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Timely Data Delivery
In a Realistic Bus Network

Utku Gunay AcerMember, IEEE Paolo Giaccondylember, IEEE David Hay, Member, IEEE
Giovanni NegliaMember, IEEE and Saed Tarapiah

Abstract—WiFi-enabled buses and stops may form the back- messages whenever they are within transmission range bf eac
bone of a metropolitan delay tolerant network, that explois other.
nearby communications, temporary storage at stops, and pre A pyg-hased network is a convenient solution as wireless

dictable bus mobility to deliver non-real time information. L . .
This paper studies the routing problem in such a network. backbone for delay tolerant applications in an urban séenar

Assuming the bus schedule is known, we maximize the delivery In fact, a public transportation system provides access to
probability by a given deadline for each packet. Our approatt a large set of users (e.g. the passengers themselves), and
takes the randomness into account, which stems from road tfféic is a|ready designed to guarantee a coverage of the urban
conditions, passengers boarding and alighting, and otheratctors area, taking into account human mobility patterns. Moreove

that affect the bus mobility. In this sense, this paper is oneof . - N .
the first to tackle quasi-deterministic mobility scenarios. such a wireless backbone is not significantly constrained by

We propose a simple stochastic model for bus arrivals at sta Power and/or memory limitations: a throwbox can be easily
supported by a study of real-life traces collected in a largairban  placed on a bus and connected to its power supply, or be
network. A succinct graph representation of this model allovs put in an appropriate place in bus stops, which are usually
us to devise an optimal (under our model) single-copy routig 5054y connected to the power grid to provide lights and
algorithm and then extend it to cases where several copies tfe - - .
same data are permitted. electronic d|spI§1ys. Finally, .travel times can pe predio‘rem_

Through an extensive simulation study, we compare the the transportation system time-table. Even if the actuaés
optimal routing algorithm with three other approaches: mini- are affected by varying road traffic conditions and passesge
mizing the expected traversal time over our graph, maximiz\g  hoarding and alighting times, such a backbone may still

the deliver robability over an infinite time-horizon, and a . T .
recently prgpgsed heu¥istic based on bus frequencies. We siv provide strong probabilistic guarantees on data delivieng t

that our optimal algorithm shows the best performance, butt (hat aré not common in opportunistic networks. _
essentially reduces to minimizing the expected traversalirhe. Given this scenario, this paper explores the basic question
When transmissions fail frequently (more than half of the times), “how to route data over a bus-based network, from a given
the algorithm behaves similarly to a heuristic that maximizs the source to a given destination, so that the de"very prob‘@b"
delivery probability over an infinite time-horizon. For rel iable y a given deadline is maximized Ve rely on the knowledge
transmissions and values of deadlines close to the expecte(Pfb hedule inf . d ) hastic ch .
delivery time, the multi-copy extension requires onlyl0 copies to  ©f PUS schedule information and some stochastic charaateri
almost reach the performance of the costly flooding approach  tion of bus mobility, obtained from real data traces.
We consider two classes of routing schemes over such a
network. The first class relies only on forwardingsangle
) o copy of the data along aingle path The second class takes
We consider an opportunistic data network formed bygyantage ofultiple copiespread in the network to increase
(some) buses and bus stops in a town equipped with wirelgRivery probability and reduce delivery time, albeit with
devices, e.g. based on WiFi technologies, like in Diese[lMet higher bandwidth usage.
Most of the stops act as disconnected relay nodes (the throwangther architectural choice is between exploiting onlg-bu

