outline of the paper is the following. In Section 2 we recall the main features of the Unified
Formulation. In Section 3 the geometry of cylindrical shells is described. In Section 4 the MITC
technique is extended to Unified Formulation. Section 5 deals with the governing equations. In
Section 6 we report several numerical results. Section 7 contains the conclusions that can be
drawn from this work.

2 Variable Kinematic model via Carrera Unified Formula-
tion

Carrera Unified Formulation (CUF) is a technique which handles a large variety of bi-dimensional
models in a unified manner [16]. According to CUF, the governing equations are written in terms
of a few fundamental nuclei which do not formally depend on the order of expansion N used in
the z direction. The application of a two-dimensional method for shells permits to express the
unknown variables as a set of thickness functions depending only on the thickness coordinate
z and the corresponding variables depending on the in plane coordinates α and β. So that, a
generic variable, for instance the displacement u(α, β, z), and its variation δu(α, β, z) are written
according to the following general expansion:

u(α, β, z) = Fs(z)us(α, β), δu(α, β, z) = Fτ (z)δuτ (α, β), with τ, s = 0, ..., N (1)

Bold letters denote arrays and the summing convention with repeated indexes τ and s is assumed.
The order of expansion N goes from first to higher-order values. A Taylor expansion is employed
as thickness function F (z):

u = F0 u0 + F1 u1 + . . . + FN uN = Fτ uτ with τ = 0, 1, . . . , N (2)

F0 = z0 = 1, F1 = z1 = z, . . . , FN = zN (3)

It is possible to obtain the Naghdi model [2] from a theory with first order of expansion, by
considering a constant transverse displacement through the thickness. An appropriate application
of penalty techniques to shear correction factor leads to Koiter [1].

3 Geometry of a thin shell

Let R3 be the usual euclidean space (O, x, y, z) and let Ω be an open bounded subset of R2

with closure Ω̄. Let (ξ1, ξ2) denote a generic point of the set Ω̄. Let Φ be a smooth one-to-one
mapping of Ω̄ into R3. The middle surface S̄ of the shell (see Figure 1) is the image in R3 of the
set Ω̄ through the mapping Φ:

Φ = (Φ1,Φ2, Φ3) : Ω̄ ⊂ R2 → S̄ ⊂ R3 (4)

Thus we have S̄ = Φ(Ω̄). Let us set aα = Φ,α = ∂Φ/∂ξα. The vectors a1, a2 are linearly
independent at each point of Ω̄ and define the tangent plane to the midsurface S̄ at each point
Φ(ξ1, ξ2). Let a3 be the unit vector normal to the tangent plane. The set of vectors a1,a2,a3

define the covariant basis at the point Φ(ξ1, ξ2). The first fundamental form is aαβ = aα ·aβ , with
a = det(aαβ). Denoting by aαβ the components of the inverse matrix to (aαβ), we introduce
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the contravariant basis aα = aαβaβ and we set a3 = a3. The second fundamental form is
bαβ = a3 · aα,β = a3 · aβ,α and the following relation holds:

aαβ · bβγ = bα
γ (5)

Let us consider a cylindrical shell. In a system of Cartesian coordinates (O, x, y, z), the region
occupied by the midsurface of the shell is:

S = {(x, y, z) ∈ R3 : −L/2 < x < L/2, y2 + z2 = R2} (6)

where L and R are the length and the radius of the shell, respectively. Let us take a curvilinear
coordinate system (α, β, z) = (ξ1, ξ2, z) placed at the center of the upper part of the midsurface.
The 3D medium corresponding to the shell is defined by the 3D chart given by:

Φ(α, β, z) = φ(α, β) + za3(α, β) (7)

Then, the midsurface S of the cylindrical shell is described by the following 2D chart:




φ1(α, β) = α

φ2(α, β) = R sin(β/R)
φ3(α, β) = R cos(β/R)

(8)

With such choices, the region Ω ⊂ R2 corresponding to the midsurface S is the rectangle:

Ω = {(α, β) : −L/2 < α < L/2, −Rπ < β < Rπ} (9)

