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Timely Data Delivery
in a Realistic Bus Network

Utku Günay Acer,Member, IEEE, Paolo Giaccone,Member, IEEE, David Hay,Member, IEEE,
Giovanni Neglia,Member, IEEE, and Saed Tarapiah

Abstract—WiFi-enabled buses and stops may form the back-
bone of a metropolitan delay tolerant network, that exploits
nearby communications, temporary storage at stops, and pre-
dictable bus mobility to deliver non-real time information.

This paper studies the routing problem in such a network.
Assuming the bus schedule is known, we maximize the delivery
probability by a given deadline for each packet. Our approach
takes the randomness into account, which stems from road traffic
conditions, passengers boarding and alighting, and other factors
that affect the bus mobility. In this sense, this paper is oneof
the first to tackle quasi-deterministic mobility scenarios.

We propose a simple stochastic model for bus arrivals at stops,
supported by a study of real-life traces collected in a largeurban
network. A succinct graph representation of this model allows
us to devise an optimal (under our model) single-copy routing
algorithm and then extend it to cases where several copies ofthe
same data are permitted.

Through an extensive simulation study, we compare the
optimal routing algorithm with three other approaches: mini-
mizing the expected traversal time over our graph, maximizing
the delivery probability over an infinite time-horizon, and a
recently proposed heuristic based on bus frequencies. We show
that our optimal algorithm shows the best performance, but it
essentially reduces to minimizing the expected traversal time.
When transmissions fail frequently (more than half of the times),
the algorithm behaves similarly to a heuristic that maximizes the
delivery probability over an infinite time-horizon. For rel iable
transmissions and values of deadlines close to the expected
delivery time, the multi-copy extension requires only10 copies to
almost reach the performance of the costly flooding approach.

I. I NTRODUCTION

We consider an opportunistic data network formed by
(some) buses and bus stops in a town equipped with wireless
devices, e.g. based on WiFi technologies, like in DieselNet[1].
Most of the stops act as disconnected relay nodes (the throw-
boxes in [2]), and a few of them are also connected to the
Internet. Data are delivered across the town following the
store-carry-forwardnetwork paradigm [3], based on multi-
hop communication in which two nodes may exchange data
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messages whenever they are within transmission range of each
other.

A bus-based network is a convenient solution as wireless
backbone for delay tolerant applications in an urban scenario.
In fact, a public transportation system provides access to
a large set of users (e.g. the passengers themselves), and
is already designed to guarantee a coverage of the urban
area, taking into account human mobility patterns. Moreover,
such a wireless backbone is not significantly constrained by
power and/or memory limitations: a throwbox can be easily
placed on a bus and connected to its power supply, or be
put in an appropriate place in bus stops, which are usually
already connected to the power grid to provide lights and
electronic displays. Finally, travel times can be predicted from
the transportation system time-table. Even if the actual times
are affected by varying road traffic conditions and passengers’
boarding and alighting times, such a backbone may still
provide strong probabilistic guarantees on data delivery time
that are not common in opportunistic networks.

Given this scenario, this paper explores the basic question:
“how to route data over a bus-based network, from a given
source to a given destination, so that the delivery probability
by a given deadline is maximized?”. We rely on the knowledge
of bus schedule information and some stochastic characteriza-
tion of bus mobility, obtained from real data traces.

We consider two classes of routing schemes over such a
network. The first class relies only on forwarding asingle
copyof the data along asingle path. The second class takes
advantage ofmultiple copiesspread in the network to increase
delivery probability and reduce delivery time, albeit with
higher bandwidth usage.

Another architectural choice is between exploiting only bus-
bus contacts, only bus-stop contacts, or both types of contacts.
While the latter case should provide better performance, the
two kinds of transmission opportunities have very different
characteristics, making it hard to model both of them together
in a common framework. For example, a potential contact
between two buses traveling along orthogonal trajectories
can be completely avoidedif there is even a slight delay
in one of them. On the other hand, in case of a bus-stop
communication, the contact always happens eventually, but
may be delayed. Most prior art (see Sec. II) considered only
bus-bus communications. In this paper, we focus on the other
alternative, relying only onbus-stopcommunications. Sec. V-B
provides some evidence that this second scenario may lead to
better performance. We discuss how to extend our approach
to include bus-bus communications in Sec. VI.
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Fig. 1. High-Level Evaluation Framework

Fig. 1 depicts the high-level framework used in the paper to
study routing in the proposed network. Our starting point isa
simple mobility model for buses (described in Sec. III-B), that
is supported by the statistical analysis of a set of real traces of
the public transportation system of Turin in Italy, which serves
an extended metropolitan area through about 7,000 stops and
1,500 vehicles distributed among 250 lines, with more than
4,600 km of bus routes. These traces include the complete
schedule for the morning rush hour period (6 AM–10 AM)
and the corresponding GPS traces for the vehicles belonging
to 26 lines.

A statistical analysis of these traces yields important conclu-
sions, which allow us to represent the transportation system
appropriately in terms of a graph with independent random
weights, that we call thestop-line graph(Sec. IV). Under this
representation, our original optimization problem to identify
routes maximizing the delivery probability by a given deadline
(or maximizing the on-time delivery probability) becomes
equivalent to a specific stochastic shortest path problem on
the stop-line graph. We are able to find an optimal algorithm,
called ON-TIME, for the single-copy case (Sec. IV-B) and then
to extend it for the multi-copy case through a greedy approach
(Sec. IV-D). In Sec. V we compare the performance of these
proposed algorithms with three other heuristics (introduced
in Sec. IV-C) that also operate on the stop-line graph: an
adaptation of the routing algorithm proposed in [4] for bus-bus
communications (we refer to it as MIN-HEADWAY ), and the
two naive algorithms, MIN-DELAY , that determines the path
with the least expected traversal time, and MAX -PROB, that
maximizes the delivery probability on an infinite time-horizon.
Since the number of real-life traces we obtained is limited,
the comparison (Sec. V) is based on simulations carried on a
large set of synthetic traces generated on the basis of our bus
mobility model and the schedule of Turin bus system.

Additional material is presented in the appendices. The
proofs of the performance bounds for multi-copy algorithms
are in Appendix A. Appendix B presents an overview of
bus mobility models in transportation literature, whereasAp-
pendix C describes the algorithm we propose to generate
the synthetic traces based on the actual schedule of the
transportation system.

The paper provides the following main contributions: (i)
Formulation of the original routing problem as a specific
stochastic shortest path problem on a particular stochastic
graph (Sec. IV-A). This formulation is justified by a statistical
analysis of real transportation system traces (Sec. III-B). (ii)
Optimal (under our model) routing scheme for the single copy
case. While this offline routing scheme has, in theory, an
exponential worst-case time complexity, in practice it is able to

find the optimal route in a reasonable time, allowing each node
to store an optimal pre-selected routing plan (Sec. IV-B). (iii)
Extensions to multi-copy case, based on greedy approaches
applied to the single-copy scheme. We prove a tight bound of
1/k for the on-time delivery probability in comparison to an
optimal (non-greedy)k-copy scheme (Sec. IV-D). (iv) Algo-
rithm to generate mobility traces of the buses, based on their
actual schedule (Appendix C). (v) Simulation analysis showing
that the optimal algorithm mainly performs as MIN-DELAY ,
while it outperforms MIN-HEADWAY and MAX -PROB for
reasonable values of packet loss probabilities. We provide
some explanation for these results. In this sense the conclusion
is that a naı̈ve algorithm like MIN-DELAY may be a very good
heuristic for routing over realistic bus transportation networks
(Sec. V). (vi) Simulations showing that only10 copies are
needed for a multi-copy greedy approach to achieve a per-
formance similar to that of flooding, which requires at least
two order of magnitude more transmissions and copies for
each single piece of data (Sec. V-A). (vii) Investigation ofthe
effect of optimizing the location of the throwboxes covering
many stops (Sec. V-C). (viii) Comparison between bus-to-bus
and bus-to-stops communication paradigms (Sec. V-B).