boxes in [2]), and a few of them are also connected to g5 contacts, only bus-stop contacts, or both types of ctsta
Internet. Data are delivered across the town following thgile the latter case should provide better performance, th
store-carry-forward network paradigm [3], based on multi-yyo kinds of transmission opportunities have very différen
hop communication in which two nodes may exchange d&faracteristics, making it hard to model both of them togeth
Copyright ©2011 IEEE. Personal use of this material is permitted. HowIl @ common framework. FOI’ example, a potentlal .Conta_-Ct
ever, permission to use this material for any other purpasest be obtained between two buses traveling along orthogonal trajectories
from the IEEE by sending a request to pubs-permissions @igee can becompletely avoidedf there is even a slight delay
U.G. Acer is with Alcatel-Lucent Bell Laboratories, AntvgerBelgium. . f th On th her hand. i " b
P. Giaccone is with Dipartimento di Elettronica, Politemnidi Torino, In one O t.em' n the other hand, In case of a bus-stop
Turin, Italy. His activity was supported by the PRIN PeopET project communication, the contact always happens eventually, but
funded by the Italian Ministry for Research and UniversifigR). may be delayed. Most prior art (see Sec. Il) considered only
D. Hay is with School of Computer Science and Engineeringbrele bus-b . In thi f h h
University, Jerusalem, Israel. His activity was supported the Legacy us-bus communications. In this paper, we focus on the other

Heritage Fund program of the Israel Science Foundationr{Gya. 1816/10). alternative, relying only obus-stopcommunications. Sec. V-B

|. INTRODUCTION

G. Neglia is with INRIA - EP| Maestro, Sophia Antipolis, F@ provides some evidence that this second scenario may lead to
S. Tarapiah is with Communication Engineering Departméumt;Najah better performance. We discuss how to extend our approach
National University, Nablus, Palestine. p . pp

to include bus-bus communications in Sec. VI.



[Bus schedule | loPshbus trace | find the optimal route in a reasonable time, allowing eachenod
| Stop-line graph |~ Bus mobility model | to store an optimal pre-selected routing plan (Sec. IV-H). (
Extensions to multi-copy case, based on greedy approaches
applied to the single-copy scheme. We prove a tight bound of
|Optimal routes |——{Performance evaluatic 1/k for the on-time delivery probability in comparison to an
optimal (non-greedy}-copy scheme (Sec. IV-D). (iv) Algo-
rithm to generate mobility traces of the buses, based om thei
actual schedule (Appendix C). (v) Simulation analysis shgw

that the optimal algorithm mainly performs asiMDELAY,

Fig. 1 depicts the high-level framework used in the paper {Q i it outperforms MN-HEADWAY and Max-PROB for

sftud;l/ rouUQ?tm the;plr?pot')sed nea/vork..tf) lér.Stgrtm%lF%']rﬁt'sreasonable values of packet loss probabilities. We provide
simple mobility model for buses (described in Sec. I1I-Bja some explanation for these results. In this sense the csinalu

is supported by the statistical analysis of a set of reabsad is that a naive algorithm like Mi-DELAY may be a very good

the public transportation system of Turin in Italy, whichnses heuristic for routing over realistic bus transportationtamrks

an extended metropolitan area through about 7,000 stops éj - . . )
c. V). Simulations showing that only0 copies are
1,500 vehicles distributed among 250 lines, with more th?‘g ). (Vi) Simulati wing b0 copi

Hbeded f Iti- d h to achi -
4,600 km of bus routes. These traces include the compl?r) poec Tor a mur-copy greedy approach 1o achieve & per

¥mance similar to that of flooding, which requires at least
schedule for the morning rush hour period (6 AM—10 AM g d

. . wo order of magnitude more transmissions and copies for
and the corresponding GPS traces for the vehicles belongg‘%h single piece of data (Sec. V-A). (vii) Investigatiortios
to 26 lines.

= _ _ ) effect of optimizing the location of the throwboxes coverin
A statistical analysis of these traces yields importantaon many stops (Sec. V-C). (viii) Comparison between bus-te-bu

sions, which allow us to represent the transportation syste,nq bus-to-stops communication paradigms (Sec. V-B).
appropriately in terms of a graph with independent random

weights, that we call thetop-line graph(Sec. V). Under this
representation, our original optimization problem to itifgn Il. RELATED WORK

