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Multiplierless Mumford and Shah functional

implementation
Abstract

This paper proposes the implementation of the Mumford and Shah functional without using complex operations

as multiplications and divisions. Our goal is to show that the achieved results in terms of performance/complexity

trade-off are well suited for video applications of the Mumford and Shah functional, such as motion estimation

based on segmentation techniques. To this purpose two implementations, with and without multiplications, have been

developed and ported on a DSP board able to get frames from a camera and to play out the results on a standard

VGA monitor: reported results show a relative speed-up of a factor 3 for the multiplierless version with no visual

quality degradation.

Index Terms

Image Segmentation, Mumford and Shah functional, Performance Evaluation, DSP

I. INTRODUCTION

During the last years several image and video standards (e.g. JPEG 2000, MPEG4, H.264, . . . ) have been proposed

to increase the quality and the availability of multimedia services. One of the major novelties of the most recent

video standards concerns the motion estimation. Many works propose the use of image segmentation instead of

rectangular blocks of pixels to recognize and track object motion (e.g. [16], [25]). Among the proposed approaches

an interesting technique to achieve both image segmentation and regularization is the Mumford and Shah functional

[23]. In [6], [7] and [8] a novel interpretation of the optic flow has led to an extension of the Mumford and

Shah functional to motion segmentation. This approach named Motion Competition is intended to join motion

estimation and segmentation to derive a variational approach for the segmentation of the image domain into regions

of homogeneous motion.

As far as the Mumford and Shah functional implementation is concerned, several works deal with iterative

algorithms [4], [18], [17], [9], [32], [31] and [15]. Furthermore, since the Mumford and Shah functional is very

computationally intensive, different solutions have been proposed to tackle its complexity [4], [17], [9], [32], [31].

In particular, as the computation of the Mumford and Shah functional is based on iterative algorithms, the greatest

part of the proposed studies focused on reducing the number of required iterations.

The multigrid approach is an interesting technique to speed-up iterative methods for solving elliptic problems. The

basic idea behind multigrid techniques is to find first a coarse solution to the problem, solving it on a coarse mesh

and then employ this solution to refine the original problem on a fine mesh. This approach has been successfully

employed for the Mumford and Shah functional in [9] where a noteworthy speed-up is achieved reducing the number

of iterations.



2

Other solutions are based on the Steepest Descent (e.g. [4] and [31]) to reduce the number of iterations. Besides

the Preconditioned Conjugate Gradient method is a very effective technique for solving sparse linear equation

systems as Ax = b. It is based on preconditioning the so called A-orthogonality that improves the convergence to

the solution employing A-orthogonal search directions d(i) (dT(i)Ad(j) = 0). In the last years its use to speed-up

the Mumford and Shah functional implementation has been addressed [15], [14] showing interesting results.

To speed-up the convergence of the Mumford and Shah functional it is crucial to consider not only the number

of iterations, but also the operations required on pixels to perform segmentation and regularization. In fact the

Mumford and Shah functional requires several multiplications and two divisions, that cannot be reduced to simple

shift operations. The aim of this work is to reduce the “arithmetic” complexity of the Mumford and Shah functional,

independently of the technique employed to reduce the number of iterations, by performing the data processing

in the logarithmic domain. This change of domain reduces multiplications and divisions into simple additions

and subtractions [22]. However, this complexity reduction comes at the expense of some approximations, that

are investigated in this work. The aforementioned techniques, such as multigrid, Steepest Descent, Preconditioned

Conjugate Gradient, can be jointly employed with the arithmetic optimizations proposed in this work to achieve

larger speed-up.

A simple numerical iterative solution based on non-linear Gauss-Seidel method [18] is employed to show the

speed-up granted by the proposed method. Moreover, to prove the effectiveness of the proposed method, both a

standard implementation with multiplications and divisions and the proposed multiplierless approach were ported on

a DSP board for image and video processing, the Texas Instruments Image Developers Kit (IDK) [28]. Performance

results obtained for both the implementations are shown in section V. Section II is devoted to briefly summarize

the theoretical framework, whereas sections III and IV deal with the proposed approach. Finally in section VI some

conclusions are drawn.