In the Unified Formulation the unknowns are the covariant components of the displacement
uτ (α, β), vτ (α, β) and wτ (α, β), for τ = 0, 1, ..., N . The strain-displacement relations are given
by the linear part of the 3D Green Lagrange strain tensor and they are:

εαα = Fτuτ,α

εββ = Fτ

[(
1 +

z

R

)wτ

R
+

(
1 +

z

R

)
vτ,β

]

εαβ = Fτ

[
uτ,β +

(
1 +

z

R

)
vτ,α

]

εαz = wτ,αFτ + uτFτ,z

εβz = Fτ

[
wτ,β − vτ

R

]
+ Fτ,z

[(
1 +

z

R

)
vτ

]

εzz = wτFτ,z

(10)

where the previous geometrical assumptions are applied. For more details about mathematical
passages, the reader can refer to [25]. These geometrical relations can be expressed in matrix
form as:

εp =(Dp + Ap)u
εn =(DnΩ + Dnz −An)u

(11)
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where subscripts (p) and (n) indicate in-plane and normal components, respectively, and the
differential operators are defined as follows:

Dp =




∂α 0 0
0 H∂β 0
∂β H∂α 0


 , DnΩ =




0 0 ∂α

0 0 ∂β

0 0 0


 , Dnz = ∂z ·Anz = ∂z




1 0 0
0 H 0
0 0 1


 , (12)

Ap =




0 0 0
0 0 1

RH
0 0 0


 , An =




0 0 0
0 1

R 0
0 0 0


 . (13)

and H = (1 + z
R ).

4 CUF extended to MITC9 shell finite element

Considering the (covariant) components of the strain tensor in the local coordinate system
(ξ, η, z), the MITC shell elements are formulated by using - instead of the strain components
directly computed form the displacements - an interpolation of these strain components within
each element using a specific interpolation strategy for each component. The corresponding
interpolation points - called the tying points are shown in figure 2 for the MITC9 shell element.

The interpolating functions are arranged in the following arrays:

Nm1 = [NA1, NB1, NC1, ND1, NE1, NF1]
Nm2 = [NA2, NB2, NC2, ND2, NE2, NF2]
Nm3 = [NP , NQ, NR, NS ]

(14)

For convenience, from this point on we indicate with the subscripts m1, m2 and m3 the quanti-
ties calculated in the points (A1, B1, C1, D1, E1, F1), (A2, B2, C2, D2, E2, F2) and (P, Q,R, S),
respectively.

According to MITC method, the strains components are interpolated on tying points as
follows:

εp =




ε11

ε22

ε12


 =




Nm1 0 0
0 Nm2 0
0 0 Nm3







ε11m1

ε22m2

ε12m3


 = [N1]




ε11m1

ε22m2

ε12m3




εn =




ε13

ε23

ε33


 =




Nm1 0 0
0 Nm2 0
0 0 1







ε13m1

ε23m2

ε33


 = [N2]




ε13m1

ε23m2

ε33




(15)

where the matrixes N1 and N2 are introduced.
Applying the finite element method (FEM), the unknown displacements are interpolated on

the nodes of the finite element by means of the Lagrangian shape functions Ni (for i = 1, ...9):

u = FτNiqτi
(16)
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where qτi
are the nodal displacements and the Unified Formulation is applied. Substituting in

eq.s (11) the geometrical relations become:

εp =Fτ (Dp + Ap)(NiI)qτi

εn =Fτ (DnΩ −An)(NiI)qτi
+ Fτ,zAnz(NiI)qτi

(17)

where I is a 3× 3 identity matrix.
If the MITC technique is applied to the strains, the geometrical relations are re-written in

the following manner:

ετ
pim

=Fτ [C3im
]qτi

ετ
nim

=Fτ [C1im
]qτi

+ Fτ,z
[C2im

]qτi

(18)

where the introduced matrixes are:

[C1im ] =[N2]




[(DnΩ −An)(NiI)]m1(1, :)
[(DnΩ −An)(NiI)]m2(2, :)
[(DnΩ −An)(NiI)](3, :)




[C2im ] =[N2]




[Anz(NiI)]m1(1, :)
[Anz(NiI)]m2(2, :)
[Anz(NiI)](3, :)




[C3im ] =[N1]




[(Dp + Ap)(NiI)]m1(1, :)
[(Dp + Ap)(NiI)]m2(2, :)
[(Dp + Ap)(NiI)]m3(3, :)




(19)

(1, :), (2, :) and (3, :) respectively indicate that the first, second or third line of the relative
matrix is considered.

