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ABSTRACT

In this paper we describe the implementation cbmmlete ANN

training procedure for speech recognition using leck mode
back-propagation learning algorithm. We exploit thegh

performance SIMD architecture of GPU using CUDA atsdC-

like language interface. We also compare the spgedbtained
implementing the training procedure only taking abage of the
multi-thread capabilities of multi-core processors.

Our approach has been tested by training acoustitels for large
vocabulary speech recognition tasks, showing an@gireduction
of the time required to train real-world large sizetworks with
respect to an already optimized implementation gudime Intel
MKL libraries.

Index Terms— Artificial Neural Network, Focused Attention
Back-Propagation, GPU, CUDA, Fast Training

1. INTRODUCTION

State of the art speech recognition systems amedbas acoustic-
phonetic models of the words. Each acoustic unindsleled by
one or more states of a Hidden Markov Model (HMKgaussian
Mixture Models (GMMs) are often used within eacatstto model
the probability density of the acoustic patternsoagmted to that
state. An attractive alternative to Gaussian mtumodeling is the
use of an Artificial Neural Network (ANN) trained estimate the
posterior probability of each state given an adousattern [1].

The main advantage of using a hybrid ANN-HMM apioan

large vocabulary speech recognition is that theprdation of the
posterior probabilities of the HMM states takesral fraction of
the search time, moreover the ANN models are intire
discriminative.

The most widely used ANNs in speech recognitionfees-
forward Multi Layer Perceptron (MLP) networks trath by the
error back-propagation paradigm.

The core computation in MLPs, both in the feed-fandvand
in the back-propagation steps, is the inner prodica weight
vector and of a feature vector (activation or ernctor
respectively). Several works have been publishet #xploit
matrix multiplication to convert many inner-produsperations
into a single matrix multiply operation, and thepahilities of
graphics-processors [2][3][4]. All these works fecthowever, on
the classification of static patterns.

In this paper we describe the implementation of tack
mode back-propagation learning algorithm for speedwognition
exploiting the high performance SIMD architectufés®U. In our

implementation we take into account all the pecudispects of
training large scale sequential patterns, in paldic the re-
segmentation of the training sentences, the blaekfer the feed-
forward and for the back-propagation steps, andtthesfer of
huge amount of data.

The paper is organized as follows. Section 2 rectie
training steps of the ANN-HMM models. Sections 3 ahdetail
the techniques that can be used to accelerateetfnork training
using single or multi-core CPUs, and GPU respelgtivéhe
experimental results are summarized in Section &Gnciding
remarks are reported in Section 6.

2. ANN-HMM MODEL TRAINING

The training databases usually include utteranéesemtences or
words collected from many different speakers, websd in terms
of their corresponding phonetic units. Training hgtANN-HMM
models, thus, requires these two alternate steps:
- Find the best alignment of the utterance framethéostates
of the corresponding phonetic units.
- Find the weights of the network that better disanete
among the states, by producing for each state amats of
the posterior probability P(statg| where x is the input
pattern.
In the following we will analyze the feed-forwarchch back-
propagation training steps for a network havingtreak output
nodes and sigmoid activation functions for all tiidden nodes.
The cross-entropy error function is used to comphi error
between the output of the ANN and the target vector

The feed-forward step computes, for each layerothputs of

the corresponding nodes given the layer input wecto
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wheren is the number of nodes of the current layer, h(et,) is

the sigmoid function for all the hidden layers, ahe softmax
function for the output layer.

After the evaluation of the outputs produced by fbed-
forward step, the weights of the network are updiate the basis
of the error between the target vectoand the network outputs
out. An error function that is appropriate for dealingth
probabilities is the cross-entropy:

E =-t On(out;)—(1-t ) On(1-out,) ®)



The back-propagation algorithm proceeds by projregahe
error from the output to the underlying hidden faym order to
correct the network weights. The procedure is surzed in

Figure 1, wherg :E, and
dout,
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if layer is the output layer with softmax activation fuoctiand

n
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if layer is a hidden layer with sigmoid activation function

3. USING SINGLE AND MULTI-CORE CPUS

The first step toward an efficient straightforwandplementation
of the feed-forward and back-propagation procediuseto use
efficient vector-by-matrix functions. More efficien
implementations are, however, possible by updatireg weights
after processing a block of B input frames. Thisison is a trade-
off between batch and stochastic gradient backamgation, which
leads to accurate model estimation and allows Ieéral
computation. In [5] high performance matrix muljiptoutines
were introduced that, based on the work of [6],ehbgen used to
improve the training speed on a speech recognitata set.