II. THEORETICAL FRAMEWORK

The Mumford and Shah approach is based on a mathematical model that considers the segmentation problem as

a partition of the image domain Ω ⊂ R2 in open subsets Ωi. Given an image, whose intensity function is defined as

g : Ω → R, the Mumford and Shah functional [23] aims to find a smooth approximation u of g in each sub-domain

Ωi:

E(u,K) =

∫

Ω

(u− g)2dx+ α

∫

Ω\K
|∇u|2 dx+ β ‖ K ‖ (1)

where K is the set of Ωi boundaries and ‖ K ‖ denotes K set length, α is a parameter related to the scale [31],

β is a parameter related to the contrast [31], x = (x1, x2) are the image coordinates, dx is the Lebesgue measure

in the plane and

|∇u|2 =

∣∣∣∣
∂u

∂x1
+

∂u

∂x2

∣∣∣∣
2

. (2)

It has been demonstrated that the Mumford and Shah functional admits a solution (e.g. [12], [10], [3], [11]); however

a big advance in solving it came from the Γ-convergence concept. In [1] Ambrosio and Tortorelli demonstrated
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that the functional described in (1) can be approximated, in the Γ-convergence sense by

Eε(u, z) =

∫

Ω

(u− g)2 + αz2 |∇u|2 + β

[
ε |∇z|2 + (1− z)2

4ε

]
dx (3)

where the function z yields an approximate description of the set of curves K and

|∇z|2 =

∣∣∣∣
∂z

∂x1
+

∂z

∂x2

∣∣∣∣
2

. (4)

Moreover, they demonstrated that the family of functionals Eε(u, z) converges to the functional E(u,K) in the

sense of Γ-convergence as ε → 0. Thus, the solution obtained by minimizing Eε(u, z) tends to the solution obtained

by minimizing E(u,K). As (3) is an elliptic problem its minimizers satisfy the Euler-Lagrange differential equation

both for u and z. So that we need to:

1) develop u and z Euler-Lagrange equations;

2) discretize g, u and z on a uniform grid of Rows× Cols nodes with mesh size h - thus they become arrays

gi,j , ui,j , zi,j .

As a consequence, we obtain a nonlinear system of equations for the 2 · Rows · Cols unknown values ui,j , zi,j .

Employing an iterative algorithm, as the nonlinear Gauss-Seidel method [18] with h = 1, we obtain

ui,j =
αũi,j + gi,j
1 + α (z2)

, zi,j =
4ẑi,j + p2

16 + 4αp
β |∇u|2i,j + p2

(5)

where

z2 = z2i+1,j + z2i−1,j + z2i,j+1 + z2i,j−1 (6)

ũi,j = z2i+1,jui+1,j + z2i−1,jui−1,j + z2i,j+1ui,j+1 + z2i,j−1ui,j−1 (7)

ẑi,j = zi+1,j + zi−1,j + zi,j+1 + zi,j−1 (8)

p =
1

ε
(9)

From (5) it can be observed that noteworthy computational complexity is required to compute ui,j and zi,j as they

require several multiplications and two divisions. For a complete formal derivation of (5) the reader can refer to

[18].

III. MULTIPLIERLESS FORMULATION

In order to avoid the use of multiplications and divisions, (5) can be ported into the logarithmic domain. This

porting is also routinely adopted in several channel decoding algorithms such as turbo [26] and LDPC decoders

[33]. However, to really exploit the advantage of working into the logarithmic domain we ought to reduce as much

as possible the number of conversions from the linear to the logarithmic domain and vice-versa from the logarithmic

to the linear one. In channel decoding applications the whole processing can be kept in the logarithmic domain and

there is no need for a final conversion to the linear domain. In the evaluation of the Mumford and Shah functional

the need for converting back processing outputs to the linear domain depends on the applications: for example this
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conversion is necessary in restoration applications [4] but not in edge detection [30]. Let’s apply the logarithm to

the left and to right sides of (5).

lnui,j = lnNui,j
− lnDui,j

(10)

= ln (αũi,j + gi,j)− ln
[
1 + α

(
z2i+1,j + z2i−1,j + z2i,j+1 + z2i,j−1

)]

ln zi,j = lnNzi,j − lnDzi,j (11)