routes maximizing the delivery probability by a given deaell  Employing a bus network as a mobile backbone for dense
(or maximizing the on-time delivery probability) becomesehicular networks was first proposed in [5], using standard
equivalent to a specific stochastic shortest path problem @uting protocols for mobile ad-hoc networks (e.g., DSR or
the stop-line graph. We are able to find an optimal algorithpaopv). More recently, the use of buses in a disconnected
called ON-TIME, for the single-copy case (Sec. IV-B) and theRcenario has been considered; e.g. in the senbieselNet
to extend it for the multi-copy case through a greedy approagroject [1]. Since our paper considers routing in such a
(Sec. IV-D). In Sec. V we compare the performance of theg@twork, in what follows we only mention work related to
proposed algorithms with three other heuristics (intr@tlic routing issues. Appendix B will be devoted to discuss presio
in Sec. IV-C) that also operate on the stop-line graph: &fork on bus mobility models.
adaptation of the routing algorithm proposed in [4] for s \Most of the research has focused on bus-bus communica-
communications (we refer to it as IM-HEADWAY), and the tjgns [4], [6]-[9] with the following routing approach: Elac
two naive algorithms, MN-DELAY, that determines the pathyehicle learns at run time about its meeting process. Then,
with the least expected traversal time, andMPROB, that the vehicles exchange their local view with other vehicles
maximizes the delivery probability on an infinite time-tmm. 50 yse the information collected to decide how to route
Since the number of real-life traces we obtained is limitedigta. The goals of the proposed algorithms were either to
the comparison (Sec. V) is based on simulations carried oRejuce the expected delivery time or to maximize the defiver
large set of synthetic traces generated on the basis of @ur BPobabiIity. Unlike these studies, we mainly focus lous-to-
mobility model and the schedule of Turin bus system. stop data transferand derive a single-copy routing algorithm
Additional material is presented in the appendices. The maximize the delivery probability by a given deadline. We
proofs of the performance bounds for multi-copy algorithmen extend the algorithm to address settings where several
are in Appendix A. Appendix B presents an overview ofopies of the same data are permitted. On the other hand, we
bus mobility models in transportation literature, wheréd@s  do not consider buffer or bandwidth constraints, (e.g.ng6li
pendix C describes the algorithm we propose to gener§m) as they are not a major concern in our settings: When the
the synthetic traces based on the actual schedule of thebile devices are buses (as opposed, for example, toarellul
transportation system. phones), it is reasonable to assume that there is sufficient
The paper provides the following main contributions: (istorage available; in addition, since buses communicatie wi
Formulation of the original routing problem as a specifistops (as opposed to other moving buses), the amount of
stochastic shortest path problem on a particular stochastata transferable during a meeting is larger. Nevertheless
graph (Sec. IV-A). This formulation is justified by a statial characterizing the bandwidth of the contacts and incotpara
analysis of real transportation system traces (Sec. llIfB) these constraints into our framework for bandwidth-hungry
Optimal (under our model) routing scheme for the single compplications is part of our ongoing research.
case. While this offline routing scheme has, in theory, anThe use of fixed relay nodes was also considered in [2],
exponential worst-case time complexity, in practice itbteao [10]. In [10], an architecture is proposed where bus passsng

\ Routing algorithm \ Synthetic mobility trace\

Fig. 1. High-Level Evaluation Framework



may use the cellular network to require content that wilkhose edge lengths (or equivalently, traversal times dver t
be delivered to access points along the bus trajectory. Tleidges) are random variables. Several optimality critegaew
data can be replicated also on other buses, taking advantegesidered in the past for routing in stochastic graphs. The
of possible data transfers between vehicles. Their arslysiost common one is thieast expected traversal timehich
considers only a simplistic single-street scenario andamd can be generalized to any linear (or affine) utility functjam],
address routing issues. [2] reports that the performance of18]. Other optimality criteria are deviance [19], monaton
vehicular network is improved by adding some infrastrueturquadratic utility functions [20] and prospect-theory-dxhs
like base stations connected to the Internet, a mesh wérelésnctions [21]. Recent and comprehensive surveys of the
backbone, or fixed relays (which are similar to our stopsjifferent utility functions and corresponding solutionspaar
The most important results are (i) there are scenarios wderin [22], [23]. Our paper deals with theliability of the chosen
mesh or relay hybrid network is a better choice over a bapath, namely, finding a path which maximizes the probability
station networks; (ii) deploying some infrastructure hasuch  of on-time arrival (given some deadline). This problem was
more significant effect on delivery delay than increasing tHirst studied by Frank [24] and then was also investigated
number of mobile nodes. These findings, which were verifiéd [25]-[27] and more recently in [22], [28]-[30]. Current
both analytically and by experiments on the DieselNet t$th state-of-the-art algorithms still have exponential waraste
support our proposed architecture that relies on oppatigni time complexity, based on enumerating over some set of
connectivity between vehicle nodes and fixed relays. candidate paths [22].