5 Governing equations

This section presents the derivation of the governing equations based on the Principle of Virtual
Displacements (PVD) in case of shell structures subjected to mechanical load. CUF permits to
obtain the so-called fundamental nuclei, which are simple matrices representing the basic ele-
ments from which the stiffness matrix of the whole structure can be computed.

The PVD for a shell reads:

∫

V

(δεT
pGσpC + δεT

nGσnC)dV = δLe, (20)

where V is the volume of the shell and T indicate the transpose of a vector. The first member
of the equation represents the variation of internal work δLint and δLe is the external work. G
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means geometrical relations and C constitutive relations.
The first step to derive the fundamental nuclei is the substitution of constitutive equations (C)
in the variational statement PVD, which are:

σpC = σs
pjn

= Cpp εs
pjn

+ Cpn εs
njn

σnC = σs
njn

= Cnp εs
pjn

+ Cnn εs
njn

(21)

with

Cpp =




C11 C12 C16

C12 C22 C26

C16 C26 C66


 Cpn =




0 0 C13

0 0 C23

0 0 C36




Cnp =




0 0 0
0 0 0

C13 C23 C36


 Cnn =




C55 C45 0
C45 C44 0
0 0 C33




(22)

Then, one substitutes the geometrical relations (18) and the Unified formulation (1) in eq.(20)
and obtains the governing equation system:

δuk
τ

T
: Kτs

uu us = P uτ , (23)

where Kτs
uu is the fundamental nucleo of the stiffness array and it is expanded according to the

indexes τ and s in order to obtain the matrix for the whole shell.
The boundary conditions of Neumann type state:

Πτs
uu us = Πτs

uu ūs (24)

The explicit form of fundamental nucleus is the following:

Kτsij
11 =C55Nim1 ¢ Nm1Nn1 ¤Ω Njn1 ¢ Fτ,zFs,z ¤A +C11Ni,αm1 ¢ Nm1Nn1 ¤Ω Nj,αn1 ¢ FτFs ¤A +

C16Ni,βm3 ¢ Nm3Nn1 ¤Ω Nj,αn1 ¢ FτFs ¤A +C16Ni,αm1 ¢ Nm1Nn3 ¤Ω Nj,βn3 ¢ FτFs ¤A +
C66Ni,βm3 ¢ Nm3Nn3 ¤Ω Nj,βn3 ¢ FτFs¤A

Kτsij
12 =− C45

1
R

Nim1 ¢ Nm1Nn2 ¤Ω Njn2 ¢ Fτ,zFs ¤A +C45Nim1 ¢ Nm1Nn2 ¤Ω Njn2 ¢ HFτ,zFs,z ¤A +

C12Ni,αm1 ¢ Nm1Nn2 ¤Ω Nj,βn2 ¢ HFτFs ¤A +C16Ni,αm1 ¢ Nm1Nn3 ¤Ω Nj,αn3 ¢ HFτFs ¤A +
C26Ni,βm3 ¢ Nm3Nn2 ¤Ω Nj,βn2 ¢ HFτFs ¤A +C66Ni,βm3 ¢ Nm3Nn3 ¤Ω Nj,αn3 ¢ HFτFs¤A