= ln
(
4ẑi,j + p2

)− ln

(
16 + 4

αp

β
|∇u|2i,j + p2

)

where

4 |∇u|2i,j = (ui+1,j − ui−1,j)
2 + (ui,j+1 − ui,j−1)

2 (12)

For the sake of simplicity we can analyze separately the four terms lnNui,j
, lnDui,j

, lnNzi,j and lnDzi,j .

lnNui,j = ln (αũi,j + gi,j) = ln
(
elnα+ln ũi,j + eln gi,j

)
(13)

lnDui,j
= ln

[
1 + α

(
z2i+1,j + z2i−1,j + z2i,j+1 + z2i,j−1

)]
(14)

= ln
[
e0 + elnα+2 ln zi+1,j + . . .+ elnα+2 ln zi,j−1

]

lnNzi,j = ln
(
4ẑi,j + p2

)
= ln

(
eln 4+ln ẑi,j + e2 ln p

)
(15)

lnDzi,j = ln

(
16 + 4

αp

β
|∇u|2i,j + p2

)
(16)

= ln
(
eln 16 + elnα+ln p−ln β+ln 4|∇u|2i,j + e2 ln p

)

where

ln ũi,j = ln
(
z2i+1,jui+1,j + z2i−1,jui−1,j + z2i,j+1ui,j+1 + z2i,j−1ui,j−1

)
(17)

= ln
(
e2 ln zi+1,j+lnui+1,j + . . .+ e2 ln zi,j−1+lnui,j−1

)

ln ẑi,j = ln (zi+1,j + zi−1,j + zi,j+1 + zi,j−1) (18)

= ln
(
eln zi+1,j + . . .+ eln zi,j−1

)

ln 4 |∇u|2i,j = ln
(
e2 ln|ui+1,j−ui−1,j | + e2 ln|ui,j+1−ui,j−1|

)
(19)

and

ln |ui+1,j − ui−1,j | = ln
∣∣elnui+1,j − elnui−1,j

∣∣ (20)

ln |ui,j+1 − ui,j−1| = ln
∣∣elnui,j+1 − elnui,j−1

∣∣ (21)

As it can be observed we can implement the Mumford and Shah functional building an algorithm that

• evaluates the logarithms of gi,j and ui,j , zi,j initial values

• performs operations like ln
∣∣eδ1 ± eδ2

∣∣ for a certain number of iterations

It is noticeable that the values for α, β and p ought to be expressed in the logarithmic domain too. Furthermore,

depending on the application, results (i.e. u and z) could be converted back into the linear domain. The strength of
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this solution stems from computing the logarithms only on gi,j and ui,j , zi,j initial values, then the computation is

performed in the logarithmic domain till the final results are achieved.

As the logarithm goes to infinity when the pixel value is zero, we ought to avoid zero values. Since each pixel

is represented on 8-bits in [0, 1] the smallest non–zero value is 2−8. As a consequence, zero can be approximated

as a value MS EPS < 2−8. For a fixed point implementation a simple solution is choosing MS EPS = 2−9,

that means having at least 9 bits to represent the fractional part of a sample.

IV. THE max∗ AND max− FUNCTIONS

As it is well known in the field of channel codes (e.g. turbo codes) [26], [24] the following equality holds true

ln
(
eδ1 + eδ2

)
= max (δ1, δ2) + ln

(
1 + e−|δ2−δ1|

)
(22)

In particular for turbo codes [2] it has been proved that (22) can be simply implemented building a look–up–table

(LUT) storing the term ln
(
1 + e−|δ2−δ1|). The LUT entries and the values stored into the LUT depend on the

precision required by the system, as detailed in the following paragraphs. Said r the number of bits required to

appreciate the term |δ2 − δ1| we can find the number of entries for the LUT by solving the following inequality

for m:

ln
(
1 + e−

m
2r
) ≤ 2−(r+1) (23)

Similarly holds true

ln
∣∣eδ1 − eδ2

∣∣ = max (δ1, δ2) + ln
(
1− e−|δ2−δ1|

)
(24)

