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ABSTRACT 
 
In this paper we describe the implementation of a complete ANN 
training procedure for speech recognition using the block mode 
back-propagation learning algorithm. We exploit the high 
performance SIMD architecture of GPU using CUDA and its C-
like language interface. We also compare the speed-up obtained 
implementing the training procedure only taking advantage of the 
multi-thread capabilities of multi-core processors. 
Our approach has been tested by training acoustic models for large 
vocabulary speech recognition tasks, showing a 6 times reduction 
of the time required to train real-world large size networks with 
respect to an already optimized implementation using the Intel 
MKL libraries.  
 
Index Terms— Artificial Neural Network, Focused Attention 
Back-Propagation, GPU, CUDA, Fast Training 
 

1. INTRODUCTION 
 
State of the art speech recognition systems are based on acoustic-
phonetic models of the words. Each acoustic unit is modeled by 
one or more states of a Hidden Markov Model (HMM). Gaussian 
Mixture Models (GMMs) are often used within each state to model 
the probability density of the acoustic patterns associated to that 
state. An attractive alternative to Gaussian mixture modeling is the 
use of an Artificial Neural Network (ANN) trained to estimate the 
posterior probability of each state given an acoustic pattern [1]. 
The main advantage of using a hybrid ANN-HMM approach in 
large vocabulary speech recognition is that the computation of the 
posterior probabilities of the HMM states takes a small fraction of 
the search time, moreover the ANN models are inherently 
discriminative.  

The most widely used ANNs in speech recognition are feed-
forward Multi Layer Perceptron (MLP) networks trained by the 
error back-propagation paradigm. 

The core computation in MLPs, both in the feed-forward and 
in the back-propagation steps, is the inner product of a weight 
vector and of a feature vector (activation or error vector 
respectively). Several works have been published that exploit 
matrix multiplication to convert many inner-product operations 
into a single matrix multiply operation, and the capabilities of 
graphics-processors [2][3][4]. All these works focus, however, on 
the classification of static patterns. 

In this paper we describe the implementation of the block 
mode back-propagation learning algorithm for speech recognition 
exploiting the high performance SIMD architecture of GPU. In our 

implementation we take into account all the peculiar aspects of 
training large scale sequential patterns, in particular, the re-
segmentation of the training sentences, the block size for the feed-
forward and for the back-propagation steps, and the transfer of 
huge amount of data. 

The paper is organized as follows. Section 2 recalls the 
training steps of the ANN-HMM models. Sections 3 and 4 detail 
the techniques that can be used to accelerate the network training 
using single or multi-core CPUs, and GPU respectively. The 
experimental results are summarized in Section 5. Concluding 
remarks are reported in Section 6. 

 
2. ANN-HMM MODEL TRAINING 

 
The training databases usually include utterances of sentences or 
words collected from many different speakers, transcribed in terms 
of their corresponding phonetic units. Training hybrid ANN-HMM 
models, thus, requires these two alternate steps: 

- Find the best alignment of the utterance frames to the states 
of the corresponding phonetic units. 

- Find the weights of the network that better discriminate 
among the states, by producing for each state an estimate of 
the posterior probability P(state|x), where x is the input 
pattern. 

In the following we will analyze the feed-forward and back-
propagation training steps for a network having softmax output 
nodes and sigmoid activation functions for all the hidden nodes. 
The cross-entropy error function is used to compute the error 
between the output of the ANN and the target vectort .  

The feed-forward step computes, for each layer, the outputs of 
the corresponding nodes given the layer input vector 
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where n is the number of nodes of the current layer, and( )if net  is 

the sigmoid function for all the hidden layers, and the softmax 
function for the output layer. 

After the evaluation of the outputs produced by the feed-
forward step, the weights of the network are updated on the basis 
of the error between the target vector t and the network outputs 
out. An error function that is appropriate for dealing with 
probabilities is the cross-entropy: 
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The back-propagation algorithm proceeds by propagating the 
error from the output to the underlying hidden layers in order to 
correct the network weights. The procedure is summarized in 

Figure 1, where i
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if layer is the output layer with softmax activation function and 
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 if layer is a hidden layer with sigmoid activation function. 
 

3. USING SINGLE AND MULTI-CORE CPUS 
 
The first step toward an efficient straightforward implementation 
of the feed-forward and back-propagation procedures is to use 
efficient vector-by-matrix functions. More efficient 
implementations are, however, possible by updating the weights 
after processing a block of B input frames. This solution is a trade-
off between batch and stochastic gradient back-propagation, which 
leads to accurate model estimation and allows parallel 
computation. In [5] high performance matrix multiply routines 
were introduced that, based on the work of [6], have been used to 
improve the training speed on a speech recognition data set. 