Kτsij
13 =C13Ni,αm1 ¢ Nm1Nj ¤Ω ¢FτFs,z ¤A +C36Ni,βm3 ¢ Nm3Nj ¤Ω ¢FτFs,z ¤A +

C12
1
R

Ni,αm1 ¢ Nm1Nn2 ¤Ω Njn2 ¢ HFτFs ¤A +C26
1
R

Ni,βm3 ¢ Nm3Nn2 ¤Ω Njn2 ¢ HFτFs ¤A +

C55Nim1 ¢ Nm1Nn1 ¤Ω Nj,αn1 ¢ Fτ,zFs ¤A +C45Nim1 ¢ Nm1Nn2 ¤Ω Nj,βn2 ¢ Fτ,zFs¤A

(25)
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Kτsij
21 =− C45

1
R

Nim2 ¢ Nm2Nn1 ¤Ω Njn1 ¢ FτFs,z
¤A +C45Nim2 ¢ Nm2Nn1 ¤Ω Njn1 ¢ HFτ,z

Fs,z
¤A +

C12Ni,βm2 ¢ Nm2Nn1 ¤Ω Nj,αn1 ¢ HFτFs ¤A +C16Ni,αm3 ¢ Nm3Nn1 ¤Ω Nj,αn1 ¢ HFτFs ¤A +
C26Ni,βm2 ¢ Nm2Nn3 ¤Ω Nj,βn3 ¢ HFτFs ¤A +C66Ni,αm3 ¢ Nm3Nn3 ¤Ω Nj,βn3 ¢ HFτFs¤A

Kτsij
22 =C22Ni,βm2 ¢ Nm2Nn2 ¤Ω Nj,βn2 ¢ H2FτFs ¤A +C26Ni,βm2 ¢ Nm2Nn3 ¤Ω Nj,αn3 ¢ H2FτFs¤A

C26Ni,αm3 ¢ Nm3Nn2 ¤Ω Nj,βn2 ¢ H2FτFs ¤A +C66Ni,αm3 ¢ Nm3Nn3 ¤Ω Nj,αn3 ¢ H2FτFs ¤A +

C44
1

R2
Nim2 ¢ Nm2Nn2 ¤Ω Njn2 ¢ FτFs ¤A −C44

1
R

Nim2 ¢ Nm2Nn2 ¤Ω Njn2 ¢ HFτFs,z ¤A +

− C44
1
R

Nim2 ¢ Nm2Nn2 ¤Ω Njn2 ¢ HFτ,z
Fs ¤A +C44Nim2 ¢ Nm2Nn2 ¤Ω Njn2 ¢ H2Fτ,z

Fs,z
¤A

Kτsij
23 =C22

1
R

Ni,βm2 ¢ Nm2Nn2 ¤Ω Njn2 ¢ H2FτFs ¤A +C23Ni,βm2 ¢ Nm2Nj ¤Ω ¢HFτFs,z ¤A +

C26
1
R

Ni,αm3 ¢ Nm3Nn2 ¤Ω Njn2 ¢ H2FτFs ¤A +C36Ni,αm3 ¢ Nm3Nj ¤Ω ¢HFτFs,z
¤A +

− C45
1
R

Nim2 ¢ Nm2Nn1 ¤Ω Nj,αn1 ¢ FτFs ¤A −C44
1
R

Nim2 ¢ Nm2Nn2 ¤Ω Nj,βn2 ¢ FτFs ¤A +

C45Nim2 ¢ Nm2Nn1 ¤Ω Nj,αn1 ¢ HFτ,zFs ¤A +C44Nim2 ¢ Nm2Nn2 ¤Ω Nj,βn2 ¢ HFτ,zFs¤A

Kτsij
31 =C55Ni,αm1 ¢ Nm1Nn1 ¤Ω Njn1 ¢ FτFs,z ¤A +C45Ni,βm2 ¢ Nm2Nn1 ¤Ω Njn1 ¢ FτFs,z ¤A +