Using the same approach we can approximate ln
(
1− e−|δ2−δ1|) solving

ln
∣∣1− e−

n
2r
∣∣ ≤ 2−(r+1) (25)

It is noticeable that the term ln
(
1 + e−|δ2−δ1|) takes values into a limited range, in fact

|δ2 − δ1| ∈ [0,∞) → ln
(
1 + e−|δ2−δ1|

)
∈ (0, ln 2]. (26)

So that given a certain accuracy (e.g. 2−r) the logarithm can be easily approximated. On the other hand the term

ln
(
1− e−|δ2−δ1|) takes values into an unlimited range, in fact

|δ2 − δ1| ∈ [0,∞) → ln
(
1− e−|δ2−δ1|

)
∈ (−∞, 0). (27)

In order to map this term in a small LUT we ought not only to select a certain accuracy (e.g. 2−r), but also to limit

the co-domain. Since the function approaches −∞ as |δ2 − δ1| → 0, we can force |δ2 − δ1| ∈ [l,∞). To obtain a

hardware friendly value, we impose that l is a power of two: l = 2−EPS . As for samples, we approximate the zero

with l = MS EPS, namely we select EPS = 9 so that the we approximate −∞ with ln 2−9.

In the literature the function obtained approximating (22) by means of a LUT is usually referred to as max∗.

In the following we will refer to the function obtained approximating (24) with a LUT as max−. Employing the



6

max∗ and the max− operators we can reformulate the multiplierless solution as:

lnNui,j
=

∗
max(lnα+ ln ũi,j , ln gi,j) (28)

lnDui,j
=

∗
max(

∗
max(

∗
max(

∗
max(0, qi+1,j), qi−1,j), qi,j+1), qi,j−1) (29)

lnNzi,j =
∗

max(ln 4 + ln ẑi,j , 2 ln p) (30)

lnDzi,j =
∗

max(
∗

max(ln 16, lnα+ ln p− lnβ + ln 4 |∇u|2i,j), 2 ln p) (31)

ln ũi,j =
∗

max(
∗

max(
∗

max(si+1,j , si−1,j), si,j+1), si,j−1) (32)

ln ẑi,j =
∗

max(
∗

max(
∗

max(ln zi+1,j , ln zi−1,j), ln zi,j+1), ln zi,j−1) (33)

ln 4 |∇u|2i,j =
∗

max(2
−

max(lnui+1,j , lnui−1,j), 2
−

max(lnui,j+1, lnui,j−1)) (34)

with

qi,j = lnα+ 2 ln zi,j (35)

si,j = 2 ln zi,j + lnui,j (36)

∗
max(δ1, δ2) = max (δ1, δ2) + ln

(
1 + e−|δ2−δ1|

)
(37)

−
max(δ1, δ2) = max (δ1, δ2) + ln

(
1− e−|δ2−δ1|

)
(38)

Experimental results show that r can be kept small accepting a certain quality loss with respect to a standard

solution that implements (5). As suggested in [20] a fixed point implementation of (5) can grant near floating

point performance employing 16 bits to represent fractional values; in the following samples of code this will be

referred to as 1 << 16. As an example, Fig. 1 and 2 show the quality obtained on u (regularized image) and z

(segmented image) for a fixed point implementation with 16 bits for fractional values, r = 6 and r = 8 respectively.

As it can be observed, comparing the original Mumford and Shah results (u(org) and z(org)) with the proposed

multiplierless version (u(r) and z(r)) the quality loss for r = 8 is negligible: we obtain a Mean Square Error (MSE)

of 6.12× 10−6, corresponding to a Peak Signal to Noise Ratio (PSNR) of about 52 dB, for u; similarly we have

MSE=4.94× 10−5 (PSNR=43 dB) for z. However, from (23) and (25) we find m = n = 2559. On the other hand,

we obtain m = n = 511 with r = 6 by slightly reducing the quality of the result: MSE=1.61 × 10−4 (PSNR=38

dB) and MSE=7.13 × 10−4 (PSNR=32 dB) for u and z respectively. It is worth pointing out that the proposed

methodology does not make any hypothesis on the base employed for the logarithm Blog . In order to make the

proposed methodology more hardware oriented we prefer to choose Blog = 2. In fact, as detailed in [22], hardware

implementation of multiplications and divisions gets significant simplifications by using binary logarithms. So that

the results shown in this paper have been obtained selecting Blog = 2.