The training algorithm can be further enhanced by using the so 
called focused-attention back-propagation (FABP) learning 
strategy [7]. FABP focuses attention on the patterns that are most 
difficult to learn. In FABP, the feed-forward step is performed, as 
usual, for all the patterns to compute the errors between the net 
outputs and the related targets. Back-propagation, however, is 
performed only for those patterns having a Mean Square Error 
(MSE) greater than a given threshold.  This strategy not only 
speeds-up the training, but also improves the quality of the trained 
model reducing its dependence on the a priori probability of the 
classes in the training set. In FABP several training patterns fed to 
the network are not used for back-propagation (almost 80% in the 
last iterations). Thus, it is opportune that the feed-forward bunch 
(FFB) size is greater than the block size (BPB) used in the back-
propagation step.   

Taking care of these considerations the bunch feed-forward and 
the block back-propagation steps can be rewritten using matrix-by-
matrix operations as shown in Figure 2 and Figure 3 respectively. 
In these figures, T indicates transposition, the superscript is the 
index of the network layer and the subscript gives the dimensions 
of the matrices, where B is the bunch size in the feed-forward step, 
and the block size in the back-propagation step. J and I are the 
number of output nodes of two adjacent layers.  Introducing a 
dummy layer 0, the same index refers both to the layer weights and 
to its outputs. The variablesη  and β  in Figure 3 are the dynamic 

learning rate adjustment and the momentum factor respectively. 
The optimized implementation in the Math Kernel Library [8] of 
the Level 3 BLAS library functions has been used for the matrix-
by-matrix multiplications in (2.2), (3.3) and (3.4). Moreover, since 
Intel provides the Integrated Performance Primitives for other 
vector operations, it is important to decompose operations such as 
(2.3), (2.4), (3.1), (3.2) and (3.5) in terms of a sequence of  vector 
operations which can be mapped to fast library functions. 
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Figure 1.  Back-propagation algorithm for a NLAYERS MLP. 

 
 

 
 
 
 
 
 
 
 
 

 
Figure 2.  Implementation of the feed-forward step of the training 

algorithm for a NLAYERS MLP using matrix-by-matrix operations. 
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Figure 3. Implementation of the back-propagation algorithm for a 
NLAYERS MLP using matrix-by-matrix operations. ./ and .*  are 
the element-by-element division and multiplication respectively. 

 
Further speed-up is obtained using the threaded MKL 
implementation of the matrix multiplication cblas_sgemm 
function that splits the execution over the available CPU cores. 

Since the relative speed-up that can be achieved using these 
libraries is proportional to the size of the data, large feed-forward 
bunch size and back-propagation block sizes lead to better 
performance. However, the value of FFB must be bounded because 
all the patterns in the feed-forward bunch that are accepted by the 
FABP strategy, but exceed the BPB size, must be submitted again 
in the next feed-forward bunch introducing memory and 
computation overhead. In the experiments described in Section 5 
the value of the bunch size FFB, and of the block size BPB have 
been set to 32 and 10 respectively. 
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4. SPEED-UP USING GPU AND CUDA 
 
GPUs are graphics-oriented dedicated processors suited to 
computationally expensive but highly parallelizable tasks such as 
3D graphic rendering. The main GPU architecture is characterized 
by the presence of a high number of floating point core processors 
which are able to perform parallel computations. The 
implementation of parallel computation tasks has been remarkably 
facilitated since the introduction by NVIDIA of the high-level 
programming language CUDA (Compute Unified Device 
Architecture), which provides a C-like interface to the 
programmable processors of the GPU and an efficient 
implementation of the BLAS library (CuBLAS). 

In the CUDA environment a programmer sees the GPU as a 
multi-core processor allowing the concurrent execution of multiple 
threads which perform the same computations on different data. 
The computation is organized as a grid of thread blocks where each 
thread executes a single instruction set called kernel [9]. 

Since most of the computation in ANN training has a high 
degree of fine grain parallelism, the use of GPUs is particularly 
suited for this task. Examples of the use of the CUDA framework 
in the field of artificial neural networks are already present in 
literature. In particular, [4] presents a complete implementation of 
the training process for an MLP with sigmoid output units, 
assuming that all the training patterns and the corresponding 
targets are fixed and stored in the GPU memory.  