II. RELATED WORK

Employing a bus network as a mobile backbone for dense
vehicular networks was first proposed in [5], using standard
routing protocols for mobile ad-hoc networks (e.g., DSR or
AODV). More recently, the use of buses in a disconnected
scenario has been considered; e.g. in the seminalDieselNet
project [1]. Since our paper considers routing in such a
network, in what follows we only mention work related to
routing issues. Appendix B will be devoted to discuss previous
work on bus mobility models.

Most of the research has focused on bus-bus communica-
tions [4], [6]–[9] with the following routing approach: Each
vehicle learns at run time about its meeting process. Then,
the vehicles exchange their local view with other vehicles
and use the information collected to decide how to route
data. The goals of the proposed algorithms were either to
reduce the expected delivery time or to maximize the delivery
probability. Unlike these studies, we mainly focus onbus-to-
stop data transfersand derive a single-copy routing algorithm
to maximize the delivery probability by a given deadline. We
then extend the algorithm to address settings where several
copies of the same data are permitted. On the other hand, we
do not consider buffer or bandwidth constraints, (e.g., as in [6],
[7]) as they are not a major concern in our settings: When the
mobile devices are buses (as opposed, for example, to cellular
phones), it is reasonable to assume that there is sufficient
storage available; in addition, since buses communicate with
stops (as opposed to other moving buses), the amount of
data transferable during a meeting is larger. Nevertheless,
characterizing the bandwidth of the contacts and incorporating
these constraints into our framework for bandwidth-hungry
applications is part of our ongoing research.

The use of fixed relay nodes was also considered in [2],
[10]. In [10], an architecture is proposed where bus passengers
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may use the cellular network to require content that will
be delivered to access points along the bus trajectory. This
data can be replicated also on other buses, taking advantage
of possible data transfers between vehicles. Their analysis
considers only a simplistic single-street scenario and does not
address routing issues. [2] reports that the performance ofa
vehicular network is improved by adding some infrastructure,
like base stations connected to the Internet, a mesh wireless
backbone, or fixed relays (which are similar to our stops).
The most important results are (i) there are scenarios wherea
mesh or relay hybrid network is a better choice over a base
station networks; (ii) deploying some infrastructure has amuch
more significant effect on delivery delay than increasing the
number of mobile nodes. These findings, which were verified
both analytically and by experiments on the DieselNet testbed,
support our proposed architecture that relies on opportunistic
connectivity between vehicle nodes and fixed relays.

In order to provide low cost Internet connectivity to fixed
kiosks in rural areas of developing counties, KioskNet ar-
chitecture has been proposed [11]. In this architecture, buses
carry data between the kiosks and a set of gateways that can
communicate to a proxy on the Internet. Routing of such data
between the kiosks and the gateways is achieved by simple
flooding. On the other hand, gateways are delegated to a kiosk
via a scheduling mechanism that considers the schedule of the
buses which serve the kiosks [12].

The routing algorithms proposed by [13]–[16] are intrinsi-
cally more suited for bus-to-bus data transfers. [14] and [16]
propose algorithms that take advantage of cyclic mobility pat-
terns, according to which nodes meet periodically, albeit with
some probability. Even if a given bus may meet multiple times
the same stop, this approach does not fit our scenario for three
reasons. First, the bus-stop contact process is not necessarily
periodic because vehicles may be assigned to different lines
during one operation day. Second, even if a vehicle operates
always on the same line, its frequency changes significantly
along the day. Third and more importantly, even when a
period may be defined, its value ranges from 30 minutes to 2
hours depending mainly on the length of the bus trajectory
and on inactivity times at terminus. It is then comparable
with the deadlines we are targeting, making it impossible to
take advantage of such long term periodicity. Other forms of
long-term regularities in the contact process of the different
nodes [15] are too general for our settings, since we have
significantly more information on the meetings that can be
exploited to improve the performance. Finally, [13] proposes
hierarchical routing for a deterministic network, whereaswe
consider non-deterministic mobility.

Almost all the papers above have considered only small bus
networks (40 buses for DieselNet,16 buses on a cyclic path for
MobTorrent [10]). Only [8] considers an urban setting with a
public transportation system comparable to ours (70 different
bus lines), but, differently from us, they do not use any real
mobility trace and simulate bus movement assuming that the
bus speed is chosen uniformly at random from a given interval.

From the theoretical point of view, our optimization goal
can be reformulated (under some assumptions) as a particular
stochastic shortest path problemthat deals with a graph

whose edge lengths (or equivalently, traversal times over the
edges) are random variables. Several optimality criteria were
considered in the past for routing in stochastic graphs. The
most common one is theleast expected traversal time, which
can be generalized to any linear (or affine) utility function[17],
[18]. Other optimality criteria are deviance [19], monotonic
quadratic utility functions [20] and prospect-theory–based
functions [21]. Recent and comprehensive surveys of the
different utility functions and corresponding solutions appear
in [22], [23]. Our paper deals with thereliability of the chosen
path, namely, finding a path which maximizes the probability
of on-time arrival (given some deadline). This problem was
first studied by Frank [24] and then was also investigated
in [25]–[27] and more recently in [22], [28]–[30]. Current
state-of-the-art algorithms still have exponential worst-case
time complexity, based on enumerating over some set of
candidate paths [22].

Our problem differs from Frank’s problem essentially in
three aspects. First, we consider a real transportation system
and therefore we are not interested in the worst-case com-
plexity of the algorithm on some general graphs. Second,
our transportation model has two kinds of entities: stations
and buses; we need to take into account waiting time at the
stops and not only buses travel times, as explained in detailin
Sec. IV. Third, all the previous work considered a single-copy
model, while our model deals also with multiple copies where
the objective is that at least one of the copies arrives at the
destination before the deadline.

Finally, we observe that we use the bus network for data
transfer as it is used for passenger transfer. Thus, one could
expect that the same problem has already been addressed in
the transportation literature. However, this is not the case:
First, the possibility to exploit multi-copy is clearly absent
in the transportation of people or merchandise. Second, the
probability to miss a transfer opportunity is also not considered
in transportation, while data transfer between two nodes may
fail because of insufficient contact duration, channel noise
or collisions. Third, even for single-copy routing, bus net-
work passenger routes usually aim tominimize the expected
traversal time(possibly limiting the maximum number of bus
changes) and not to maximize the delivery probability by a
given deadline, as we are doing (cf. [31]–[33] and references
therein). The fact that finally minimizing the expected traversal
time may provide almost optimal performance in some sce-
narios (when message transmissions do not fail) is an a-priori
unexpected finding of this research.

In conclusion, to the best of our knowledge, this is the first
paper that proposes an optimal routing algorithm that takes
advantage of bus schedule information as well as a stochastic
characterization of bus mobility, supported by real data traces.

III. M ODEL DEFINITIONS AND ASSUMPTIONS

In this section, we formally define the terms and the notation
we use to describe a transportation system, following the
terminology used in transportation literature.

A transportation systemT has a set of stops, denoted by
S, and a set of vehicles (buses), denoted byV , which travel
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between the stops according to a predetermined path and a
predetermined schedule. For each vehiclev ∈ V , the schedule
allows us to determine itstrajectory, denoted traj(v), which is
the ordered sequence of stops the vehicle traverses: traj(v) =
(s0, s1, . . . sn). In addition, each vehiclev is associated with
a trip, denoted trip(v), which is a time-stamped trajectory:

trip(v) = ((s0, τ0), (s1, τ1), . . . (sn, τn)),

such that a vehiclev should arrive at stopsi along its trajectory
at time τi = τ(v, si). We distinguish between thescheduled
time τi and theactual timeti = t(v, si), which is a random
variable depending on road traffic fluctuations, passengers
boarding and alighting, etc.. The difference between the actual
arrival time at a stopsi, t(v, si), and its corresponding sched-
uled arrival timeτ(v, si) is the latenessof the vehicle at stop
si, l(v, si): l(v, si) = t(v, si)−τ(v, si). Note that the lateness
is negative when the vehicle arrives earlier that its scheduled
arrival. Thedelaybetween the stopssi andsj , d(v, si, sj), is
the change in the lateness:d(v, si, sj) = l(v, sj) − l(v, si).
The time difference between the arrivals of a vehicle at two
different stopssi and sj , is called the actualtravel time
between the two stops,tt(v, si, sj) = t(v, sj) − t(v, si). The
scheduled travel time is simply the difference between the
scheduled arrivals at the two stops.