[Fig. 1 about here.]

[Fig. 2 about here.]

It is worth pointing out that the proposed logarithmic, multiplierless Mumford and Shah functional implementation
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can be applied independently of the α, β and p values. To this purpose three sets of parameter values are considered

to show the impact of r on ui,j and zi,j . The parameter values selected are compatible with the ones suggested in

[5], [4] and [21]. As a typical case (A) in the following we will show results obtained with α = 9, β = 0.0039,

and p = 20 with 20 iterations. Moreover, we consider the best and worst cases with respect to the ranges studied

in [21], namely α ∈ [1, 64], β ∈ [1/256, 1/2] and p ∈ [2, 32]. As it can be inferred from (5), one case is α = 64,

β = 1/256 and p = 32 (B), the other is α = 1, β = 1/2 and p = 2 (C). For both of them the number of iterations

is 20 - as for the case A. In order to better quantify the performance of the proposed approach, simulations on

several QCIF (144× 176 pixels) frames, namely “foreman”, “carphone”, “claire”, “grand-mother”, “miss-america”,

“mother-and-daughter” and “salesman” have been performed. For each frame, floating point results (u(org),z(org)),

obtained from a standard Mumford and Shah fuctional implementation, have been compared against the fixed point

ones obtained varying r from 3 to 16 bits (u(r),z(r)) in the proposed multiplierless implementation. In Fig. 3 the

LUT entries (m or n) required to build the LUTs that approximate the max∗ and max− operators are shown; the

m (or n) values required by r = 6 and r = 8 are highlighted with the diamond and the star symbols respectively.

The procedure to find m (or n) and the values to fill the LUTs is given at the end of the paragraph. As it can be

inferred from Fig. 1, 2 and 3 an acceptable trade-off between complexity and accuracy is achieved by selecting

r = 6. In Fig. 4 the distribution of the absolute error, namely the distribution of u(org) − u(r) and z(org) − z(r),

obtained by comparing u(org), z(org) with u(r), z(r) (r = 6 and r = 8) in the test-cases A, B and C is shown.

Finally in Fig. 5 four curves show the behavior of the error mean value µ(u
(org)
i,j − u

(r)
i,j ), µ(z

(org)
i,j − z

(r)
i,j ) and

variance σ2(u
(org)
i,j −u

(r)
i,j ), µ(z

(org)
i,j −z

(r)
i,j ) as a function of r, for the test-cases A, B and C. To further highlight the

performance of the proposed multiplierless implementation in Fig. 6 we show the Dice similarity coefficient [13] as

a function of r for the segmented images (z) obtained with the proposed multiplierless solution (with and without

logarithmic to linear conversion) compared with the standard Mumford and Shah functional implementation. As the

Dice similarity coefficient is one of the intensity-based overlap indices for binary images, we first binarized z(org)

and z(r) (with and without log-lin conversion), then according to [27] we obtained

Dice(z(org), z(r)) =
2a

2a+ b+ c
(39)

where a is the number of corresponding pixels of value ‘1’ in both binary images, b is the number of pixels taking

value ‘1’ only in z(org) and c is the number of pixels taking value ‘1’ only in z(r). Stemming from (39) we can

infer that the Dice similarity coefficient is 1 if objects in the two binary images overlap perfectly, whereas it is 0

if there is no overlap. Even if “similarity” is application dependent, according to [34] a Dice similarity coefficient

value greater than 0.7 indicates excellent agreement. Considering the results presented in Fig. 6 we can infer that

both multiplierless implementations (with and without log-lin conversion) of z(r) show excellent agreement with

z(org) for all the seven test images in the three test cases A, B and C.