In order to provide low cost Internet connectivity to fixed Our problem differs from Frank’s problem essentially in
kiosks in rural areas of developing counties, KioskNet athree aspects. First, we consider a real transportaticersys
chitecture has been proposed [11]. In this architecturseduand therefore we are not interested in the worst-case com-
carry data between the kiosks and a set of gateways that pdexity of the algorithm on some general graphs. Second,
communicate to a proxy on the Internet. Routing of such datar transportation model has two kinds of entities: station
between the kiosks and the gateways is achieved by simpled buses; we need to take into account waiting time at the
flooding. On the other hand, gateways are delegated to a kissps and not only buses travel times, as explained in detail
via a scheduling mechanism that considers the schedulesof 8ec. IV. Third, all the previous work considered a singleyco
buses which serve the kiosks [12]. model, while our model deals also with multiple copies where

The routing algorithms proposed by [13]-[16] are intrinsithe objective is that at least one of the copies arrives at the
cally more suited for bus-to-bus data transfers. [14] ar@] [1destination before the deadline.
propose algorithms that take advantage of cyclic mobiléip  Finally, we observe that we use the bus network for data
terns, according to which nodes meet periodically, albéit w transfer as it is used for passenger transfer. Thus, onel coul
some probability. Even if a given bus may meet multiple timesxpect that the same problem has already been addressed in
the same stop, this approach does not fit our scenario fae thtke transportation literature. However, this is not theecas
reasons. First, the bus-stop contact process is not neitess#irst, the possibility to exploit multi-copy is clearly adg
periodic because vehicles may be assigned to differens ling the transportation of people or merchandise. Second, the
during one operation day. Second, even if a vehicle operafg®bability to miss a transfer opportunity is also not cdeséed
always on the same line, its frequency changes significanitytransportation, while data transfer between two nodeg ma
along the day. Third and more importantly, even when fail because of insufficient contact duration, channel @ois
period may be defined, its value ranges from 30 minutes too? collisions. Third, even for single-copy routing, bus -net
hours depending mainly on the length of the bus trajectowork passenger routes usually aimrdnimize the expected
and on inactivity times at terminus. It is then comparablgaversal time(possibly limiting the maximum number of bus
with the deadlines we are targeting, making it impossible tthanges) and not to maximize the delivery probability by a
take advantage of such long term periodicity. Other forms gfven deadline, as we are doing (cf. [31]-[33] and refersnce
long-term regularities in the contact process of the déffier therein). The fact that finally minimizing the expected @esal
nodes [15] are too general for our settings, since we hatime may provide almost optimal performance in some sce-
significantly more information on the meetings that can bearios (when message transmissions do not fail) is an @-prio
exploited to improve the performance. Finally, [13] prog®s unexpected finding of this research.
hierarchical routing for a deterministic network, wherees  |n conclusion, to the best of our knowledge, this is the first
consider non-deterministic mobility. paper that proposes an optimal routing algorithm that takes

Almost all the papers above have considered only small bagvantage of bus schedule information as well as a stochasti
networks (0 buses for DieselNet,6 buses on a cyclic path for characterization of bus mobility, supported by real dedads.
MobTorrent [10]). Only [8] considers an urban setting with a
public transportation system comparable to o¥s different
bus lines), but, differently from us, they do not use any real
mobility trace and simulate bus movement assuming that theln this section, we formally define the terms and the notation
bus speed is chosen uniformly at random from a given intervale use to describe a transportation system, following the