A key concept in bus networks is the notion oflines,
which are basically different vehicles with the same trajectory
(at different times). LetL denotes the set of lines. For
each vehiclev ∈ V we denote its corresponding line by
line(v) = {v′ ∈ V | traj(v) = traj(v′)}. Note that lines
introduce an important characteristic of a bus transportation
system: if a passenger misses a specific vehiclev, he/she can
still catch another vehiclev′ in line(v) and reach the same set
of stops. The time between two consecutive arrivals of vehicles
belonging to the same line at the same stop is calledheadway.

In the sequel, we will refer to the transportation system
T as the quintuple〈S,V ,L, τ(), t()〉, where the function
τ() is a way to represent the schedule andt() denotes a
characterization of the stochastic process of vehicle arrivals
at the stops. In the next section, we are going to start
characterizing this stochastic process.

A. Communication Model

We assume that a bus is able to communicate with the
throwbox at the stop only when it comes close to the stop,
i.e. it is in the transmission range of the throwbox. In our
model, we do not introduce explicitly a departure time from
the stop, because in our paper we do not take into account
bandwidth constraints so that it is less important to specify
the duration of the transmission opportunity between a bus
and a stop. In practice, we assume:

Assumption 1:Transmission opportunities areinstanta-
neousand occur at the arrival time of the bus at the stop
position.

A drawback of this approach is that two overlapping
transmission opportunities are artificially ordered and some
transmission possibilities are lost. For example, ifv1 and v2
can respectively transfer tos in [t1, t3] and in [t2, t4], with

t1 < t2 < t3 < t4, data can be transferred in the two directions
(from v1 to v2 and fromv2 to v1), but when the transmission
opportunities are ordered, only one direction is still feasible.

Furthermore, we assume that data transfer during a trans-
mission opportunity can fail. This can be due to different
causes: channel noise and collisions, but also nodes failing to
discover the opportunity, or contact duration being insufficient
to transfer the data. We assume:

Assumption 2:Message success probabilities of different
contacts are independent.

B. Measurements on Bus Mobility and their Implication

The problem of maximizing the delivery probability by a
given deadline requires a realistic statistical characterization
of bus mobility patterns, which is also useful to generate a
large set of synthetic traces and evaluate the performance of
our routing algorithms.

Transportation literature does not provide a universally valid
model for bus movements in an urban environment, since
they are strongly affected by vehicular and passenger traffic
conditions, road organization (availability of separate lanes
for buses), traffic signal control management (priority may
be given to the approaching buses over the other traffic),
company policies (penalties to the bus drivers for delays),and
so on; details of our transportation literature survey are in
Appendix B. Two extreme cases can be considered: 1) buses
that are late at one stop can always recover their delay at the
following stop (speeding up and reducing their travel times),
2) buses move almost in the same way, and they do not try to
recover their delay. The first case better describes lines with
high headway, while the second is probably more adapt for
lines with short headways, where buses try to respect a given
frequency, rather than an exact schedule1. In terms of the
quantities we have defined above, in the first case, latenesses at
consecutive stops are almost independent, while in the second
case they are highly correlated.

We have performed a statistical analysis of a one day trace
with actual bus arrivals at their stops provided to us by Turin’s
public transportation company which operates mainly buses
but also trams and subway trains. The network consists of
around 250 lines and a fleet of almost 1,500 vehicles. Some
manual inspection is needed to be able to assign specific trip
to their schedule (in order to evaluate metric like the lateness),
so that we worked on a subset of the trace, consisting of 26
lines in both direction, with a total of 408 trips and 11,097
arrivals at bus stops.

Fig. 2 shows the empirical autocorrelation function for
lateness, delay, and travel time. In particular, we have
considered for each vehicle the sequence of latenesses
at consecutive stops2 (l(s0), l(s1), . . . , l(sn), . . .), the se-
quence of delays between consecutive stops (d(s0, s1),
d(s1, s2), . . . , d(sn, sn+1), . . .) and the sequence of travel
times between consecutive stops (t1 − t0, t2 − t1, . . . , tn+1 −

1This distinction is expressly advertised by Turin public transportation
system, that label lines as frequency-based and schedule-based.

2With a slight abuse a notation, we omit the dependence on vehicle v, when
it is clear from the context.
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tn, . . .). We have assumed that the sequences (relative to the
same quantity) obtained for different vehicles are samplesof
the same random process, and we have used them to evaluate
the empirical autocorrelation function. Fig. 2 demonstrates that
the lateness values at consecutive stops are highly correlated.
It is then clear that a simplistic bus mobility model, where
the actual arrival time of vehiclev at stops is equal to the
scheduled one plus some noise that is independent from one
stop to another (t(v, s) = τ(v, s) + n(v, s)), is unrealistic.
At the same time, we note that delays and travel times are
significantly less correlated; this suggests the followingmodel,
in terms of travel time:

t(v, sk) = τ0 + l(s0) +

k
∑

i=0

tt(v, si, si+1), (1)

where we can assume that travel times are independent random
variables (and then also delays are independent).

If we assume that delays are independent and identically
distributed and that the lateness at the first stopl(s0) is dis-
tributed asd(si, si+1), it is possible to evaluate analytically the
expression of the autocorrelation function. This is represented
in Fig. 2 by the curve “theoretical lateness 1”. We note that
there is still a strong part of the correlation to be justified. A
specific analysis of the lateness at the first stop shows thatl(s0)
is not distributed asd(si, si+1), and moreover its variance is
almost6 times larger. This shows that the variability of vehicle
departure times is a significant component of the variability of
arrival times at following stops. If we correct the expression of
the autocorrelation function taking into account this empirical
finding, we can obtain the new curve “theoretical lateness 2”
that matches the empirical one very well.

As a conclusion of this statistical analysis, we assume in
the rest of the paper that

Assumption 3:Bus travel times at consecutive stops are
independent (but not necessarily identically distributed; in
particular, their distribution will depend on the corresponding
scheduled value).

We continue our statistical analysis by determining realistic
distributions for the lateness at the first stopl(s0) and the delay
distribution, in order to completely characterize the random
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Fig. 3. Travel time distribution (aggregated and for different scheduled travel
times).

variables of Eq. (1). This also allows us to use this recursive
formula to generate realistic random traces (see Appendix C
for the details). For example, Fig. 3 shows the empirical
distribution of the travel times (assumed to be homogeneous
across different lines) when all the samples are aggregated
and when they are separated according to the corresponding
scheduled travel times. It is evident that different distributions
have to be used, depending on the different scheduled travel
times. Since it is quite common in transportation literature
to use the lognormal distribution to model travel times (see
Appendix B), we have accepted this assumption and character-
ized the parameters of the lognormal distributions for different
scheduled travel times by moment matching techniques.

Our final assumption concerns the waiting time at a stop
when commuting from one line to another:

Assumption 4:The distribution of the waiting time at a stop
only depends on the stop and the characteristic of the departing
bus line, not on the arrival line.

We note that Assumption 4, which plays an important role
in enabling a graph representation with additive edge weights,
is partially a consequence of Assumption 3. Indeed, consider
buses moving according to the schedule, and a passenger
transferring from lineℓ1 to line ℓ2 at stops. It is clear that the
waiting time at the stop can be evaluated a-priori on the basis
of the scheduled arrival time of theℓ1 vehicle and the departure
time of the following ℓ2 vehicle. But under Assumption 3,
arrival times ofℓ1 buses at stops are random variables and
so are the corresponding waiting times. Intuitively, if the
variability of ℓ1 arrival times is large3 in comparison to the
headway of lineℓ2, the waiting time will have almost the same
distribution of the waiting time seen by a Poisson observer,
thus it is independent ofℓ1 schedule.