C12
1
R

Nim2 ¢ Nm2Nn1 ¤Ω Nj,αn1 ¢ HFτFs ¤A +C13 ¢ NiNn1 ¤Ω Nj,αn1 ¢ Fτ,zFs ¤A +

C26
1
R

Nim2 ¢ Nm2Nn3 ¤Ω Nj,βn3 ¢ HFτFs ¤A +C36 ¢ NiNn3 ¤Ω Nj,βn3 ¢ Fτ,zFs¤A

Kτsij
32 =C22

1
R

Nim2 ¢ Nm2Nn2 ¤Ω Nj,βn2 ¢ H2FτFs ¤A +C23 ¢ NiNn2 ¤Ω Nj,βn2 ¢ HFτ,zFs ¤A +

C26
1
R

Nim2 ¢ Nm2Nn3 ¤Ω Nj,αn3 ¢ H2FτFs ¤A +C36 ¢ NiNn3 ¤Ω Nj,αn3 ¢ HFτ,zFs ¤A +

− C45
1
R

Ni,αm1 ¢ Nm1Nn2 ¤Ω Njn2 ¢ FτFs ¤A −C44
1
R

Ni,βm2 ¢ Nm2Nn2 ¤Ω Njn2 ¢ FτFs ¤A +

C45Ni,αm1 ¢ Nm1Nn2 ¤Ω Njn2 ¢ HFτFs,z ¤A +C44Ni,βm2 ¢ Nm2Nn2 ¤Ω Njn2 ¢ HFτFs¤A

Kτsij
33 =C22

1
R2

Nim2 ¢ Nm2Nn2 ¤Ω Njn2 ¢ H2FτFs ¤A +C23
1
R

Nim2 ¢ Nm2Nj ¤Ω ¢HFτFs,z ¤A +

C23
1
R

¢ NiNn2 ¤Ω Njn2 ¢ HFτ,zFs ¤A +C33 ¢ NiNj ¤Ω ¢Fτ,zFs,z ¤A +

C55Ni,αm1 ¢ Nm1Nn1 ¤Ω Nj,αn1 ¢ FτFs ¤A +C45Ni,βm2 ¢ Nm2Nn1 ¤Ω Nj,αn1 ¢ FτFs ¤A +
C45Ni,αm1 ¢ Nm1Nn2 ¤Ω Nj,βn2 ¢ FτFs ¤A +C44Ni,βm2 ¢ Nm2Nn2 ¤Ω Nj,βn2 ¢ FτFs¤A

(26)

where ¢ . . . ¤Ω indicates
∫
Ω

...dΩ and ¢ . . . ¤A indicates
∫

A
...dz (A is the integration domain

in the z direction).
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6 Numerical results

The model we have introduced, unlike 3-D degenerate approach, does not involve an approxima-
tion of the geometry of the shell and it describes accurately the curvature of the shell. However,
the locking phenomenon is still present. In this work, such a model is combined with a simple
displacement formulation. The high-order theories contained in CUF, coupled with the MITC
method, allow us to increase the degree of approximation by increasing the order of expansion
of displacements in the thickness direction and the number of used elements. We analyze the
reliability of the model together with the finite element scheme, and we compare the numerical
results with the ones obtained with the first order approximation (see [7]) and the ones obtained
in the 3D degenerate approach (see [13]).
In this direction we consider two classical test problems. These problems are discriminating to
test the performance of the finite elements. We consider the pinched cylinder with a diaphragm
(Flügge, [26]) and the Scordelis-Lo problem (Scordelis and Lo, [27]). The pinched shell with a
diaphragm is one of the most severe tests for both inextensional bending modes and complex
membrane states. The Scordelis-Lo problem is extremely useful for determining the ability of an
element to accurately solve complex states of membrane strain. A substantial part of the strain
energy is membrane strain energy so the representation of inextensional bending modes is not
crucial in this problem. We briefly describe each of the two test problems.

6.1 Pinched cylindrical shell

The first test we consider is the one called pinched shell. This structure has been analyzed in [7]
and the essential shapes are shown in Fig. 3. The pinched shell is simply supported at each end
by rigid diaphragm and singularly loaded by two opposed forces acting at midpoint of the shell.
Due to the symmetry of the structure the computations have been performed, using a uniform
decomposition, on a octave of the shell. Such a domain is described as:

S = {(x, y, z) ∈ R3 : 0 < x < L/2, 0 < y < R, y2 + z2 = R2} (27)

corresponding to the rectangle:

Ω = {(α, β) : 0 < α < L/2, 0 < β < Rπ/2} (28)