From the theoretical point of view, our optimization goaterminology used in transportation literature.
can be reformulated (under some assumptions) as a particulgA transportation systerT has a set of stops, denoted by
stochastic shortest path problethat deals with a graph S, and a set of vehicles (buses), denotedhywhich travel

IIl. M ODEL DEFINITIONS AND ASSUMPTIONS



between the stops according to a predetermined path an¢h & t2 < t3 < t4, data can be transferred in the two directions
predetermined schedule. For each vehicke V, the schedule (from v; to v, and fromuvs to v;), but when the transmission
allows us to determine itsajectory, denoted tréjv), which is opportunities are ordered, only one direction is still feles
the ordered sequence of stops the vehicle traversego)teaj Furthermore, we assume that data transfer during a trans-
(s0,81,---5n). In addition, each vehicle is associated with mission opportunity can fail. This can be due to different
atrip, denoted trigw), which is a time-stamped trajectory: causes: channel noise and collisions, but also nodesddibin

. discover the opportunity, or contact duration being insisfit

trip(v) = ((s0,70), (51, 71); - - (80, Tn)), to transfer the data. We assume:

such that a vehicle should arrive at stop; along its trajectory ~ ASsumption 2:Message success probabilities of different
at time r; = 7(v, s;). We distinguish between thecheduled contacts are independent.

time r; and theactual timet; = t(v, s;), which is a random

variable depending on road traffic fluctuations, passenggs \jeasurements on Bus Mobility and their Implication

boarding and alighting, etc.. The difference between tleahc h bl ¢ N he dell bability b
arrival time at a sto;, t(v, s;), and its corresponding sched- The problem of maximizing the delivery probability by a

uled arrival timer (v, s;) is thelatenessf the vehicle at stop given deadl@r?e requires a re_alis'_[ic statistical charazéon
50, 1(v, 55): 1(v, 85) = £(v, 55) — (v, 5,). Note that the IatenessOf bus mobility pattgrns, which is also useful to generate a
is negative when the vehicle arrives earlier that its sclestu large set of synthetic traces and evaluate the performaice o

. ; ting algorithms.
arrival. Thedelay between the stops; ands;, d(v, s;, s;), iS our rou o . . !
the change in the latenesév, s;, s;) = U(v, ;) — L(0, ;). Transportation literature does not provide a universadlydyv

The time difference between the arrivals of a vehicle at tV\fBOdel for bus movements in an urban environment, since

different stopss; and s, is called the actuatravel time they are strongly affected by vehicular and passengeradraffi

between the two St0p$tj(v si,8;) = t(v,5;) — t(v, 5:). The conditions, road organization (availability of separaamds
y921y27) T »92] 91 )

scheduled travel time is simply the difference between tfig" Puses), traffic signal control management (priority may
scheduled arrivals at the two stops be given to the approaching buses over the other traffic),

A key concept in bus networks is the notion biies company policies (penalties to the bus drivers for delags),

which are basically different vehicles with the same triae so on; details of our transportation literature survey are i

(at different times). Let{ denotes the set of lines. For/\PPendix B. Two extreme cases can be considered: 1) buses
each vehiclev € V we denote its corresponding line bythat are late at one stop can always recover their delay at the

line(v) = {v/ € V | trajv) = traj(v/)}. Note that lines following stop (speedin_g up and reducing their travel tijnes
introduce an important characteristic of a bus transportat 2) buses move almost in t_he same way, and ‘h?‘y do _not try_to
system: if a passenger misses a specific vehiclee/she can recover their delay. The first case better describes linds wi
still catch another vehicle’ in line(v) and reach the same se({?'gh hgadway, while the second is probably more adapt_for
of stops. The time between two consecutive arrivals of Jekic ines with short headways, where buses try to respect a given

belonging to the same line at the same stop is cdikEmbiway frequgr_my, rather than an exact §cheélgle1 terms of the
In the sequel, we will refer to the transportation systerg]uantmes we have defined above, in the first case, latenasse

T as the quintuple(S,V, £, 7(),#()), where the function consecutive stops are almost independent, while in thenseco