3Note that, according to our model, the variance of the lateness increases
along the trajectory and this condition tends to hold.
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IV. ROUTING ALGORITHMS IN A BUS NETWORK

As mentioned before, our routing algorithms aim to deter-
mine off-line routes for the transportation system that maxi-
mize data delivery probability by a given deadline:

Definition 1: Given a transportation system
T = 〈S,V ,L, τ(), t()〉, a source stopss, a destination
stop sd, a start timetstart, and a deadlinetstop, the on-time
delivery problemis to find a route betweenss and sd that
starts after timetstart and maximizes the on-time delivery
probability, i.e.Pr{data is delivered before timetstop}.

We first discuss how we represent the transportation system
as a graph, considering the natural operation of a bus system
with transfers from buses to stops and then to buses (i.e.,
involving only bus-stop communications). The following four
issues lead to our final graph representation: computational
complexity, intrinsic properties of the bus transportation sys-
tem (namely, the existence of lines), characteristic of the
stochastic processt() (namely, waiting times at stops depend
on the departing line), and an advantage coming from working
with additive edge weights. For the sake of simplicity, in
the following discussion we will first consider that all the
transmissions are successful.

A. The Graph Representation

A simple way to represent the transportation systemT is
by a temporal network[34], that is a multi-graph whose set of
nodes consists ofS ∪ V (i.e., a node for each vehicle and for
each stop) and each edge represents a transmission opportunity
between a vehiclev and a stops (or vice versa) occurring at
the time instantt(v, s) and can therefore be represented by the
triple 〈v, s, t(v, s)〉 (or 〈s, v, t(v, s)〉). A possible route in such
graph would then be a path connecting the sourcess and the
destinationsd, i.e. a sequence of edges, like(〈ss, v0, t(v0, ss)〉,
〈v0, s1, t(v0, s1)〉, 〈s1, v1, t(v1, s1)〉, . . . , 〈vn, sd, t(vn, sd)〉).
This route is able to deliver the data fromss to sd, only if
tstart ≤ t(v0, ss) ≤ t(v0, s1) ≤ t(v1, s1) ≤ . . . ≤ t(vn, sd) ≤
tstop.

While the temporal network is useful in general for de-
terministic scenarios, it is not suitable for the transportation
system we are considering. The first reason is that, in a large-
scale transportation network, this graph would have a very
large number of nodes (|S ∪ V|) and of edges. For example,
if the time interval[tstart, tstop] spans a few hours, a stop in a
dense traffic can exhibit hundreds of edges. The second reason
is that it ignores the fact that in a bus network a vehicle in
such route can be in some sense “replaced” by another vehicle
of the same line. Finally, given our performance metric, we
would need to evaluatePr{tstart ≤ t(v0, ss)) ≤ t(v0, s1)) ≤
t(v1, s1) ≤ . . . ≤ t(vn, sd) ≤ tstop}. However, the results
of Sec. III-B show that lateness values at consecutive stops
are strongly correlated, making it impossible to evaluate this
probability in a simple way.

For these reasons it appears more beneficial to directly look
for routes from the source to the destination in terms of lines.
We can consider an alternative data structure, theline-based
graph Glines = 〈S, Elines〉, shown in Fig. 4.(a), in which
nodes are bus stops and there is an edge between two stops

Fig. 4. (a) Example of line-based graphGlines describing a bus network
with stopsS = {A,B, C,D,E, F} and linesL = {1, 2, 3, 4}: the node
corresponds to a stop and the label on the edge represents theline connecting
the two stops. (b) The corresponding line-stop graphGsl. Dotted edges are
travel edges, while dashed edges are travel-switch edges.

si and sj if and only if there is a lineℓ ∈ L that goes from
si to sj (only stops which are served by at least two lines
need to be considered for relay purposes). It is important to
notice an intrinsic difference between the temporal network
and the line-based graph: in the temporal network we check
the feasibility of the path, by evaluating the probability that
it maintains the chronological order between contacts. On the
other hand, in the line-based graph, we are interested to check
whether their total length (that is, the total traversal time of
the path) is less thantstop − tstart. Note that the traversal-
time along a specific path is a random variable which is the
sum of two kinds of random variables: edge random variables,
which capture how travel time between two specific stops on a
specific line is distributed, and node random variables, which
capture the distribution of the waiting time at the stops.

The waiting time at a stop poses a major difficulty on
the design of a routing algorithm, because it is not simply
related to the stop but it depends on the specific route under
consideration, and more specifically on the stop’s outgoing
and incoming edges in that route. For example, if both edges
correspond to the same line, the waiting time at the stop is
0. On the other hand, when switching lines at the stop, the
waiting time depends only on theheadwayof the departing
line by Assumption 4. Hence, this graph is also not well suited
for our purposes.

In our proposed representation, which we callstop-line
graph Gsl = 〈Vsl, Esl〉, the nodes are(s, ℓ) pairs wheres
is a stop andℓ is a line; (s, ℓ) ∈ Vsl if and only if line ℓ ∈ L
arrives at (or depart from) stops ∈ S. In addition, we add
two nodesss and sd which are connected to all nodes that
correspond to the source and destination stops. The edges of
Gsl are defined as follows: An edge between(s, ℓ) and(s′, ℓ′)
corresponds to traveling from stops to stops′ with line ℓ and
then continuing from stops′ on line ℓ′. If ℓ = ℓ′ we call the
edge atravel edge, while if ℓ 6= ℓ′ we call it a travel-switch
edge. An example ofGsl appears in Fig. 4.(b).

We now define the random variables associated to the edges
in Esl. The random variable of a travel edge describes the
corresponding travel time between two stops: formally, a travel
edgee = ((s, ℓ), (s′, ℓ)) is associated with the random variable
we = tt(ℓ, s, s′) describing the travel time of a lineℓ bus
from stops to stops′. The random variable of a travel-switch
edge includes the travel time between the corresponding stops
and the waiting time for the next line, taking into account
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possible transmission failures. Formally, a travel-switch edge
e = ((s, ℓ), (s′, ℓ′)) is associated with the following random
variablewe:

we =

{

+∞ with prob.pf ,

tt(ℓ, s, s′) + wt(ℓ′, s′, k) with prob. (1− pf )
2pk−1

f

for anyk ≥ 1; here,pf is the transmission failure probability
andwt(ℓ′, s′, k) is the waiting time at stops′ before the arrival
of the nextkth bus of lineℓ′. To explain the formula forwe,
note that, to be able to forward the data successfully from one
bus to another, two transmissions must succeed: the one from
a bus ofℓ to s′ (which may fail) and the one froms′ to a
bus of ℓ′ (which will be successful after a geometric number
of failures). The formula assumes that the transmission failure
probability is the same for every possible transmission, but
the model can be easily extended to consider the case where
it depends on the stop and on the line to which the vehicle
belong. We assume that all the random variables definingwe

are known (they will be characterized in Sec. IV-B); moreover,
by Assumptions 3, 4 and 2, they are all independent.

It is important to notice that the stop-line graphGsl provides
a unified approach to deal with waiting times at the stops, thus
solving shortcoming in previous approaches (e.g., temporal
network [34], or graphs with stops as nodes and lines as
edges); further, although out of the scope of this paper,Gsl is
also usable in settings where Assumption 2 does not hold.

Our model allows us to simply calculate the overall traversal
time of the data along a weighted pathP as: tr(P) =
∑

e∈P
we. When transmission failures can occur, the Cumula-

tive Distribution Function (CDF) of the delivery time is scaled
by a factor equal to(1 − pf ) for each transmission from a
bus to a stop. Then the CDF of the delivery time along a
given route has the horizontal asymptotey = (1 − pf )

m,
wherem is the total number of bus-to-stop transmissions in
the route. Now, given the graphGsl, the on-time delivery
problem corresponds with finding a pathP from ss to sd
such thatPr{tr(P) ≤ tstop− tstart} is maximized. Note that,
under this construction, our problem is similar to the problem
defined by Frank [24], with the differences highlighted at the
end of Sec. II.

B. Single-Copy Routing Algorithm and Implementation

We now propose our routing algorithm, called ON-TIME,
which aims at solving the on-time delivery problem. ON-TIME

finds, in general, different paths for different values of the
(relative) deadlinetstop−tstart. For example, Fig. 5 compares
the Cumulative Distribution Functions (CDF) for the delivery
times of 3 different paths, for a given source-destination pair
and no transmission failures (pf = 0). In this case, ON-
TIME chooses one of the three paths depending on the given
deadline. Nevertheless, the larger the deadline, the larger the
resulting on-time delivery probability is.

