
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Parallel implementation of artificial neural network training / Scanzio, Stefano; Cumani, Sandro; Gemello, R.; Mana, F.;
Laface, Pietro. - STAMPA. - 1:(2010), pp. 4902-4905. (Intervento presentato al convegno 2010 IEEE International
Conference on Acoustics Speech and Signal Processing (ICASSP) tenutosi a Dallas (USA) nel 14-19 Marzo 2010)
[10.1109/ICASSP.2010.5495108].

Original

Parallel implementation of artificial neural network training

Publisher:

Published
DOI:10.1109/ICASSP.2010.5495108

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2381224 since: 2017-11-21T14:20:33Z

IEEE

PARALLEL IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORK TRAINING

Stefano Scanzio*, Sandro Cumani*, Roberto Gemello^, Franco Mana^, P. Laface*

*Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy
^Loquendo S.pA., Via Olivetti 6, Torino 10148, Italy

ABSTRACT

In this paper we describe the implementation of a complete ANN
training procedure for speech recognition using the block mode
back-propagation learning algorithm. We exploit the high
performance SIMD architecture of GPU using CUDA and its C-
like language interface. We also compare the speed-up obtained
implementing the training procedure only taking advantage of the
multi-thread capabilities of multi-core processors.
Our approach has been tested by training acoustic models for large
vocabulary speech recognition tasks, showing a 6 times reduction
of the time required to train real-world large size networks with
respect to an already optimized implementation using the Intel
MKL libraries.

Index Terms— Artificial Neural Network, Focused Attention
Back-Propagation, GPU, CUDA, Fast Training

1. INTRODUCTION

State of the art speech recognition systems are based on acoustic-
phonetic models of the words. Each acoustic unit is modeled by
one or more states of a Hidden Markov Model (HMM). Gaussian
Mixture Models (GMMs) are often used within each state to model
the probability density of the acoustic patterns associated to that
state. An attractive alternative to Gaussian mixture modeling is the
use of an Artificial Neural Network (ANN) trained to estimate the
posterior probability of each state given an acoustic pattern [1].
The main advantage of using a hybrid ANN-HMM approach in
large vocabulary speech recognition is that the computation of the
posterior probabilities of the HMM states takes a small fraction of
the search time, moreover the ANN models are inherently
discriminative.

The most widely used ANNs in speech recognition are feed-
forward Multi Layer Perceptron (MLP) networks trained by the
error back-propagation paradigm.

The core computation in MLPs, both in the feed-forward and
in the back-propagation steps, is the inner product of a weight
vector and of a feature vector (activation or error vector
respectively). Several works have been published that exploit
matrix multiplication to convert many inner-product operations
into a single matrix multiply operation, and the capabilities of
graphics-processors [2][3][4]. All these works focus, however, on
the classification of static patterns.

In this paper we describe the implementation of the block
mode back-propagation learning algorithm for speech recognition
exploiting the high performance SIMD architecture of GPU. In our

implementation we take into account all the peculiar aspects of
training large scale sequential patterns, in particular, the re-
segmentation of the training sentences, the block size for the feed-
forward and for the back-propagation steps, and the transfer of
huge amount of data.

The paper is organized as follows. Section 2 recalls the
training steps of the ANN-HMM models. Sections 3 and 4 detail
the techniques that can be used to accelerate the network training
using single or multi-core CPUs, and GPU respectively. The
experimental results are summarized in Section 5. Concluding
remarks are reported in Section 6.

2. ANN-HMM MODEL TRAINING

The training databases usually include utterances of sentences or
words collected from many different speakers, transcribed in terms
of their corresponding phonetic units. Training hybrid ANN-HMM
models, thus, requires these two alternate steps:

- Find the best alignment of the utterance frames to the states
of the corresponding phonetic units.

- Find the weights of the network that better discriminate
among the states, by producing for each state an estimate of
the posterior probability P(state|x), where x is the input
pattern.