7() is a way to represent the schedule at{gl denotes a case they are highly correla’Fqu. .
characterization of the stochastic process of vehiclevasgi .We have performed a stat|§t|cal analyslls of a one day t_race
at the stops. In the next section, we are going to St(,mth_actual bus arrlvals at their stops provided to us _bersrl
characterizing this stochastic process. public transportation company v_vh|ch operates mainly _buses
but also trams and subway trains. The network consists of
around 250 lines and a fleet of almost 1,500 vehicles. Some
A. Communication Model manual inspection is needed to be able to assign specific trip
We assume that a bus is able to communicate with tk@their schedule (in order to evaluate metric like the lates),
throwbox at the stop only when it comes close to the stop that we worked on a subset of the trace, consisting of 26
i.e. it is in the transmission range of the throwbox. In odines in both direction, with a total of 408 trips and 11,097
model, we do not introduce explicitly a departure time frorarrivals at bus stops.
the stop, because in our paper we do not take into accounFig. 2 shows the empirical autocorrelation function for
bandwidth constraints so that it is less important to specifateness, delay, and travel time. In particular, we have
the duration of the transmission opportunity between a bagnsidered for each vehicle the sequence of latenesses

and a stop. In practice, we assume: at consecutive stops(/(so),(s1),..., I(sn),...), the se-
Assumption 1:Transmission opportunities arénstanta- quence of delays between consecutive stopgso(s1),

neousand occur at the arrival time of the bus at the stof(si,s2),...,d(sn,5n41),...) and the sequence of travel

position. times between consecutive stops € to,t2 — t1,...,tht1 —

A drawback of this approach is that two overlapping )
icai it ifi A This distinction is expressly advertised by Turin publiansportation
transmission opportunities are artificially ordered andhso system. that label lines as frequency-based and schedstib

tran5m|53|0n possibilities are lost. For exa_mpler‘,’ﬂfar‘d.v2 2\ith a slight abuse a notation, we omit the dependence orleehiwhen
can respectively transfer te in [t1,t3] and in [to, t4], with itis clear from the context.



Travel Distribution for Different Scheduled Travel Times
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tn,...). We have assumed that the sequences (relative to
same quantity) obtained for different vehicles are sampfes
the same random process, and we have used them to eval@ﬂgé)'_
the empirical autocorrelation function. Fig. 2 demonsgsahat

the lateness values at consecutive stops are highly ctadela

It is then clear that a simplistic bus mobility model, where . . . .
the actual arrival time of vehicle at stops is equal to the variables of Eq. (1). This also allows us to use this recersiv

scheduled one plus some noise that is independent from (Sgrénula to generate realistic random traces (see Appendix C
i - or the details). For example, Fig. 3 shows the empirical
stop to anothert(v,s) = 7(v,s) + n(v,s)), is unrealistic.

At the same time, we note that delays and travel times adrlestrlbunon of the travel times (assumed to be homogeneous

significantly less correlated; this suggests the followimagel, Zﬁaosshed:]ﬁi:zm;rgei V;?:tr; dag(;[:; ds.zm?cl)efh:rceoﬁggrignagi d
in terms of travel time: w y P Ing ponding

scheduled travel times. It is evident that different disttions

Travel time distribution (aggregated and for difier scheduled travel

& have to be used, depending on the different scheduled travel
t(v, k) = 70 + U(s0) +Ztt(v,si,si+1), (1) times. Since it is quite_ common in transportation_ literatur
=0 to use the lognormal distribution to model travel times (see