ON-TIME works by first determining a potentially good path
between the source to the destination (for example, that with
the minimum expected traversal time), and evaluating its on-
time delivery probability. This can be done by performing a
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Fig. 5. Delivery probability CDFs of three disjoint pathsP1, P2 and
P3, connecting a source and a destination with different traversal times and
without transmission failures (pf = 0). PathP1 has the lowest expected
traversal time; the variance ofP2 is the smallest, whileP3’s variance is the
largest.P1, P2 andP3 are respectively the optimal paths computed by ON-
T IME for deadlines between34 and43 minutes, larger than43 minutes, and
shorter than34 minutes. The curve labeledP1 +P2 +P3 corresponds to the
success probability obtained by a multi-copy approach exploiting all the three
paths concurrently.

(numerical)convolutionof the different random variables dis-
tributions along the path, yielding the end-to-end traversal time
distribution. By this distribution, it is then easy to calculate
(using the corresponding CDF) the delivery probability by the
deadline.

Then, the algorithm proceeds by exploring the graph
through a breadth-first search, looking for paths with a higher
on-time delivery probability. Apruning mechanism avoids
the need to determine and evaluate all the paths. Being that
the traversal time is obtained by adding non-negative link
weights, for any pathP and any prefixP ′ of P , Pr{tr(P) ≤
t} ≤ Pr{tr(P ′) ≤ t}. Thus, we can perform hop-by-hop
convolution and compute, for each resulting distribution,the
probability that the weight (that is, traversal time) of this
path prefix is less thantstop − tstart; if the probability is
smaller than that of the current best path, there is no need
to consider the rest of the path. From a practical point of
view, working with a real transportation network, this simple
pruning mechanism significantly reduces the number of paths
to be considered, even if theoretically we may have a factorial
number of paths to explore.

In our implementation, we have introduced some other
simplifications, which reduce the computation time, but, at
the same time, may lead to suboptimal paths. First, we have
introduced a limith on the exploration depth during the search.
Givenh as a constant, the algorithm is then guaranteed to run
in polynomial time. We observe that upon termination, we may
be able to say if the algorithm has selected the optimal path or
there may be a better one. In fact, when we stop, if there is
still a path prefix that the pruning mechanism cannot discard,
then there could be a longer path with higher on-time delivery
probability. But if this is not the case, then the current best
candidate is actually the optimal path. In our experiments on
Turin transportation network,h = 8 was enough to find all the
best paths. Although this value may change for other networks,
we think that it will remain a relatively small constant. Note
that a suitableh for each network can be found by conducting
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experiments similar to ours.
A second simplification is that we restrict the set of eligible

paths such that each line can be used only in consecutive
edges. This prevents the algorithm to explore paths using line
ℓ1 then lineℓ2, and then again lineℓ1. We expect that these
paths have normally worse performance than those where a
data message just remains on lineℓ1.

Finally, we have avoided the computation burden of per-
forming numerical convolution by assuming that the end-to-
end traversal time, which is a sum of independent random
variables, can be approximated by a normal distribution. In
this case, it is sufficient to take into account the mean and
the variance of each edge weight, conditioned on the fact
that it is finite (respectively,µe = E[we | we<∞] and
σ2
e = Var[we | we<∞]), and the probability that the edge

weight is finite (denoted bype). Then, the CDF of the traversal
time of pathP is equal to the CDF of a normal distribution
with mean

∑

e∈P
µe and variance

∑

e∈P
σ2
e , multiplied by a

scaling factor
∏

e∈P pe. In the case of travel edges, average
and variance oftt(l, s, s′) can be estimated directly from the
traces. In the case of travel-switch edges, we have also to
evaluate the average and variance ofwt(ℓ, s, k) using the first
three moments of the interarrival times of the lineℓ buses to
stops (which can be also estimated from the traces) and some
basic Palm calculus [35].

For example, assuming perfect periodic bus arrivals with
periodδ and failure probabilitypf , it can be shown that

E[wt(ℓ, s, k)] = δ(1/2 + pf/(1− pf ))

E[wt(ℓ, s, k)2] = δ2(1/3 + 2pf/(1− pf )
2)

Note that these values can be computed for the specific arrival
process observed in bus traces.

In what follows, we evaluate the performance of ON-TIME

for different source-destination pairs under similar kindof
deadlines. If we had fixed a given deadline for all the pairs,
then this deadline could be unfeasible for some of them
(in the sense that there is no way to deliver the message
by this deadline, e.g. if the deadline is smaller than the
time a vehicle would take to move from the source to the
destination), and trivially satisfiable for other pairs (many
different paths would deliver with probability almost one).
For this reason, given a sourcess, a destinationsd and a real
value x ∈ [0, 100], let φ(x, ss, sd) be the deadlinetstop for
which the on-time delivery probability of the path fromss to
sd with minimum expected traversal time isx% (assuming
pf = 0). We denote by ON-TIME(x) the on-time routing
algorithm where the deadline is set equal toφ(x, ss, sd) for
every source-destination pair(ss, sd). Intuitively, the smaller
x is, the “shorter” the considered deadlines are, where “short”
is in relation to the expected traversal time fromss to sd and
not in an absolute sense.

C. Other Routing Approaches

Although the algorithm we described is optimal under our
model assumptions, we also consider sub-optimal but simpler
heuristics.

The most intuitive approach (denoted as MIN-DELAY ) is to
route inGsl along the path whose expected traversal time is
minimal. Note that, when the the transmission failure probabil-
ity is null, M IN-DELAY is equivalent to ON-TIME(50) under
the Gaussian assumption on the distribution of the traversal
time. This is not true for different deadlines. For example
Fig. 5 shows that pathP1, found by MIN-DELAY , does not
always provide the highest on-time delivery probability. On
the other hand, MIN-DELAY is computationally attractive,
because the path with the least expected traversal time can
be easily computed with Dijkstra’s algorithm (by linearityof
expectation). In Sec. V, we compare our optimal algorithm to
this sub-optimal heuristic and show that it often suffices touse
this simple approach.

A second algorithm, MAX -PROB, selects the path that
maximizes the delivery probability on an infinite time-horizon.
Also this path can be determined running Dijkstra’s algorithm
on the line-stop graph with edge weights equal to− log(pe).
For high transmission failure probabilities, we can expect
MAX -PROB and ON-TIME to select the same path. At the
end of Sec. V we will show that this is the case.

Another approach, denoted MIN-HEADWAY , tries to min-
imize the sum of all lines headways along a path [4], thus
preferring frequent lines over infrequent ones; it was proposed
originally for bus-to-bus communications. In Sec. V, we show
that it has the worst performance in our settings among all the
different algorithms.

D. Extension to Multi-Copy Routing

As shown in the toy-case of Fig. 5, using a multi-copy
scheme (the curve labeled “P1 +P2 +P3”), to exploit several
paths simultaneously, increases the on-time delivery probabil-
ity to deliver the data within the deadline. In this specific
example, pathP2 becomes “useful” only for large deadlines,
whereasP3 is “useful” for any deadline.

We consider only Multi-Copy schemes, such that at most
k distinct copies of each data packet are present in the
network at a given time instant. Without such a constraint
a flooding scheme that copies the data whenever there is a
contact, namely in anepidemic manner, would achieve the
best possible delivery probability.

We propose a greedy Multi-Copy algorithm for on-time
delivery problem, denoted simply as MC-ONTIME. It selects
the k paths with the highest on-time delivery probability,
without considering the interaction among them. This can
be easily implemented by saving the bestk paths while
enumerating all possible paths as in ON-TIME. Moreover,
our pruning mechanism is changed accordingly to compare
the current path prefix with thek-th best path discovered
so far (rather than the best path). We can similarly extend
the heuristics MIN-DELAY , MAX -PROB and MIN-HEADWAY

presented in Sec. IV-C to respectively select thek paths with
minimal expected traversal time, maximal success probability
and minimal total headway.