In the following we will analyze the feed-forward and back-
propagation training steps for a network having softmax output
nodes and sigmoid activation functions for all the hidden nodes.
The cross-entropy error function is used to compute the error
between the output of the ANN and the target vectort .

The feed-forward step computes, for each layer, the outputs of
the corresponding nodes given the layer input vector

t 1 2 n t = (, ,...,)X x x x as:

1

n

i i ij j
j

net b w x
=

= + ⋅∑ (1)

()i iout f net= (2)

where n is the number of nodes of the current layer, and()if net is

the sigmoid function for all the hidden layers, and the softmax
function for the output layer.

After the evaluation of the outputs produced by the feed-
forward step, the weights of the network are updated on the basis
of the error between the target vector t and the network outputs
out. An error function that is appropriate for dealing with
probabilities is the cross-entropy:

() () ()ln 1 ln 1i i i i iE t out t out= − ⋅ − − ⋅ − (3)

The back-propagation algorithm proceeds by propagating the
error from the output to the underlying hidden layers in order to
correct the network weights. The procedure is summarized in

Figure 1, where i
i

i

E
e

out

∂=
∂

, and

() ()
()

() ()()1
1

1
layer layer layeri i

i i i
i i

t t
out out

out out

 −  ∂ = − ⋅ ⋅ −   −  

 (4)

if layer is the output layer with softmax activation function and

()1

1

1
n

layer layer layer layer
i j ij i i

j

w out out+

=

 
 ∂ = ∂ ⋅ ⋅ ⋅ −   

 
∑() () () () (5)

 if layer is a hidden layer with sigmoid activation function.

3. USING SINGLE AND MULTI-CORE CPUS

The first step toward an efficient straightforward implementation
of the feed-forward and back-propagation procedures is to use
efficient vector-by-matrix functions. More efficient
implementations are, however, possible by updating the weights
after processing a block of B input frames. This solution is a trade-
off between batch and stochastic gradient back-propagation, which
leads to accurate model estimation and allows parallel
computation. In [5] high performance matrix multiply routines
were introduced that, based on the work of [6], have been used to
improve the training speed on a speech recognition data set.

The training algorithm can be further enhanced by using the so
called focused-attention back-propagation (FABP) learning
strategy [7]. FABP focuses attention on the patterns that are most
difficult to learn. In FABP, the feed-forward step is performed, as
usual, for all the patterns to compute the errors between the net
outputs and the related targets. Back-propagation, however, is
performed only for those patterns having a Mean Square Error
(MSE) greater than a given threshold. This strategy not only
speeds-up the training, but also improves the quality of the trained
model reducing its dependence on the a priori probability of the
classes in the training set. In FABP several training patterns fed to
the network are not used for back-propagation (almost 80% in the
last iterations). Thus, it is opportune that the feed-forward bunch
(FFB) size is greater than the block size (BPB) used in the back-
propagation step.

Taking care of these considerations the bunch feed-forward and
the block back-propagation steps can be rewritten using matrix-by-
matrix operations as shown in Figure 2 and Figure 3 respectively.
In these figures, T indicates transposition, the superscript is the
index of the network layer and the subscript gives the dimensions
of the matrices, where B is the bunch size in the feed-forward step,
and the block size in the back-propagation step. J and I are the
number of output nodes of two adjacent layers. Introducing a
dummy layer 0, the same index refers both to the layer weights and
to its outputs. The variablesη and β in Figure 3 are the dynamic

learning rate adjustment and the momentum factor respectively.
The optimized implementation in the Math Kernel Library [8] of
the Level 3 BLAS library functions has been used for the matrix-
by-matrix multiplications in (2.2), (3.3) and (3.4). Moreover, since
Intel provides the Integrated Performance Primitives for other
vector operations, it is important to decompose operations such as
(2.3), (2.4), (3.1), (3.2) and (3.5) in terms of a sequence of vector
operations which can be mapped to fast library functions.