. . Appendix B), we have accepted this assumption and character
where we can assume that travel times are independent ranq?pgﬁ the parameters of the lognormal distributions foredght

variables (and then also delays are independent). . . scheduled travel times by moment matching techniques.
If we assume that delays are independent and identically

distributed and that the lateness at the first di@p) is dis- our final assumption concerns the walt'lng time at a stop
tributed asi(s;, s;+1), itis possible to evaluate analytically theWhen comr_nutlng from_ orTe I|he to anothe.r: _
expression of the autocorrelation function. This is repnésd Assumption 4:The distribution of the Wa|t|_ng_ time at a stop
in Fig. 2 by the curve “theoretical lateness 1”. We note th&ly depends on the stop and the characteristic of the degart
there is still a strong part of the correlation to be justifiad Pus line, not on the arrival line.
specific analysis of the lateness at the first stop showd(thgt ~ We note that Assumption 4, which plays an important role
is not distributed asl(s;, s;+1), and moreover its variance isin enabling a graph representation with additive edge visjgh
almost6 times larger. This shows that the variability of vehiclés partially a consequence of Assumption 3. Indeed, conside
departure times is a significant component of the varighilit buses moving according to the schedule, and a passenger
arrival times at following stops. If we correct the expressof transferring from line/; to line > at stops. It is clear that the
the autocorrelation function taking into account this emopi  Waiting time at the stop can be evaluated a-priori on thesbasi
finding, we can obtain the new curve “theoretical lateness 2f the scheduled arrival time of tie vehicle and the departure
that matches the empirical one very well. time of the following ¢; vehicle. But under Assumption 3,
As a conclusion of this statistical analysis, we assume #fival times of/; buses at stop are random variables and
the rest of the paper that so are the corresponding waiting times. Intuitively, if the
Assumption 3:Bus travel times at consecutive stops aréariability of £, arrival times is largéin comparison to the
independent (but not necessarily identically distributed headway of lines, the waiting time will have almost the same
particular, their distribution will depend on the corresding distribution of the waiting time seen by a Poisson observer,
scheduled value). thus it is independent of; schedule.
We continue our statistical analysis by determining réalis
distributions for the lateness at the first stog) and the delay  anoe that, according to our model, the variance of the laricreases
distribution, in order to completely characterize the @md along the trajectory and this condition tends to hold.



1
IV. ROUTING ALGORITHMS IN A BUS NETWORK ° ° .1 -3 ° 2 e 4 ° °

As mentioned before, our routing algorithms aim to deters
mine off-line routes for the transportation system that imax

mize data delivery probability by a given deadline:
Definition 1: Given a transportation system W R
T = (S,V,L,7(),t()), a source stops,, a destination N/ N/ v, 7

stop sq, a start timets.+, and a deadlingg,, the on-time ® -f-- \

dehvery prOb,lemls to find a rOPte_ between, a_nd Sd th,at Fig. 4. (a) Example of line-based graghy;,., describing a bus network
starts after timet.,,; and maximizes the on-time deliveryyith stopsS = {A, B,C, D, E, F'} and linesC = {1,2,3,4}: the node
probability, i_e_Pr{data is delivered before timmp}- corresponds to a stop and the Iabe_l on ‘the edge represenisettt®nnecting
We first discuss how we represent the transportation systg oo dsgfggsw(ht;l)eg‘aesﬁggfdpgoensdg’rge 't'r”ae\’/'sltgfl’vi?gﬁbi’d gzg_“ed edges are
as a graph, considering the natural operation of a bus system
with transfers from buses to stops and then to buses (i.e.,
?nvolving only bus'St(.)p communications). The TOIIOWinngO. s; ands; if and only if there is a line € £ that goes from
ISSues Igad.to.ou.r final grgph representation: comp_utdtlog? to s; (only stops which are served by at least two lines
complexity, intrinsic propertles of .the bus transpo_rta_tgys— need to be considered for relay purposes). It is important to
tem (”a'.””e'y' the existence of _I|_nes)_, characteristic of trﬁ%tice an intrinsic difference between the temporal nekwor
stochastic pr(_)ces{s{) (namely, waiting times a; stops depen_%nd the line-based graph: in the temporal network we check
on the departing line), and an advantage coming from workingy o qipility of the path, by evaluating the probabilibat
with add|t!ve nge welghts. Fgr t_he sake.of simplicity, "t maintains the chronological order between contacts. l@n t
the foll_ovymg discussion we will first consider that all the . hand, in the line-based graph, we are interested tkche
transmissions are successful. whether their total length (that is, the total traversaleiof
the path) is less thaty,, — t.ar:. NOte that the traversal-
A. The Graph Representation time along a specific path is a random variable which is the