Since our algorithm works in a greedy manner, it does
not consider the interaction between the paths, and more
specifically the gain in probability over previously-selected
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paths (which can be very small in case the paths overlap). This
leads to a theoretical performance degradation with respect
to an optimal, infeasible algorithm that considers the joint-
probability over all sets of paths. The following theorem,
whose proof is in Appendix A, provides tight bounds on this
performance degradation:

Theorem 1:The MC-ONTIME algorithm always achieves
at least1/k of the on-time delivery probability of an optimal
k-copy algorithm. In addition, there is a valid transportation
graph for which MC-ONTIME achieves at most 1

(1−ε)k of the
on-time delivery probability of an optimalk-copy algorithm,
for arbitrarily smallε > 0.

The performance degradation is mainly due to path over-
lapping; consider two paths with high success probability
that differ only in one edge: MC-ONTIME will choose both
paths, while, in fact, the marginal gain in choosing the second
path is small. Thus, we have considered also an algorithm
that ensures that the paths are disjoint. Namely, the MC-
ONTIME-DISJOINT algorithm iteratively chooses the path
with the highest on-time delivery probability, among all paths
from source to destination whose corresponding lines are not
used by any previously-selected path. However, we can show
that the worst-case performance of MC-ONTIME-DISJOINT

is the same as MC-ONTIME. Moreover, some preliminary
simulations have shown that MC-ONTIME is superior in
practice, and therefore this is the multi-copy routing algorithm
we consider in the sequel4.

V. PERFORMANCEEVALUATION

We consider a set of 180 source-destination (ss−sd) stop
pairs among the 2550 stops inside the metropolitan area of
Turin. In the first 90 pairs both the source and the destination
have been chosen uniformly at random in the entire metropoli-
tan area; in the second 90 pairs, the sourcess is located at
a main transportation hub within the city center (close to the
main train station of Turin), and all the destinationssd have
been chosen uniformly at random.

To reduce deployment costs, we assume to employ one
single throwbox covering close by stops. Hence, stops are
aggregated after setting the transmission range of each throw-
box equal to 100m; Sec. V-C discusses the effect of the
transmission range on the total number of throwboxes to
deploy.

We generate a set of 100 traces with the parameters obtained
by the statistical analysis. The traces include the trips ofall
vehicles of 250 bus lines for the four hours available from the
schedule. Appendix C discusses in details the trace generation
process. We have developed a simulator that computes the
delivery probability of each path by averaging across these100
traces; note that the real-life trace alone would not be enough
to compute this probability with any accuracy. Moreover this
trace includes only a small fraction of the lines in Turin,
and the number of possible paths between a source and

4MC-ONT IME-DISJOINT and MC-ONT IME are two extremes as for the
amount of overlapping between the paths. In our future research, we plan to
look also on hybrid heuristics with strict bounds on the number of overlapping
edges. While these variants yield the same1

k
worst-case approximation, they

might be proved superior in real-life traces.

 0.01

 0.1

 1

 0  10  20  30  40  50  60

P
(W

>
w

)

Time interval [min]

Fig. 6. Complementary CDF of the critical time windowW guaranteeing
on-time delivery probability∈ [0.1, 0.9] for the minimum expected traversal-
time path.

a destination using only this subset of lines is drastically
reduced. Data is assumed to be available at the source stop
at 7 AM.

As we mentioned in Sec. IV-B, for very short deadlines,
there is probably no route that could deliver the packet with
a reasonable probability, while for very long deadlines, many
different routes are able to deliver it with probability almost
one (if all the transmissions succeed). Then, it exists an
interval of deadline values for which it makes sense to “spend
effort” to determine good routes. In order to quantify this
interval, we introduce the“critical” time window of a route,
defined asW = φ(90) − φ(10): this is the amplitude of the
interval of deadlines for which the route determined by ON-
TIME(50) achieves delivery probabilities in[0.1, 0.9]. Fig. 6
shows the complementary CDF ofW , for the whole set of
180 pairs. For more than90% of ss−sd pairs, the windows is
larger than ten minutes and for more than17% of them, it is
even larger than 20 minutes. The maximum critical window
size we observed is67 minutes.

Then, for all 180 pairs and for all 100 traces, we evaluate the
optimal paths found by the ON-TIME algorithm and compare
their theoretical on-time delivery probability with the empirical
one determined by simulations. We found a reasonable agree-
ment, considering that there are some differences between
the model and the synthetic traces. In fact, in our model we
considered a constant line frequency in the time period (while
there are some small changes in the schedule and then in
the synthetic traces), and the same headway distribution at
each stop along the trajectory (while for example the headway
variability is larger for the last stops than for the first ones).
Moreover, in the synthetic traces we made sure that two buses
of the same line cannot overtake each other (see Appendix C
for the details). This introduces some further inhomogeneity
that is not taken into account in the model.

We start to compare the performance of the algorithms
defined in Sec. IV—namely, MIN-DELAY , ON-TIME, MAX -
PROB and MIN-HEADWAY—with the EPIDEMIC algorithm
that floods the network by taking advantage of all the possible
contacts (and therefore making very large number of copies).
We first assume that transmissions are reliable, i.e.pf = 0.
Recall that in this case MIN-DELAY is equivalent to ON-
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Fig. 7. Delivery probability (average and 90% confidence interval) for two
deadlines and different routing algorithms, for reliable transmission (pf = 0).
M IN-DELAY is the same as ON-T IME(50).

TIME(50). We evaluate the actual on-time delivery probability
of the best path obtained by each algorithm; for each pair
ss−sd, we set the deadline toφ(x) for different values ofx,
and we compute the 90% confidence interval of the delivery
probability considering all the possible 180 pairs. We willre-
port the results only forx = 10 (“short deadline”) andx = 50
(“average deadline”), since these cases are representative.

Fig. 7 compares the delivery probability of the different
algorithms for the two deadlines. The gain of EPIDEMIC with
respect to all the other single-copy algorithms decreases as the
deadline increases: EPIDEMIC achieves a delivery probability
3 times larger than ON-TIME for deadlineφ(10), but only 1.5
times larger for deadlineφ(50). Indeed, when the deadline is
large enough just one copy of the data is enough in order to
reach100% delivery probability. In such a case, EPIDEMIC

does not introduce any gain in terms of performance, and the
cost in terms of copies and transmissions is much larger than
under single-copy algorithms. For example we observed on
average more than600 copies forφ(10) and more than900
copies forφ(50) under EPIDEMIC up to the deadline, while
for all single-copy algorithms the number of transmissionsfor
each data is on average 5.0, and always less than 12.

ON-TIME(10) and ON-TIME(50) obtain the maximum de-
livery probability respectively, for deadlineφ(10) andφ(50),
as expected. But comparing the corresponding confidence
intervals, they behave almost the same. A somewhat surprising
results is that in many cases (121 out of 180) ON-TIME(10)
performsexactlyas ON-TIME(50) (or, equivalently, as MIN-
DELAY ). In fact we verified by direct inspection that ON-
TIME(10) and ON-TIME(50) select exactly the same optimal
path.

These results have been confirmed also for other deadline
values: The optimal route is not very sensitive to the deadline.
In most of the cases the best path computed by ON-TIME(50)
is the best for every deadlineφ(x) with x ∈ [0, 100]. Recall the
example in Fig. 5, showing that the best path does in general
depend on the deadline. Our experiments lead us to conclude
that these cases are very rare in a real transportation system
when transmissions always succeed. Thus, one can choose
the path solely on the basis of the minimum expected travel
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time (that is, the simple MIN-DELAY algorithm), making it
redundant to run the complex optimal algorithm ON-TIME.

We now investigate the effect of transmission failures.
Fig. 8 shows the delivery probability for different values of
transmission failure probabilitypf . Even with failures, ON-
TIME(50) and MIN-DELAY behave similarly. Only whenpf
increases, MAX -PROB shows an average delivery probability
comparable to the two other algorithms; indeed, MAX -PROB

becomes more efficient when the transmission failures are
high, since the optimal policy tends to minimize the number
of transmissions. Hence, all the algorithms appear to behave
efficiently for largepf .