Although our approach is similar to the latter, however, several 
problems have been taken into account for an effective 
implementation of the MLP training task for sequential patterns on 
a GPU. First of all, the epoch back-propagation approach proposed 
in [4] is not suited for training a network that has to model 
phonetic units for speaker independent speech recognition tasks. 
For these tasks the number of training patterns can easily exceed 
some millions, thus, the patterns cannot be stored in the GPU 
memory. Furthermore, since slow convergence problems easily 
arise when epoch back-propagation is used for such large data sets, 
it becomes mandatory to use the bunch training approach 
combined with FABP as described in Section 3. Care, however, is 
required to estimate the bunch and block sizes to achieve a good 
trade-off between model accuracy and training time.  

To exploit the GPU computational power, we map the matrix 
implementation on either CuBLAS functions or specific kernels. 
Matrix multiplications are performed by means of the 
cublasSgemm,a fast and hardware-optimized implementation of 
matrix products function [10], both in the feed-forward (2.2) and 
in the back-propagation (3.3, 3.4) steps. Carefully tailored kernels 
have been implemented for the softmax and sigmoid functions, the 
MSE evaluation, and the update of the network weights. 
Moreover, due to the architecture of the GPU, since CuBLAS 
functions give optimal performance with matrices having sizes that 
are multiples of power of 2, we enforce zero padding to our 
matrices which do not meet this condition. In particular, we pad to 
multiples of 32 and 16 the structures for the feed-forward bunch 
and back-propagation block respectively, and to multiples of 32 
the weight matrices, obtaining a 10% improvement as shown in the 
last two rows of Table 2 in Section 5. 

Although the CuBLAS library includes efficient functions to 
copy data from the host to the card and copy results back from the 
card to the host, these transfers of data can easily become the 
performance bottleneck. Thus, the network weights are kept in the 

GPU memory, but the input patterns are loaded on the GPU in 
bunches due to the small size of the GPU memory compared to the 
dimensions of the training data. 
The core steps of the training algorithm are as follows: 
1. Load a bunch FFB of input patterns on the GPU memory. 

Takes 2.5% of the total time using function cudaMemcpy. 
2. Execute the feed-forward step and evaluate the MSE for each 

pattern. Takes 32.5% of the total time. 
3. Transfer both the bunch MSEs and output patterns from the 

GPU to the main memory.  The output patterns are required by 
the forced alignment performed by the Viterbi algorithm, 
running in the host machine, to obtain a new, more precise, 
association of the input patterns to the targets. The MSE of 
each pattern is simply tested in the host processor to select 
according to FABP the patterns on which back-propagation has 
to be performed. Takes 6.2% of the total time using function 
cudaMemcpy. 

4. The pattern vectors in the GPU memory selected for back-
propagation in step 3 are appended to the back-propagation 
matrix structures (of size BPB). Takes 10% of the total time. 

5. Repeat all the previous steps until a sufficient number of 
patterns (the block size BPB) are selected for back-
propagation. 

6. Execute the back-propagation procedure for the block of 
selected patterns and update the weights. Takes 48.8% of the 
total time. 

7. Since the weights have been updated, all the remaining 
patterns in the feed-forward bunch that were accepted by the 
FABP strategy, but exceed the BPB size, must be re-submitted 
in the next feed-forward bunch. 

8. Repeat from 1. until all input patterns have been processed. 
 

These steps are iterated until convergence is reached as decided by 
a stopping criterion based on maximum number of iterations, rate 
of decrease of the MSE, or recognition performance on a held out 
development set. 

It is worth noting that most of the time is spent performing 
actual computations, while the transfer of inputs and outputs 
between CPU and GPU contributes to the total time for just 8.7%. 
The overhead of the memory transfers inside the GPU of the output 
patterns selected by the FABP strategy from the feed-forward to 
the back-propagation structures is significant but unavoidable for 
speeding-up the back-propagation computations. Excluding 
memory transfer times, and looking at the actual computations, 
most of the time (about 74%) is spent evaluating matrix products 
by means of the CuBLAS library function cublasSgemm, 
whereas the remaining time is used by the kernels.  
 

5. EXPERIMENTS 
Two set of experiments were performed to test the speed-up 
achieved by using the proposed approaches, without any loss of the 
recognition accuracy. The hybrid ANN-HMM models, detailed in 
[11], that are used by the Loquendo Automatic Speech Recognizer 
[12] were trained and tested. The models are 4-layer perceptrons 
with about 1M weights, trained with 150 to 500 hours of speech. 
The hardware setup was a HP xw8600 workstation equipped with a 
quad-core 3.0 GHz CPU, 1600 MHz FSB, 8 GB RAM, NVIDIA 
GTX280 GPU, and running Linux RedHat RHEL 5.2 EM64T.  

The first set of experiments was devoted to training English 
models using the Wall Street Journal 0 corpus. Table 1 shows the 
elapsed training time, and the relative speed-up of four 
implementations.  