Finally, the procedure to set-up these two LUTs can be run off-line as:

# d e f i n e MS EPS pow(2 ,−9) / / z e r o a p p r o x i m a t e d as 2ˆ−9

# d e f i n e r 6 / / p r e c i s i o n b i t s
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m = 0 ; / / s t a r t m s e a r c h

whi le ( l og2 (1 + exp2(−m/ ( 1 << r ) ) ) > pow(2 ,−( r + 1 ) ) )

m++;

m−−;

e r r T a b 1 = m a l lo c ( s i z e o f ( i n t )∗m) ; / / a l l o c a t i n g t h e max∗ LUT

f o r ( i =0 ; i<m; i ++) / / f i l l i n g t h e max∗ LUT

e r r T a b 1 [ i ] = f l o o r ( l og2 (1+ exp2 (−( f l o a t ) i / ( 1 << r ) ) )∗ ( 1 << 16) + 0 . 5 ) ;

/ / i f n=0 we use MS EPS

n = 1 ; / / s t a r t n s e a r c h

whi le ( f a b s ( l og2 (1 − exp2(−n / ( 1 << r ) ) ) ) > pow(2 ,−( r + 1 ) ) )

n ++;

n−−;

e r r T a b 2 = m a l lo c ( s i z e o f ( i n t )∗n ) ; / / a l l o c a t i n g t h e max− LUT

e r r T a b 2 [ 0 ] = f l o o r ( l og2 (MS EPS)∗ ( 1 << 16) + 0 . 5 ) ; / / u s i n g MS EPS

f o r ( i =1 ; i<n ; i ++) / / f i l l i n g t h e max− LUT

e r r T a b 2 [ i ] = f l o o r ( l og2 (1−exp2 (−( f l o a t ) i / ( 1 << r ) ) )∗ ( 1 << 16) + 0 . 5 ) ;

[Fig. 3 about here.]

[Fig. 4 about here.]

[Fig. 5 about here.]

[Fig. 6 about here.]

V. DSP IMPLEMENTATION AND EXPERIMENTAL RESULTS

To have real data concerning the speed-up granted by the proposed multiplierless implementation with respect

to the direct implementation of (5), two fixed point C models have been ported on a Texas Instruments DSP board

[19]. The Texas Instruments Image Developers Kit [28] is based on a board equipped with a TMS320C6711 DSP

running at 150 MHz with 16 MBytes of SDRAM and a daughter-card able to capture frames and to display results

on a standard monitor through a VGA connector. In order to obtain experimental results, the following environment

has been set-up: each frame captured by the camera is filtered and subsampled to obtain a QCIF. Each pixel of

the original image gi,j is represented on 8 bits in the range [0, 1]; ui,j is initialized with the original pixels gi,j

whereas zi,j is initialized as zi,j = 1 with {i, j} ∈ {[0, Rows− 1], [0, Cols− 1]}. The first operation concerns gi,j ,

ui,j and zi,j initialization. Since each captured frame is made of 8 bits pixels (g chari,j) we force gi,j , ui,j and

zi,j to be int values (32 bits) in [0,1] with 16 bits for the fractional part. This choice is more than sufficient to

represent MS EPS as defined in section III.

f o r ( i =0 ; i<R ; i ++)

{
f o r ( j =0 ; j<C ; j ++)

{
g [ i ] [ j ] = ( unsigned i n t ) f l o o r ( ( ( f l o a t ) g ch a r [ i ] [ j ] / 2 5 5 ) ∗

( f l o a t ) ( 1 << 16) + 0 . 5 ) ;

u [ i ] [ j ] = g [ i ] [ j ] ;
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z [ i ] [ j ] = 1 << 1 6 ; / / 16 f r a c t i o n a l b i t s

}
}

As far as the multiplierless implementation is concerned, after this operation we should map the linear values to

their logarithmic counterparts. Exploiting g chari,j 8 bits representation, we use a 256 entries LUT that performs

in a single step the initialization and the logarithmic conversion; moreover we can easily set zi,j = 0:

l e n = R∗C ;

f o r ( i =0 ; i<R ; i ++)

{
f o r ( j =0 ; j<C ; j ++)

{
g log [ i ] [ j ] = l o g t a b [ g ch a r [ i ] [ j ] ] ;

u log [ i ] [ j ] = l o g t a b [ g ch a r [ i ] [ j ] ] ;