 ()
()

()

()

()
1

1

NLAYERS NLAYERS
NLAYERS i i

i NLAYERS NLAYERS
i i

t t
e

out out

 −= − − 

 i∀ (1.1)

 for layer in range(NLAYERS, 1)

 1() () () ()()layer layer layer layer
i i i iout out e∂ = − ⋅ ⋅ i∀ (1.2)

 ∑
−

=

− ∂⋅=
)1(

1

)()1(
layerN

i

layer
iij

layer
j we j∀ (1.3)

ij

layer
j

layer
iij woutw ∆⋅+⋅∂⋅−=∆ − βη)1()(ji∀∀ (1.4)

ijijij www ∆+= ji∀∀ (1.5)

Figure 1. Back-propagation algorithm for a NLAYERS MLP.

Figure 2. Implementation of the feed-forward step of the training

algorithm for a NLAYERS MLP using matrix-by-matrix operations.

 ()
()

() ()
()

() ()
()

()
()
()

()

e (1) 1 out

(t . out)

/()

/

NLAYERS NLAYERS NLAYERS
BxI BxI BxI BxI BxI

NLAYERS NLAYERS
BxI BxI

t= − ⋅ − −
 (3.1)

 for layer in range(NLAYERS, 1)

 1() () () ()
() () () () ()* *()layer layer layer layer
BxI BxI BxI BxI BxI∂ = − ⋅ ⋅out out e (3.2)

 1() () ()
() () ()
layer layer layer
BxJ BxI IxJ

− = ∂ ⋅e W (3.3)

 1() () () ()
() () () ()()layer layer T layer layer
JxI BxJ BxI JxIη β−= − ⋅ ⋅ ∂ + ⋅∆W out ∆W (3.4)

 () () ()
() () ()

layer layer layer
JxI JxI JxI= +W W ∆W (3.5)

Figure 3. Implementation of the back-propagation algorithm for a
NLAYERS MLP using matrix-by-matrix operations. ./ and .* are
the element-by-element division and multiplication respectively.

Further speed-up is obtained using the threaded MKL
implementation of the matrix multiplication cblas_sgemm
function that splits the execution over the available CPU cores.

Since the relative speed-up that can be achieved using these
libraries is proportional to the size of the data, large feed-forward
bunch size and back-propagation block sizes lead to better
performance. However, the value of FFB must be bounded because
all the patterns in the feed-forward bunch that are accepted by the
FABP strategy, but exceed the BPB size, must be submitted again
in the next feed-forward bunch introducing memory and
computation overhead. In the experiments described in Section 5
the value of the bunch size FFB, and of the block size BPB have
been set to 32 and 10 respectively.

0()
() ()BxI BxI=out input (2.1)

for layer in range (1, NLAYERS)

 1() () ()
() () ()()layer layer layer T
BxI BxJ IxJ

−= ⋅net out W (2.2)

 if layer == NLAYERS

 () ()
() ()()layer layer
BxI BxIsoftmax=out net (2.3)

 else

 () ()
() ()()layer layer
BxI BxIsigmoid=out net (2.4)

4. SPEED-UP USING GPU AND CUDA

GPUs are graphics-oriented dedicated processors suited to
computationally expensive but highly parallelizable tasks such as
3D graphic rendering. The main GPU architecture is characterized
by the presence of a high number of floating point core processors
which are able to perform parallel computations. The
implementation of parallel computation tasks has been remarkably
facilitated since the introduction by NVIDIA of the high-level
programming language CUDA (Compute Unified Device
Architecture), which provides a C-like interface to the
programmable processors of the GPU and an efficient
implementation of the BLAS library (CuBLAS).

In the CUDA environment a programmer sees the GPU as a
multi-core processor allowing the concurrent execution of multiple
threads which perform the same computations on different data.
The computation is organized as a grid of thread blocks where each
thread executes a single instruction set called kernel [9].