Table 1. Training time, and relative speed-up for the WSJ0 corpus. 
 

Training 
Implementation 

Time 
hh:mm 

Speed-up vs 
 Standard C  

Speed-up 
vs MKL 

Standard C  42:35 - - 
Single thread MKL 11:36 3.7 x - 
Multi-Thread MKL  9:41 4.4 x 1.2 x 
CUDA no-padding 2:29 17.1x 4.7x 

CUDA with padding 2:14 19.1 x 5.2 x 
 
The baseline is a standard C language implementation without the 
optimized matrix functions offered by the BLAS library, it is 
compared with single and multi thread programs using the INTEL 
MKL libraries, and finally with the support of a GPU board and its 
optimized routines. It is worth noting that to obtain a fair 
comparison of the GPU and MKL implementations, the bunch size 
FFB of the latter has been set to 15 rather than to 32. This has been 
done to avoid in the MKL implementation the significant overhead 
of re-processing in the next feed-forward step the patterns accepted 
by the focused attention mechanism but exceeding the back-
propagation block size BPB. This problem is much less relevant in 
the GPU because bunch of patterns are processed in parallel. 

In this case study a speed-up of 3.7 is obtained by enhancing 
an already optimized standard C language implementation to 
process bunch of patterns using the MKL libraries. The 
improvement obtained using the GPU is much larger: a factor of 
19.1, which is 5.2 times faster than the single thread MKL 
implementation. Although the multi-thread MKL version does give 
a 20% improvement compared to the single thread, it fully 
occupies the 4 cores, which can be used instead for training 
different models in parallel.   

In the second set of experiments, without changing the setup, 
the models of 6 different languages have been re-trained using the 
large corpora collected for creating the models used by the 
Loquendo decoder. In these experiments we computed the elapsed 
training times to evaluate the obtained speed-up and we checked 
the recognition accuracy on 8 different recognition application 
grammars to assess that fast computation does not produce 
statistically significant recognition performance variations. The 
grammars include common recognition tasks such as yes-no, 
connected digits, numbers, spelling, dates, etc. The reference 
models are the ones released with the Loquendo ASR recognizer.  

The models were re-trained using the single thread MKL 
implementation on the same workstation hosting the NVIDIA GPU 
to obtain a fair comparison of the training times. On average, 
training of the models with the CUDA-GPU implementations is 
5.9 faster than using the single thread MKL optimized 
implementation.  

Finally, an additional NVIDIA GTX295 GPU board has ben 
added to the hardware configuration to test the possibility of 
training more networks in parallel. This board has two GPUs, but a 
lower clock both for its memory and core processors. In this 
configuration the workstation has 3 GPUs of comparable 
computational power. 
A set of training sessions have been done using the Wall Street 
Journal corpus to verify whether the simultaneous run of more than 
one training session slows down the GPU-CUDA implementation,  
possibly  generating congestion problems on the PCI-Express bus. 
Table 2 shows the elapsed times, in hours and minutes, for training 
the 7236 sentences of the corpus. Each row in the Table represents 
a single (row 1 and 2) or multi-model (row 3, 4 and 5) train 
experiments. 

Table 2. Training time, in hours and minutes, for single and 
parallel training sessions running on different GPUs 

 
GTX280 GTX295(1) GTX295(2) 

Test 
Time % Incr  Time % Incr Time % Incr 

1 2:14 - idle idle 
2 idle 2:20 +4.5 idle 
3 2:14 0 2:20 +4.5 idle 
4 idle 2:20 +4.5 2:20 +4.5 
5 2:15 +0.7 2:22 +6.0 2:21 +5.2 

 
As shown in the last row, this configuration of the workstation is 
able to carry out three parallel sessions with a very small increase 
of the average training time. We can conclude that the GPUs and 
the PCI-Express 16x Gen2 bus are not a bottleneck for the fast 
GPU-CUDA training implementation. 
 

6. CONCLUSIONS 
 
We have studied and implemented a complete ANN training 
procedure for sequential patterns exploiting the computational 
power of inexpensive GPU boards. We have tested this approach 
for training acoustic models for large vocabulary speech 
recognition tasks, showing a 6 times reduction of the time required 
to train real-world large size networks with respect to an already 
optimized implementation using the INTEL MKL libraries.  

The obtained speed-up not only improves the efficiency of the 
generation of acoustic models, but also makes easier the research 
activity related to acoustic modeling such as testing different 
definitions of the acoustic units, experimenting with different 
neural networks structures and topologies. Reducing the training 
time also allows training larger models with huge training corpora. 
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