}
}
memset ( z log , 0 , s i z e o f ( i n t )∗ l e n ) ;

where the log_tab can be computed off-line as:

# d e f i n e MS EPS pow(2 ,−9) / / z e r o a p p r o x i m a t e d as 2ˆ−9

# d e f i n e LEV 255 / / maximum p i x e l v a l u e

/ / i f 0 we use MS EPS

l o g t a b [ 0 ] = f l o o r ( l og2 (MS EPS)∗ ( 1 << 16) + 0 . 5 ) ;

/ / f i l l i n g t h e l i n 2 l o g t a b l e

f o r ( i =1 ; i<=LEV; i ++)

l o g t a b [ i ] = f l o o r ( l og2 ( i /LEV)∗ ( 1 << 16) + 0 . 5 ) ;

The max∗ and max− operators, that are the basic blocks of the proposed solution, can be easily and effectively

implemented as two macros:

# d e f i n e r 6

# d e f i n e m 511

# d e f i n e n 511

# d e f i n e max ( x , y ) ( ( ( x)>(y ) ) ? ( x ) : ( y ) )

# d e f i n e maxxp ( a , b ) ( ( ( abs ( a−b)>>(16− r ) ) < m) ? \
( max ( a , b ) + e r r Ta b 1 [ abs ( a−b)>>(16− r ) ] ) : ( max ( a , b ) ) )

# d e f i n e maxxm ( a , b ) ( ( ( abs ( a−b)>>(16− r ) ) < n ) ? \
( max ( a , b ) + e r r Ta b 2 [ abs ( a−b)>>(16− r ) ] ) : ( max ( a , b ) ) )

Said K the number of iterations (K = 20 in this experiment), both the programs perform K − 1 iterations in the

logarithmic domain and during the last iteration they properly format the results to be displayed.

In the following the renormalization step that occurs during the last iteration is shown, for the standard imple-

mentation:

u c h a r [ i ] [ j ] = ( unsigned char ) f l o o r ( 2 5 5∗ ( ( f l o a t ) u [ i ] [ j ] / ( 1 << 1 6 ) ) ) ;

z c h a r [ i ] [ j ] = ( unsigned char ) f l o o r ( 2 5 5∗ ( ( f l o a t ) z [ i ] [ j ] / ( 1 << 1 6 ) ) ) ;
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and for the multiplierless one:

tmp = pow ( 2 , ( ( f l o a t ) u log [ i ] [ j ] / ( 1 << 1 6 ) ) ) ;

u c h a r [ i ] [ j ] = ( unsigned char ) f l o o r (255∗ tmp ) ;

tmp = pow ( 2 , ( ( f l o a t ) z l o g [ i ] [ j ] / ( 1 << 1 6 ) ) ) ;

z c h a r [ i ] [ j ] = ( unsigned char ) f l o o r (255∗ tmp ) ;

Experimental results obtained running the standard implementation of (5) and the proposed multiplierless solution

on the IDK platform are shown in Fig. 7, where the original frame (g) and its regularized (u) and segmented

(z) versions are depicted. As it can be observed the proposed multiplierless solution, that, as previously stated,

employs 6 bit precision tables to approximate max∗ and the max− operators, achieves nearly the same quality

of its multiplication/division based counterpart. To further reduce the complexity of the proposed solution another

implementation, that does not convert logarithmic values to linear ones, has been developed. Since the fixed point

ui,j and zi,j logarithmic values are in [log2 MS EPS, 0] ·216, namely [−9 ·216, 0], changing the sign and dividing

by 212 (12 right shifts), we obtain values in [0, 144]. Simulations show that 11 right shifts are enough to limit ui,j

and zi,j logarithmic values in [0, 255] (8 bits); as a consequence these logarithmic values can be displayed:

u l o g c h a r [ i ] [ j ] = ( unsigned char ) (−( u log [ i ] [ j ] >> 1 1 ) ) ;

z l o g c h a r [ i ] [ j ] = ( unsigned char ) (−( z l o g [ i ] [ j ] >> 1 1 ) ) ;

[Fig. 7 about here.]