The physical data given in Table 1 have been assumed. The following symmetry conditions are
applied:

vs(α, 0) = 0
us(0, β) = 0
vs(α,Rπ/2) = 0

(29)

and the following boundary conditions are prescribed:

vs(L/2, β) = ws(L/2, β) = 0 (30)
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with s = 0, 1, ..., N .
In Table 2 the transversal displacement at the loaded point C is presented for several de-

compositions n × n and different theories. The high-order equivalent single layer theories are
indicated with the acronym ESLN , where N is the order of expansion. The exact solution is
given by Flügge in [26] and it is 1.8248 × 10−5[in]. The results (m) are obtained applying the
MITC technique only to the membranal part of the in-plane strains (when τ or s is equal to 0),
while the solution (m+) is obtained for MITC applied to all terms of the expansion. In both
cases, all terms of the expansion of the shear and normal strains are mixed interpolated. The
figure 5 demonstrate that the two solutions in the Koiter case (as for the other theories) differs
very little, especially when the number of elements is high (mesh 13 × 13). Therefore, we can
refer always to (m+) solution in the following analysis. The element shows good properties of
convergence and robustness by increasing the mesh. According to Reddy [28] and Cho [29], the
results obtained with high-order theories are grater than the reference value because Flügge refers
to a classical shell theory. Indeed, the solution calculated with the Koiter model is very close to
the exact solution for mesh 13 × 13, while the Naghdi model that takes into account the shear
energy gives a higher value, as one can expect. The ESL theory with linear expansion (ESL1)
produces such a high value because the correction of Poisson locking it has been applied (for
details about Poisson locking one can refer to [30]), but in the case of cylindrical shell structures
this correction gives some problems. The remaining theories provide almost the same results and
they converge to the same value (1.842× 10−5[in]) by increasing the order of expansion and the
number of used elements.

6.2 Scordelis-Lo problem

The problem deals with a cylindrical shell known in the literature as barrel vault. The shell is
described in Fig.4. This typical shell is used in civil engineering using conventional processes by
Scordelis and Lo [27]. The essential features of such example can be also found in [12]. The shell
is simply-supported on diaphragms and is free on the other sides. The shell is loaded by its own
weight P . The barrel vault is a portion of cylindrical shell, with midsurface described as follows:

S = {(x, y, z) ∈ R3 : −L/2 < x < L/2, −R sin(2π/9) < y < R sin(2π/9), z > 0 y2 + z2 = R2}
(31)

Applying the mapping (8) we get the following expression for Ω:

Ω = {(α, β) : −L/2 < α < L/2, −R2π/9 < β < R2π/9} (32)

The physical data given in Table 3 have been assumed.
The covariant components of the vertical load are: p1 = 0, p2 = −P sin(β/R), p3 = P cos(β/R).
The barrel vault has a symmetric structure. Thus, the computations have been performed only
on a quarter of the shell, using a uniform decomposition. The following symmetry conditions
have been assumed:

vs(α, 0) = 0
us(0, β) = 0

(33)

10



and the following boundary conditions are prescribed:

vs(L/2, β) = ws(L/2, β) = 0 (34)

with s = 0, 1, ..., N .
The exact solution for the present problem is given by McNeal and Harder in [31] in terms of

transversal displacement at the point B and it is 0.3024[ft]. In Table 4 this quantity is calculated
for several decompositions n × n and different theories. In this case, we provide only the (m+)
solution because the results obtained in the case (m) are very similar, also when a coarse mesh is
considered. The table confirms the considerations done for the pinched shell: the results converge
to the exact solution by increasing the order of expansion and the number of used elements. One
can note that in this case the ESL1 theory doesn’t give any problem because the shell is not
cylindrical. Another difference regarding to the pinched shell is that the high-order theories
and the classical theories provide almost the same results, because in this case we don’t have
local effects due to a concentrated load. In the Figures 6-8, for a given thickness of the shell,
we compare the performance of the MITC9 element in which the correction of both shear and
membrane locking has been applied (m+), with the performance of the element in which only
the shear locking has been corrected (s). For moderately thin shells (t/R = 0.01) the correction
of membrane locking is not so essential because for very fine mesh the two solutions converge.
Instead, for very thin shells (t/R = 0.001 and t/R = 0.0001) the membrane locking phenomenon
is remarkable and in this case one can note the high performances of the new element. We
note that, as far as we know, the exact solution is not available for both cases t/R = 0.001 and
t/R = 0.0001; however, our results show a qualitatively correct limit behavior for the solution
(m+) and we can conclude that MITC9 element is completely locking free. The theory used for
this analysis is ESL4 but the behavior is the same also for the other models.