A. Multi-copy routing

We turn now to deal with multi-copy settings. Fig. 9
shows the performance of the MC-ONTIME(x) policy, that
takes advantage of thek paths with the highest delivery
probability by the deadlineφ(x). The figure shows the results
obtained for all the 180 source-destination pairs, assuming
reliable transmissions (pf=0). For deadlineφ(50), ON-TIME

with one copy reaches a delivery probability which is about
66% of that achieved by EPIDEMIC, and a few more copies
significantly reduces the performance gap. Yet, after 10 copies
we observe only a negligible improvement. This is partially
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Fig. 10. Comparison of Epidemic Routing with bus-bus & bus-stop
communications

due to the fact that MC-ONTIME exploits a given sequence of
paths provided by the algorithms, whose internal “diversity”
is limited. Furthermore, EPIDEMIC exploits low-probability
paths that are efficient just for the specific trace instance
considered in each simulation run; since the number of these
low-probability paths can be very large, due to the redundant
connectivity of the bus transportation system metropolitan
area, there is a high probability that at least one of them will
be used to deliver to the destination. Note that the cost in terms
of transmissions and copies for EPIDEMIC (on average, more
than 900) is at least one order of magnitude larger than the
multicopy approach using a pre-selected subset of 10 paths.

B. Comparison of Bus-to-Bus vs. Bus-to-Stop Communica-
tions

Prior work on bus-based delay tolerant networks mainly
has focused on exploiting opportunistic contacts between the
buses. In our scenario, we utilize bus-stop contacts ratherthat
bus-bus ones. In this section, we provide a first comparison
of the two approaches in terms of the speed of message
propagation when flooding is used.

Fig. 10 shows how fast epidemic routing diffuses a message
in the network if it utilizes only stop-bus communication
opportunities, only bus-bus communication opportunitiesor
both (referred to as all-all). In all cases, we consider that
the message is generated by a user located at a main bus
stop in Turin and copied to all the buses that go through the
stop. In order to compare the message spreading speed in the
different scenarios, we have considered the stops themselves
as potential destinations. Fig. 10 shows the number of stops
that are reached by a copy of the message over time. It appears
that using bus-stop communications is more effective than
using only buses and achieves almost the same performance
of the all-all scenario. In particular, we observe that not
all the stops can be reached when we rely only on buses
without using the stops as fixed relays. On the contrary, the
bus-bus communication scenario seems to be slightly faster

TABLE I
EFFECT OF AGGREGATING STOPS IN THE ENTIRE TOWN

TX-RANGE THROWBOXES REDUCTION RATIO

1m 6868 0.00
50m 4385 0.36
100m 3464 0.49
150m 3055 0.56
200m 2752 0.60
250m 2394 0.75

immediately after the generation of the message.
It is important to note that this evaluation neglects factors

such as contact duration, physical/link layer constraints, etc.
Burgesset al. report that the contact duration between two
mobile nodes in a vehicular network may eventually be too
short to transfer a message [6]. These effects are expected to
be more significant in the bus-bus scenario when both nodes
are mobile. On the contrary, in the bus-stop scenario, contact
opportunities can be quite long, also because buses need to
stop to let passengers board and alight. Hence, we expect that
the performance gain of the bus-stop scenario in comparison
to the bus-bus one increases when these other effects are
considered.

C. Bus stops aggregation

An urban area transportation network typically contains a
large number of stops. For example, there are 6868 stops in
Turin, among which 2550 are in the metropolitan area. It may
be unfeasible to install a throwbox at each of these stops. At
the same time this may not be necessary. In fact, many of these
stops are close to each other so that a single throwbox can be
used to cover multiple of them. In this section we quantify
how many stops can be “aggregated”, in the sense that they
are close enough to use a unique wireless box for all of them.

One parameter used in aggregation is the communication
range of wireless boxes,dtx, and it is assumed to be homoge-
nous across all the stops. Two nodes are considered neighbors
if their distance is less thandtx. We use a simple, greedy
heuristic algorithm to group closeby stops. LetN be the set
of stops. We first pick the node, say itsM , that has the largest
number of neighbors. We place one wireless box atsM . Then,
we removesM and the neighors ofsM from N . We iterate
this step untilN is empty.

The number of stops groups, or number of wireless boxes
that should be installed in order to cover all the 6868 stops
present in Turin is shown in Table I for different values of
the transmission range; the reduction is evaluated as the ratio
between the number of stops that so not need a throwbox
and the total number of stops. As the communication range
increases, a larger number of stops are grouped together.
Hence, the number of wireless boxes required to provide
coverage decreases and the reduction ratio of the aggregation
increases. We see that even a 100-meter communication range
can result in a large reduction (almost 50%) in the number
of throwboxes (i.e., in hardware cost) to deploy the bus-based
DTN.

Table II shows the effect of aggregation when only the 2550
stops in the metropolitan area of Turin are considered. Because
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TABLE II
EFFECT OF AGGREGATING STOPS IN THE MAIN METROPOLITAN AREA

TX-RANGE THROWBOXES REDUCTION RATIO

1m 2550 0.00
50m 1552 0.39
100m 1084 0.57
150m 844 0.67
200m 687 0.73
250m 517 0.80

the stops are more closely placed in the metropolitan area,
the aggregation mechanism with the same transmission range
results in a larger reduction ratio for the number of wireless
access points that need to be deployed.

VI. CONCLUSIONS

This paper lays the foundations for a framework to analyze
bus-based networks, where communication is between the
mobile buses and the stops along their trajectories. Through a
statistical analysis of traces, taken from a real transportation
system of a large urban area, we were able to obtain a succinct
stochastic graph representation of the system, and to devise
routing algorithms on this graph. In addition, we were able
to develop a synthetic trace generator, which in turn allowed
us to perform an extensive simulation study, verifying the
performance of our proposed algorithms.

An important outcome of this study is that, although differ-
ent from the optimal but computationally-intensive algorithm,
the simple MIN-DELAY algorithm achieves excellent results
in term of success probability for any reasonable deadline,
when transmissions succeed all the time. In addition, we show
that increasing the number of data copies beyond10 does not
provide any meaningful boost in performance.

As final comment, we note that our model can be extended
to bus-bus communications by introducing somevirtual stops,
located in correspondence to possible physical contact points
between two different lines. By appropriate choice of weights
on the corresponding edges (e.g., no waiting time and high
failure probability), one can capture the nature of this kind
of communication as well. The main challenge, left for future
research, is to locate the physical contact points and to bound
their number so that the running time of the algorithm remain
feasible.

In future work, we also plan to extend our approach by
releasing some or most of our assumptions discussed in
Sec. III.

APPENDIX A
TIGHT BOUNDS ON THEPERFORMANCE OFMULTI -COPY

ALGORITHMS

In this section we provide the proof for Theorem 1 of
Section IV-D, which deals with the performance of the multi-
copy MC-ONTIME algorithm. This algorithm computes the
success probability of all paths in isolation and chose thek
best paths (without considering the interaction between them).
Theorem 1 comprises of the following lower- and upper-
bounds.

Lemma 1:The MC-ONTIME heuristic always achieves at
least1/k of the success probability of an optimalk multicopy
heuristic.

Proof: Let p1, . . . pk be the success probability of the
paths selected by the MC-ONTIME algorithm, such thatpi
corresponds to the path selected at iterationi. Let q1, . . . , qk
be the success probability of the paths selected by the optimal
algorithm, and byQ1, . . . Qk the corresponding events of
successful delivery (namely,Pr[Qi] = qi). Note that by
definition,p1 ≥ maxi qi. Thus,

Pr[GREEDY succeeds] ≥ p1 ≥ 1
k

∑k

i=1 qi ≥
1
k
Pr

[

∨k

i=1 Qi

]

= 1
k
Pr[The optimal algorithm succeeds],

where the third inequality is due to the union bound.
Lemma 2:There is a valid transportation graph for which

MC-ONTIME achieves at most 1
(1−ε)k of the success probabil-

ity of an optimalk multicopy algorithm, for arbitrarily small
ε > 0.

Proof: Consider a transportation graph in which, from the
source to the destination, there are2k paths:

• k two-edge paths, which share their first edge. The
probability to traverse this first edge isp while the
probability to traverse the second edge is1− ε/4.