In Fig. 8 visual examples of the multiplierless solution without log-lin conversion are shown. As it can be inferred

from the previous paragraphs the standard and multiplierless implementations require a different amount of data

memory. Three Rows×Cols bytes memory buffers are common to both standard and multiplierless implementations

to display g, u and z values on the IDK output VGA (144×176 = 24.75 kB). Three Rows×Cols local buffers are

required for fixed point computation. Each buffer contains Rows×Cols fixed point (int) values (144×176×4 = 99

kB). The multiplierless implementation requires three further arrays: one for the logarithmic conversion and two

for the max∗ and max− correction tables. The logarithmic conversion table, required to translate the 8 bits wide

original pixels into the corresponding logarithmic values, is a 256 int value array (256 × 4 = 1 kB). The error

correction tables, made of the m and n int values, contain the data obtained solving (23) and (25) (m = 511

and n = 511 thus 511 × 4 ' 2 kB each). Thus the total memory required by the standard implementation is

3 × 24.75 + 3 × 99 = 371.25 kB, whereas the multiplierless one requires 371.25 + 1 + 2 × 2 = 376.25 kB. It

is worth pointing out that the memory increase required by the multiplierless implementation very limited (about

1.35%). Furthermore, as suggested in [29], all the frame buffers are stored into the main board SDRAM heap, as

a consequence, the binary files size does not take into account the 371.25 kB data memory. On the other hand,

since the logarithmic table and the correction tables require only about 3 kB they are constant automatic variables

on the stack; as a consequence, they are part of the multiplierless implementation binary file. Since the binary

files size for the three implementations is about 200 kB, we can conclude that the multiplierless solution overhead

is negligible. From the complexity point of view, the three implementations run times have been measured. The
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measured times concern the frame grabbing, the filtering and subsampling procedure to reduce the frame to QCIF

size, the Mumford and Shah functional and the displaying. In table I the measured run times to perform the Mumford

and Shah functional on a frame with the aforementioned models are summarized. As it can be observed in table

I the multiplierless implementation runs 3 times faster than the standard one, with an execution time reduction of

the 66%. Furthermore, if no logarithmic to linear conversion is performed, the execution time can be reduced of

the 68%. Since results shown in table I have been obtained with 20 iterations on QCIF frames, we can infer that

the standard implementation requires about 24 µs per sample per iteration. On the other hand the multiplierless

requires about 8 µs per sample per iteration whereas the multiplierless without log-lin conversion requires about

7.4 µs per sample per iteration.

[TABLE 1 about here.]

[Fig. 8 about here.]

VI. CONCLUSION

In this work a multiplierless implementation of the Mumford and Shah functional has been presented. The

impact on results quality introduced by the proposed solution has been analyzed through several simulations and a

negligible visual quality degradation has been verified. Moreover the proposed solution has been developed as a C

program, ported on a DPS board and compared with a standard solution. Run-time results show that the proposed

implementation can reduce from 66% to 68% the execution time with respect to a standard implementation with

no visual quality degradation.
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Fig. 1. Visual examples of the max∗ and max− approximation for a frame of the “foreman” sequence, test case A: (a) ui,j original, (b)
zi,j original, (c) ui,j with r = 8, (d) zi,j with r = 8, (e) and (f) differences between original and r = 8 implementations
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Fig. 6. Segmentation similarity between the standard implementation (z(org)) and the multiplierless one (z(r)) with (a), (c), (d) and without
log-lin conversion (b), (d), (f): Dice similarity coefficient as a function of r for the seven test images in the test cases A, B and C
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Fig. 7. Visual examples of the data displayed by the IDK board for the multiplierless implementation (a), (b) and (c), and for the standard
implementation (d), (e) and (f)



FIGURES 21

(a) gi,j (b) ln(ui,j) (c) ln(zi,j)

Fig. 8. Visual examples of the data displayed by the IDK board without log-lin conversion
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TABLE I
Measured run time on the IDK board of the implemented Mumford and Shah functional

Standard Multiplierless Mulplierless no log-lin
(Fig. 7) (Fig. 7) (Fig. 8)

run time 12 s 4 s 3.75 s
run time reduction - 66% 68%