Since most of the computation in ANN training has a high
degree of fine grain parallelism, the use of GPUs is particularly
suited for this task. Examples of the use of the CUDA framework
in the field of artificial neural networks are already present in
literature. In particular, [4] presents a complete implementation of
the training process for an MLP with sigmoid output units,
assuming that all the training patterns and the corresponding
targets are fixed and stored in the GPU memory.

Although our approach is similar to the latter, however, several
problems have been taken into account for an effective
implementation of the MLP training task for sequential patterns on
a GPU. First of all, the epoch back-propagation approach proposed
in [4] is not suited for training a network that has to model
phonetic units for speaker independent speech recognition tasks.
For these tasks the number of training patterns can easily exceed
some millions, thus, the patterns cannot be stored in the GPU
memory. Furthermore, since slow convergence problems easily
arise when epoch back-propagation is used for such large data sets,
it becomes mandatory to use the bunch training approach
combined with FABP as described in Section 3. Care, however, is
required to estimate the bunch and block sizes to achieve a good
trade-off between model accuracy and training time.

To exploit the GPU computational power, we map the matrix
implementation on either CuBLAS functions or specific kernels.
Matrix multiplications are performed by means of the
cublasSgemm,a fast and hardware-optimized implementation of
matrix products function [10], both in the feed-forward (2.2) and
in the back-propagation (3.3, 3.4) steps. Carefully tailored kernels
have been implemented for the softmax and sigmoid functions, the
MSE evaluation, and the update of the network weights.
Moreover, due to the architecture of the GPU, since CuBLAS
functions give optimal performance with matrices having sizes that
are multiples of power of 2, we enforce zero padding to our
matrices which do not meet this condition. In particular, we pad to
multiples of 32 and 16 the structures for the feed-forward bunch
and back-propagation block respectively, and to multiples of 32
the weight matrices, obtaining a 10% improvement as shown in the
last two rows of Table 2 in Section 5.

Although the CuBLAS library includes efficient functions to
copy data from the host to the card and copy results back from the
card to the host, these transfers of data can easily become the
performance bottleneck. Thus, the network weights are kept in the

GPU memory, but the input patterns are loaded on the GPU in
bunches due to the small size of the GPU memory compared to the
dimensions of the training data.
The core steps of the training algorithm are as follows:
1. Load a bunch FFB of input patterns on the GPU memory.

Takes 2.5% of the total time using function cudaMemcpy.
2. Execute the feed-forward step and evaluate the MSE for each

pattern. Takes 32.5% of the total time.
3. Transfer both the bunch MSEs and output patterns from the

GPU to the main memory. The output patterns are required by
the forced alignment performed by the Viterbi algorithm,
running in the host machine, to obtain a new, more precise,
association of the input patterns to the targets. The MSE of
each pattern is simply tested in the host processor to select
according to FABP the patterns on which back-propagation has
to be performed. Takes 6.2% of the total time using function
cudaMemcpy.

4. The pattern vectors in the GPU memory selected for back-
propagation in step 3 are appended to the back-propagation
matrix structures (of size BPB). Takes 10% of the total time.

5. Repeat all the previous steps until a sufficient number of
patterns (the block size BPB) are selected for back-
propagation.

6. Execute the back-propagation procedure for the block of
selected patterns and update the weights. Takes 48.8% of the
total time.

7. Since the weights have been updated, all the remaining
patterns in the feed-forward bunch that were accepted by the
FABP strategy, but exceed the BPB size, must be re-submitted
in the next feed-forward bunch.

8. Repeat from 1. until all input patterns have been processed.

These steps are iterated until convergence is reached as decided by
a stopping criterion based on maximum number of iterations, rate
of decrease of the MSE, or recognition performance on a held out
development set.