The training algorithm can be further enhanced éipgithe so
called focused-attention back-propagation (FABP)arding
strategy [7]. FABP focuses attention on the pattehat are most
difficult to learn. In FABP, the feed-forward stepperformed, as
usual, for all the patterns to compute the errasvben the net
outputs and the related targets. Back-propagatimwever, is
performed only for those patterns having a MeanaSgError
(MSE) greater than a given threshold. This stsategt only
speeds-up the training, but also improves the tyuafithe trained
model reducing its dependence on the a priori gritibaof the
classes in the training set. In FABP several tregjrpatterns fed to
the network are not used for back-propagation (atr860% in the
last iterations). Thus, it is opportune that thediéorward bunch
(FFB) size is greater than the block size (BPB)usethe back-
propagation step.

Taking care of these considerations the bunch feedard and
the block back-propagation steps can be rewritsémgumatrix-by-
matrix operations as shown in Figure 2 and Figurespectively.
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Figure 1. Back-propagation algorithm foNBAYERS MLP.

out(g,, = input g, (2.1)
for layer in range (1, NLAYERS)
| — | = |
net(sry) = out(grs ™ QW) (2.2)
if layer == NLAYERS
out(gry) = softmax(net sy7) (2.3)
el se
out(gr) = sigmoid(net{gy) (2.9)

Figure 2. Implementation of the feed-forward stéthe training
algorithm for aNLAYERS MLP using matrix-by-matrix operations.
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Figure 3. Implementation of the back-propagatigoeathm for a

In these figuresT indicates transposition, the superscript is the NLAYERS MLP using matrix-by-matrix operations. ./ andafe

index of the network layer and the subscript githes dimensions
of the matrices, where B is the bunch size in #eelfforward step,
and the block size in the back-propagation stepnd | are the
number of output nodes of two adjacent layers.rothicing a
dummy layer 0, the same index refers both to therlaveights and
to its outputs. The variablgsand £ in Figure 3 are the dynamic

learning rate adjustment and the momentum facspeatively.

The optimized implementation in the Math Kernel riaity [8] of
the Level 3 BLAS library functions has been usedtfe matrix-
by-matrix multiplications in (2.2), (3.3) and (3.#loreover, since
Intel provides the Integrated Performance Primitifer other
vector operations, it is important to decomposerains such as
(2.3), (2.4), (3.1), (3.2) and (3.5) in terms cfemuence of vector
operations which can be mapped to fast librarytions.

the element-by-element division and multiplicatrespectively.

Further speed-up is obtained using the
implementation of the matrix multiplicatiorcbl as_sgemm
function that splits the execution over the avdda®PU cores.

Since the relative speed-up that can be achievetd) ukese
libraries is proportional to the size of the ddsage feed-forward
bunch size and back-propagation block sizes leadbeter
performance. However, the value of FFB must be Hedrbecause
all the patterns in the feed-forward bunch thataeepted by the
FABP strategy, but exceed the BPB size, must benitdd again
in the next feed-forward bunch introducing memoryd a
computation overhead. In the experiments describeSlection 5
the value of the bunch size FFB, and of the blaz& BPB have
been set to 32 and 10 respectively.

threaded MKL



4. SPEED-UP USING GPU AND CUDA

GPUs are graphics-oriented dedicated processortedsuto

computationally expensive but highly parallelizabdsks such as
3D graphic rendering. The main GPU architectureharacterized
by the presence of a high number of floating poore processors
which are able to perform parallel
implementation of parallel computation tasks hasnbemarkably
facilitated since the introduction by NVIDIA of thkigh-level
programming
Architecture), tthe

which provides a C-like interface

programmable processors of the GPU and an efficient

implementation of the BLAS library (CuBLAS).

In the CUDA environment a programmer sees the GPW a
multi-core processor allowing the concurrent exiecudf multiple
threads which perform the same computations oreréifit data.
The computation is organized as a grid of threadksl where each
thread executes a single instruction set calledetg®].

Since most of the computation in ANN training hasigh
degree of fine grain parallelism, the use of GP&particularly
suited for this task. Examples of the use of theDB8Uramework
in the field of artificial neural networks are ady present in
literature. In particular, [4] presents a compliet@lementation of
the training process for an MLP with sigmoid outpurits,
assuming that all the training patterns and theresponding
targets are fixed and stored in the GPU memory.