7 Concluding remarks

The aim of the present work is to present a shell finite element based on refined theories contained
in CUF, in which the MITC technique has been applied to overcome the membrane and shear
locking phenomenons. The results obtained by analyzing two classical test problems, such as
pinched shell and Scordelis-Lo problem, show that:

• The MITC9 shell element presents good properties of convergence and robustness;

• The MITC method remains effective in the case of shell FEs formulated on the basis of
higher-order theories contained in the Unified Formulation;

• The MITC9 element is completely locking free.

Future work could be directed towards the extension of MITC9 element to the analysis of
multilayered structures as well as multi-field problems.
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Tables

Pinched shell
Young’s modulus E 3× 106 psi
Poisson’s ratio ν 0.3
load P 1 lb
length L 600 in
radius R 300 in
thickness t 3 in

Table 1: Physical data for pinched shell.

Theory [4× 4]m [4× 4]m+ [10× 10]m [10× 10]m+ [13× 13]m [13× 13]m+

Koiter 1.7733 1.7891 1.8189 1.8231 1.8227 1.8253
Naghdi 1.7827 1.7984 1.8323 1.8364 1.8372 1.8398
ESL1 1.9048 1.9212 1.9541 1.9583 1.9591 1.9617
ESL2 1.7663 1.7805 1.8322 1.8361 1.8383 1.8408
ESL3 1.7676 1.7818 1.8341 1.8380 1.8404 1.8428
ESL4 1.7676 1.7818 1.8341 1.8380 1.8404 1.8428

Table 2: Pinched shell. Transversal displacement w[in]×105 at the loaded point C of the mid-
surface S.(exact solution: 1.8248× 10−5[in])

Barrel vault
Young’s modulus E 4.32× 108 lb/ft2

Poisson’s ratio ν 0.0
load P 90 lb/ft2

length L 50 ft
radius R 25 ft
thickness t 0.25 ft
angle θ0 2π/9 rad

Table 3: Physical data for barrel vault.
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Theory [4× 4]m+ [10× 10]m+ [13× 13]m+

Koiter 0.2953 0.3015 0.3025
Naghdi 0.2954 0.3018 0.3029
ESL1 0.2954 0.3018 0.3029
ESL2 0.2954 0.3018 0.3029
ESL3 0.2954 0.3019 0.3029
ESL4 0.2954 0.3019 0.3029

Table 4: Barrel vault. Transversal displacement w[ft] at the point B of the midsurface S.(exact
solution: 0.3024[ft])

Figures
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Figure 1: Definition of the middle surface.

15



ξ

η

A1

C1

E1 F1

D1

B1

Components andε εαα αz Components andε εββ βz Component εαβ

ξ

η

A2

B2

C2

D2 F2

E2

ξ

η

P

R S

Q

Figure 2: Tying points for MITC9 shell finite element.

x

y

z

Figure 3: Pinched shell.

16



x

y

z

Figure 4: Scordelis-Lo roof.
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Figure 5: Pinched shell. Transversal displacement w[in]×105 at the loaded point C of the
midsurface S by varying the mesh n× n.
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Figure 6: Scordelis-Lo problem. Thickness ratio t/R = 0.01. Transversal displacement w[ft] at
the point B of the midsurface S by varying the mesh n× n.
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Figure 7: Scordelis-Lo problem. Thickness ratio t/R = 0.001. Transversal displacement w[ft] at
the point B of the midsurface S by varying the mesh n× n.
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Figure 8: Scordelis-Lo problem. Thickness ratio t/R = 0.0001. Transversal displacement w[ft]
at the point B of the midsurface S by varying the mesh n× n.
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