• k single-edge paths, such the probability to traverse the
edge isp(1− ε/2).

Assumep = ε/((k − 1)(1− ε
2 )

2). The MC-ONTIME algo-
rithm will choose the firstk paths, sincep(1 − ε/4) >
p(1 − ε/2). Since all these paths need to traverse the first
edge, the probability that MC-ONTIME succeeds is at most
p.

On the other hand, the optimal algorithm will do better than
the algorithm that chooses the lastk paths. The inclusion-
exclusion principle (a.k.a Bonferroni inequality) yieldsthat
the success probability of the optimal algorithm is at least

kp(1− ε/2)−

(

k

2

)

p2(1− ε/2)2.

This implies that the ratio between the success probabilityis
at most

p

kp(1− ε
2 )−

(

k

2

)

p2(1− ε
2 )

2
=

1

k(1− ε)
.

APPENDIX B
BUS MOBILITY MODELS IN TRANSPORTATION

This investigation of the transportation literature is mainly
based on the overviews in [36], [37].

Some works provide probability distribution for arrival time
or lateness or delay, based on empirical studies (e.g. [38]–[42]
or on model simplification (e.g., [43], [44]). Most studies use
a skewed distribution for the lateness, since it is more likely to
be behind schedule than ahead. Lognormal or gamma random
variables are the most common assumptions (see the summary
table in [36]).

About the statistical dependency of these quantities, con-
trasting effects hold. In general once a bus with low headway
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is late at a given stop, it is difficult to recover its lateness.
In fact, for lines with low headways, passengers usually do
not regulate their arrival on the basis of the schedule. Hence,
passenger arrival can be assumed to be a Poisson process.
When a bus is late, the longer waiting time at following stops
causes an increase in the number of passengers who board
(and later alight) resulting in longer dwell times and higher
and higher delay en-route. Therefore, lateness and delay are
positively correlated in such cases: high lateness at a stop
results in increased delay over the subsequent segment [38].
This phenomenon does not always occur on buses with higher
headway. In fact, passengers now tend to arrive just before
the scheduled departure time of desired bus. Hence, late
buses do not board significantly more passengers than on-
time buses. Furthermore, since higher headway buses often
have slack built into their schedule, there is opportunity to
recover some of the lost time [45]. Penalties to drivers for
being excessively late encourage them to catch up to the
schedule. Thus, the delay in a segment is negatively correlated
with the lateness at the start of the segment. Because of
these two phenomena, the delay on a bus line segment can
either be negatively or positively correlated with the lateness
at the start of the segment, depending in large part on the line
headway. Moreover, we observe that the lateness of a bus also
has consequences on following buses on the same line and
direction. A late bus boards more passengers, and so it leaves
less of them for the following bus. This effect would lead to a
negative correlation between the lateness of consecutive buses.
At the same time in many cases transport agency policies or
traffic conditions make overtaking impossible or quite rare.
Hence a bus that is significantly late would cause also the
consecutive ones to be late.

Regarding dwell time, this can be a significant part of
the total service time (up to 16% of the total service time
according to [37]). This time clearly depends on the number
of passengers boarding and alighting (empirical formulas are
proposed in [46] and [47]), but also on the crowding, fare
types [40], payment modalities, bus design (separate/common
doors for boarding and alighting), mode (i.e. bus or metro
lines) and service type5 [48]. Also, the contribution of dwell
time to lateness correlation is not immediate. For example a
large dwell time can be due to a large number of passengers
boarding or alighting. In the first case the alighting at following
stops will in general large, in the second will be small.

APPENDIX C
GENERATION OFTUNABLE SYNTHETIC TRACES

The real traces fromGTT (Gruppo Torinese Trasporti)
transportation network provide data about 26 lines that operate
in the city. The variety in the traces allow us to model
properties like headway, travel time and lateness. However,
real traces cannot be used in performance evaluation because
they cover only a small fraction of the lines in Turin, and the
number of possible paths between a source and a destination
using only this subset of lines is drastically reduced. In this

5Service type can be rapid, limited, local, or combined depending on the
vehicle speed, and the distance between consecutive stops.

case, we expect different routing algorithms to select the same
path, and it would not be possible to really evaluate the
potential gain -but also the computational complexity- of our
approach in comparison to simpler ones. Moreover, we are
interested to evaluate the best performance achievable by a
bus-based DTN, so we want to consider a massive deployment
of WiFi-enabled buses and stops in the metropolitan area. For
these reasons, we have decided to rely on synthetic traces
describing the mobility of all the buses in the network. In
this section, we explain how these synthetic traces have been
generated on the basis of our statistical analysis of the real
data, discussed in Section III.

For each vehicle we generate the sequence of the arrival
times at the different stops in its trajectory according to Eq. (1):

t(v, sk) = τ0 + l(v, s0) +

k−1
∑

i=0

tt(v, si, si+1),

whereτ0 is the scheduled departure time of the vehicle from
the first stop; the lateness at the first stop,l(v, s0), and the
travel times,tt(v, si, si+1), are assumed to be independent
random variables (see Section III). For the lateness at the first
stop we have assumed a triangular distribution with support
[−2,+2] minutes, that resembles the empirical distribution
we observed. Travel times are assumed to have a truncated
lognormal distribution, as it is common in transportation
literature. The truncated lognormal distribution is completely
characterized by its mean (MTT ), its variance (VTT ) and its
maximum value (th). We have assumed that these quanti-
ties depend only on the corresponding scheduled travel time
(STT ). By trying to match the moments of the empirical
distribution and the lognormal distribution, we have identified
the following empirical relations:

MTT = 0.7(STT + 0.5) [min] (2)

VTT =
M2

TT

4
[min2] (3)

th = 2MTT . (4)

Occasionally we have been forced to increase artificiallyth
in order to be able to guarantee the headway constraint (see
below).

The arrival times at the stops could be calculated indepen-
dently for each bus generating the random variablesl(v, s0)
andtt(v, si, si+1) (whose parameters can all be evaluated from
the schedule using (2) and (3)) and summing them according
to (1), or equivalently in the following iterative way:

{

t(v, s0) = τ0 + l(v, s0),
t(v, si) = t(v, si−1) + tt(v, si−1, si).

(5)

This procedure can produce synthetic traces where a bus can
overtake another bus serving the same line, for example when
the second is particularly late. This happens with higher prob-
ability the smaller is the headway of the line in comparison
to the scheduled travel times. Being that we do not observe
this phenomenon in the real traces, we want to avoid it also
in the synthetic ones by introducing theheadway constraint:
buses belonging to the same line arrive at each stop in the
same order.
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To satisfy such constraint whilst matching the empirical
values for the first two moments (MTT andVTT ) for the travel
time, we have introduced a “virtual queue” for each different
distribution considered, hence one for each possible scheduled
travel time value in the transportation network, and one forthe
lateness at the first stop. Initially such queues are all empty.
The arrival times of buses belonging to the same line are
generated orderly according to their schedules. Lett(vj , sk)
be the arrival time of thej th bus of a particular line at thekth

stop. We want to guarantee thatt(vj , sk) > t(vi, sk), for each
j > i and for eachk. All the random variables are generated
and used as described above as long ast(vj , sk) > t(vj−1, sk).
If this is not the case, a larger value is needed and the
last random variable is generated again until the condition
is satisfied. If the random values generated and not used
would be simply discarded, the actual distribution would be
stochastically larger than the intended theoretical distribution.
For this reason, all the values generated but not used are put
in the corresponding queue and we try to recycle them later.
In fact, once a queue is no more empty, when a value from
the corresponding distribution is needed in order to generate a
new arrival time, e.g.t(vl, sh), it will be taken among those in
the queue, that are large enough to guarantee that the bus order
is respected, i.e. thatt(vl, sh) > t(vl−1, sh). If the associated
queue is empty, a new value is generated as described above
(and possibly added to the queue if it is not large enough).
If the number of values in each queue at the end of the trace
generation is small, the distortion between the actual and the
theoretical distributions is small. In our case, we have observed
that at the end of each trace generation only a small number of
values (less than 0.7%) remains in the queues in comparison
to the total number of generated random variables.
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