Although our approach is similar to the latter, lever, several
problems have been taken into account for an éffect
implementation of the MLP training task for sequalnpatterns on
a GPU. First of all, the epoch back-propagatiorrepgh proposed
in [4] is not suited for training a network thatsh& model
phonetic units for speaker independent speech négmy tasks.
For these tasks the number of training patternsezeily exceed

computations. e Th 2.

language CUDA (Compute Unified Device

GPU memory, but the input patterns are loaded enGRU in
bunches due to the small size of the GPU memorypeoed to the
dimensions of the training data.
The core steps of the training algorithm are as\:
1. Load a bunch FFB of input patterns on the GPU mgmor
Takes 2.5% of the total time using functiondaMentpy.
Execute the feed-forward step and evaluate the fdBEach
pattern. Takes 32.5% of the total time.
3. Transfer both the bunch MSEs and output patteros fthe
GPU to the main memory. The output patterns ageired by
the forced alignment performed by the Viterbi aitjon,
running in the host machine, to obtain a new, nurexise,
association of the input patterns to the targete MSE of
each pattern is simply tested in the host processmelect
according to FABP the patterns on which back-pragiag has
to be performed. Takes 6.2% of the total time udingction
cudaMentpy.

The pattern vectors in the GPU memory selectedbfmk-

propagation in step 3 are appended to the backageijn

matrix structures (of size BPB). Takes 10% of thitalttime.

Repeat all the previous steps until a sufficienmbar of

patterns (the block size BPB) are selected for back

propagation.

6. Execute the back-propagation procedure for the kblot
selected patterns and update the weights. Tak@&Yn48f the
total time.

7. Since the weights have been updated, all the réngain
patterns in the feed-forward bunch that were aetkply the
FABP strategy, but exceed the BPB size, must sibenitted
in the next feed-forward bunch.

Repeat from 1. until all input patterns have bemtgssed.

»

o

These steps are iterated until convergence is egbah decided by
a stopping criterion based on maximum number oéitens, rate

some millions,thus, the patterns cannot be stored in the GPUof decrease of the MSE, or recognition performamee held out

memory. Furthermore, since slow convergence probleasily
arise when epoch back-propagation is used for gk data sets,
it becomes mandatory to use the bunch training cambr
combined with FABP as described in Section 3. Claoeyever, is
required to estimate the bunch and block sizexhiege a good
trade-off between model accuracy and training time.
To exploit the GPU computational power, we map riregrix

implementation on either CuBLAS functions or spiecKernels.
Matrix multiplications are performed by means ofeth

development set.

It is worth noting that most of the time is spemrfprming
actual computations, while the transfer of inputsd soutputs
between CPU and GPU contributes to the total tiongust 8.7%.
The overhead of the memory transfers inside the GRble output
patterns selected by the FABP strategy from thd-feeward to
the back-propagation structures is significant évoidable for
speeding-up the back-propagation computations. ufiud
memory transfer times, and looking at the actuahmatations,

cubl asSgemm a fast and hardware-optimized implementation ofmost of the time (about 74%) is spent evaluatingrim@roducts

matrix products function [10], both in the feedyfard (2.2) and
in the back-propagation (3.3, 3.4) steps. Carefidipred kernels
have been implemented for the softmax and sigmgidtfons, the
MSE evaluation, and the update of the network wisigh
Moreover, due to the architecture of the GPU, siGeBLAS
functions give optimal performance with matricesihg sizes that
are multiples of power of 2, we enforce zero pagddio our
matrices which do not meet this condition. In matér, we pad to
multiples of 32 and 16 the structures for the fémaard bunch
and back-propagation block respectively, and totiples of 32
the weight matrices, obtaining a 10% improvenanshown in the
last two rows of Table 2 in Section 5.

Although the CuBLAS library includes efficient fuians to
copy data from the host to the card and copy resatk from the
card to the host, these transfers of data canyebsitome the
performance bottleneck. Thus, the network weighaskapt in the

by means of the CuBLAS library functioocubl asSgenm
whereas the remaining time is used by the kernels.

5. EXPERIMENTS

Two set of experiments were performed to test theed-up
achieved by using the proposed approaches, witoutoss of the
recognition accuracy. The hybrid ANN-HMM modelstaiked in
[11], that are used by the Loquendo Automatic Slpd&ecognizer
[12] were trained and tested. The models are 4-lpgeceptrons
with about 1M weights, trained with 150 to 500 t®of speech.
The hardware setup was a HP xw8600 workstationppedi with a
quad-core 3.0 GHz CPU, 1600 MHz FSB, 8 GB RAM, NVAD
GTX280 GPU, and running Linux RedHat RHEL 5.2 EM64T

The first set of experiments was devoted to tragninglish
models using the Wall Street Journal O corpus. @4dbshows the
elapsed training time, and the relative speed-up fadr
implementations.