It is worth noting that most of the time is spent performing
actual computations, while the transfer of inputs and outputs
between CPU and GPU contributes to the total time for just 8.7%.
The overhead of the memory transfers inside the GPU of the output
patterns selected by the FABP strategy from the feed-forward to
the back-propagation structures is significant but unavoidable for
speeding-up the back-propagation computations. Excluding
memory transfer times, and looking at the actual computations,
most of the time (about 74%) is spent evaluating matrix products
by means of the CuBLAS library function cublasSgemm,
whereas the remaining time is used by the kernels.

5. EXPERIMENTS
Two set of experiments were performed to test the speed-up
achieved by using the proposed approaches, without any loss of the
recognition accuracy. The hybrid ANN-HMM models, detailed in
[11], that are used by the Loquendo Automatic Speech Recognizer
[12] were trained and tested. The models are 4-layer perceptrons
with about 1M weights, trained with 150 to 500 hours of speech.
The hardware setup was a HP xw8600 workstation equipped with a
quad-core 3.0 GHz CPU, 1600 MHz FSB, 8 GB RAM, NVIDIA
GTX280 GPU, and running Linux RedHat RHEL 5.2 EM64T.

The first set of experiments was devoted to training English
models using the Wall Street Journal 0 corpus. Table 1 shows the
elapsed training time, and the relative speed-up of four
implementations.

Table 1. Training time, and relative speed-up for the WSJ0 corpus.

Training
Implementation

Time
hh:mm

Speed-up vs
 Standard C

Speed-up
vs MKL

Standard C 42:35 - -
Single thread MKL 11:36 3.7 x -
Multi-Thread MKL 9:41 4.4 x 1.2 x
CUDA no-padding 2:29 17.1x 4.7x

CUDA with padding 2:14 19.1 x 5.2 x

The baseline is a standard C language implementation without the
optimized matrix functions offered by the BLAS library, it is
compared with single and multi thread programs using the INTEL
MKL libraries, and finally with the support of a GPU board and its
optimized routines. It is worth noting that to obtain a fair
comparison of the GPU and MKL implementations, the bunch size
FFB of the latter has been set to 15 rather than to 32. This has been
done to avoid in the MKL implementation the significant overhead
of re-processing in the next feed-forward step the patterns accepted
by the focused attention mechanism but exceeding the back-
propagation block size BPB. This problem is much less relevant in
the GPU because bunch of patterns are processed in parallel.

In this case study a speed-up of 3.7 is obtained by enhancing
an already optimized standard C language implementation to
process bunch of patterns using the MKL libraries. The
improvement obtained using the GPU is much larger: a factor of
19.1, which is 5.2 times faster than the single thread MKL
implementation. Although the multi-thread MKL version does give
a 20% improvement compared to the single thread, it fully
occupies the 4 cores, which can be used instead for training
different models in parallel.

In the second set of experiments, without changing the setup,
the models of 6 different languages have been re-trained using the
large corpora collected for creating the models used by the
Loquendo decoder. In these experiments we computed the elapsed
training times to evaluate the obtained speed-up and we checked
the recognition accuracy on 8 different recognition application
grammars to assess that fast computation does not produce
statistically significant recognition performance variations. The
grammars include common recognition tasks such as yes-no,
connected digits, numbers, spelling, dates, etc. The reference
models are the ones released with the Loquendo ASR recognizer.

The models were re-trained using the single thread MKL
implementation on the same workstation hosting the NVIDIA GPU
to obtain a fair comparison of the training times. On average,
training of the models with the CUDA-GPU implementations is
5.9 faster than using the single thread MKL optimized
implementation.

Finally, an additional NVIDIA GTX295 GPU board has ben
added to the hardware configuration to test the possibility of
training more networks in parallel. This board has two GPUs, but a
lower clock both for its memory and core processors. In this
configuration the workstation has 3 GPUs of comparable
computational power.
A set of training sessions have been done using the Wall Street
Journal corpus to verify whether the simultaneous run of more than
one training session slows down the GPU-CUDA implementation,
possibly generating congestion problems on the PCI-Express bus.
Table 2 shows the elapsed times, in hours and minutes, for training
the 7236 sentences of the corpus. Each row in the Table represents
a single (row 1 and 2) or multi-model (row 3, 4 and 5) train
experiments.