Table 1. Training time, and relative speed-up lfier WSJO corpus.

Table 2. Training time, in hours and minutes, fogke and
parallel training sessions running on different GPU

The baseline is a standard C language implementatiihout the
optimized matrix functions offered by the BLAS My, it is
compared with single and multi thread programsgisiire INTEL
MKL libraries, and finally with the support of a GRboard and its
optimized routines. It is worth noting that to dhtaa fair
comparison of the GPU and MKL implementations, litbach size
FFB of the latter has been set to 15 rather th@&2td his has been
done to avoid in the MKL implementation the sigrefit overhead
of re-processing in the next feed-forward stepphgerns accepted
by the focused attention mechanism but exceedirg kthck-
propagation block size BPB. This problem is muds leelevant in
the GPU because bunch of patterns are procesgedaliel.

In this case study a speed-up of 3.7 is obtainedrhancing
an already optimized standard C language implertientao
process bunch of patterns using the MKL librariekhe
improvement obtained using the GPU is much largefactor of
19.1, which is 5.2 times faster than the singleeddr MKL
implementation. Although the multi-thread MKL veasidoes give
a 20% improvement compared to the single threadfully
occupies the 4 cores, which can be used insteadrdiming
different models in parallel.

In the second set of experiments, without changmgsetup,
the models of 6 different languages have beenaraed using the
large corpora collected for creating the modelsdubg the
Loquendo decoder. In these experiments we compghtedlapsed
training times to evaluate the obtained speed-upve@ checked
the recognition accuracy on 8 different recognitiapplication
grammars to assess that fast computation does rauge
statistically significant recognition performancariations. The
grammars include common recognition tasks such esng,
connected digits, numbers, spelling, dates, ete Téference
models are the ones released with the Loquendor&&synizer.

The models were re-trained using the single thriyd¢L
implementation on the same workstation hosting\kéDIA GPU
to obtain a fair comparison of the training tim&n average,
training of the models with the CUDA-GPU impleméitas is
5.9 faster than using the single thread MKL optediz
implementation.

Finally, an additional NVIDIA GTX295 GPU board hasn
added to the hardware configuration to test thesipdgy of
training more networks in parallel. This board has GPUs, but a
lower clock both for its memory and core processanms this
configuration the workstation has 3 GPUs of comiplara
computational power.

A set of training sessions have been done using\thé Street
Journal corpus to verify whether the simultaneausaf more than
one training session slows down the GPU-CUDA imgetation,
possibly generating congestion problems on theB@Fess bus.
Table 2 shows the elapsed times, in hours and esnédr training
the 7236 sentences of the corpus. Each row in stieTrepresents
a single (row 1 and 2) or multi-model (row 3, 4 aby train
experiments.

Training Time Speed-up vs Speed-up
Implementation hh:mm Standard C vs MKL GTX280 GTX295(1) GTX295(2)
Standard C 42:35 - - Test [ Fime | %iner | Time | %incr| Time| % Incr
Single thread MKL 11:36 3.7x - 1 2:14 - idle idle
Multi-Thread MKL 941 4.4 X 1.2x 2 idle 2:20 +4.5 idle
CUDA no-padding 2:29 17.1x 4.7x 3 2:14 | 0 2:20 +4.5 idle
CUDA with padding 2:14 19.1x 5.2x 4 idle 2:20 +4.5 2:20 +4.5
5 215 | +0.7 2:22 +6.0 2:21 +5.2

As shown in the last row, this configuration of twerkstation is
able to carry out three parallel sessions with iy genall increase
of the average training time. We can conclude thatGPUs and
the PCI-Express 16x Gen2 bus are not a bottleneckhe fast
GPU-CUDA training implementation.

6. CONCLUSIONS

We have studied and implemented a complete ANNnitrgi
procedure for sequential patterns exploiting thenmatational
power of inexpensive GPU boards. We have testedapproach
for training acoustic models for large vocabularpeech
recognition tasks, showing a 6 times reductiorhefttme required
to train real-world large size networks with redpecan already
optimized implementation using the INTEL MKL libres.

The obtained speed-up not only improves the effyjeof the
generation of acoustic models, but also makes retmeresearch
activity related to acoustic modeling such as mestdifferent
definitions of the acoustic units, experimentingthwidifferent
neural networks structures and topologies. Reduttiegtraining
time also allows training larger models with hugerting corpora.
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