Table 2. Training time, in hours and minutes, for single and
parallel training sessions running on different GPUs

GTX280 GTX295(1) GTX295(2)

Test
Time % Incr Time % Incr Time % Incr

1 2:14 - idle idle
2 idle 2:20 +4.5 idle
3 2:14 0 2:20 +4.5 idle
4 idle 2:20 +4.5 2:20 +4.5
5 2:15 +0.7 2:22 +6.0 2:21 +5.2

As shown in the last row, this configuration of the workstation is
able to carry out three parallel sessions with a very small increase
of the average training time. We can conclude that the GPUs and
the PCI-Express 16x Gen2 bus are not a bottleneck for the fast
GPU-CUDA training implementation.

6. CONCLUSIONS

We have studied and implemented a complete ANN training
procedure for sequential patterns exploiting the computational
power of inexpensive GPU boards. We have tested this approach
for training acoustic models for large vocabulary speech
recognition tasks, showing a 6 times reduction of the time required
to train real-world large size networks with respect to an already
optimized implementation using the INTEL MKL libraries.

The obtained speed-up not only improves the efficiency of the
generation of acoustic models, but also makes easier the research
activity related to acoustic modeling such as testing different
definitions of the acoustic units, experimenting with different
neural networks structures and topologies. Reducing the training
time also allows training larger models with huge training corpora.

6. REFERENCES

[1] H. Bourlard, N. Morgan, “Connectionist Speech Recognition: A

Hybrid Approach”. Kluwer Academic Publishers, 1993.
[2] K.S. Oh, K. Jung, “GPU implementation of neural networks”. Pattern

Recognition, Vol. 37, pp.1311-1314, 2004.
[3] H. Jang, A. Park, K. Jung, “Neural Network Implementation Using

CUDA and OpenMP”. In: Proc. Digital Image Computing:
Techniques and Applications, DICTA '08, pp.155-161, 2008.

[4] S. Lahabar, P. Agarwal, P.J. Narayanan, ”High Performance Pattern
Recognition on GPU”. In: Proc. National Conference on Computer
Vision Pattern Recognition, Image Processing and Graphics,
NCVPRIPG'08, pp. 154-159, 2008.

[5] Bilmes, J., Asanovic, K., Chin C., Demmel, J., 1997. Using PHiPAC
to speed error back-propagation learning. In: Proc. Internat.
Conference on Acoustics, Speech and Signal Processing, ICASSP-97,
pp .4153-4156.

[6] D. Anguita, G. Parodi, R. Zunino, “An Efficient Implementation of BP
on RISC-based Workstations”. Neurocomputing, Vol. 6, pp.57-65,
1994.

[7] J.C. Hoskins, “Speeding Up Artificial Neural Networks in the “Real”
World”. In: Proc. 1989 IJCNN, p. 626, 1989.

[8] Intel Math Kernel Library, http://software.intel.com/en-us/intel-mkl
[9] NVIDIA: NVIDIA CUDA Programming Guide,

http://developer.download.nvidia.com/ compute/cuda/2_0/docs/.
[10] V. Volkov, J.W. Demmel, “Benchmarking GPUs to tune dense linear

algebra”. In: Proc. 2008 ACM/IEEE Conference on Supercomputing,
pp. 1–11, 2008.

[11] D. Albesano, R. Gemello, F. Mana, “Hybrid HMM-NN Modeling of
Stationary-Transitional Units for Continuous Speech Recognition”.
Proc. Neural Information Processing, pp. 1112–1115, 1997.

[12] Loquendo ASR: www.loquendo.com/en/technology/asr.htm