A simple way to represent the transportation systgnis SUm of two kinds of random variables: edge random variables,

by atemporal networi34], that is a multi-graph whose set ofwhich capture how travel time between two specific stops on a
nodes consists a$ UV (i.e., a node for each vehicle and forspecific line is distributed, and node random variablesctvhi
each stop) and each edge represents a transmission opfyortg@pture the distribution of the waiting time at the stops.
between a vehicle and a stops (or vice versa) occurring at  The waiting time at a stop poses a major difficulty on
the time instant (v, s) and can therefore be represented by tHge design of a routing algorithm, because it is not simply
triple (v, s, (v, s)) (or (s, v, (v, s))). A possible route in such related to the stop but it depends on the specific route under
graph would then be a path connecting the soutcand the consideration, and more specifically on the stop’s outgoing
destinatiors,, i.e. a sequence of edges, lika., vo, t(vo, 55)), and incoming edges in that route. For example, if both edges
(vo, s1,t(v0,51)), (s1,v1,t(v1,51))s ..., (Un,Sa,t(vn,s4))). COrrespond to the same line, the waiting time at the stop is
This route is able to deliver the data frosm to s4, only if 0. On the other hand, when switching lines at the stop, the
totart < t(vo,s5) < t(vo,51) < tvr,51) < ... < t(v,,s4) < Waiting time depends only on thieeadwayof the departing
tstop- line by Assumption 4. Hence, this graph is also not well slite

While the temporal network is useful in general for defor our purposes.
terministic scenarios, it is not suitable for the transaton In our proposed representation, which we cstibp-line
system we are considering. The first reason is that, in adarggaph G, = (Vy, Eq), the nodes arés, () pairs wheres
scale transportation network, this graph would have a veig/a stop and is a line; (s,¢) € V,; if and only if line £ € £
large number of nodeg§ U V|) and of edges. For example,arrives at (or depart from) stop € S. In addition, we add
if the time interval[tstqrt, tstop] SPANs a few hours, a stop in @wo nodess; and s which are connected to all nodes that
dense traffic can exhibit hundreds of edges. The secondrreasorrespond to the source and destination stops. The edges of
is that it ignores the fact that in a bus network a vehicle s are defined as follows: An edge betweent) and(s’, ¢')
such route can be in some sense “replaced” by another vehigdgresponds to traveling from stapto stops’ with line ¢ and
of the same line. Finally, given our performance metric, wdaen continuing from stop’ on line ¢'. If ¢ = ¢’ we call the
would need to evaluatBr{ts..,: < t(vo,ss)) < t(vg,s1)) < edge atravel edge while if £ # ¢’ we call it atravel-switch
t(vi,s1) < ... < t(vn,s4) < tstop). However, the results edge An example ofG; appears in Fig. 4.(b).
of Sec. IlI-B show that lateness values at consecutive stopdVe now define the random variables associated to the edges
are strongly correlated, making it impossible to evaluhte t in E,;. The random variable of a travel edge describes the
probability in a simple way. corresponding travel time between two stops: formallyaset

For these reasons it appears more beneficial to directly loe#igee = ((s, £), (s, ¢)) is associated with the random variable
for routes from the source to the destination in terms ofsinew. = tt(¢,s,s’) describing the travel time of a liné bus
We can consider an alternative data structure,lithebased from stops to stops’. The random variable of a travel-switch
graph Giines = (S, Elines), shown in Fig. 4.(a), in which edge includes the travel time between the correspondimg sto
nodes are bus stops and there is an edge between two stopb the waiting time for the next line, taking into account



possible transmission failures. Formally, a travel-shvigtige 1

e = ((s,0),(s',¢)) is associated with the following random . E; . x"’, //
variablew, : £ Py o I

= Pi#PtP3 o 7 p

)40 with prob.py, % Pt

e = tt(l,s,s') +wt(¢,s’, k) with prob. (1 — pf)Qp]}_l g 05 , Ba

= ot G
for any k > 1; here,p; is the transmission failure probability Lé @ Ja i A
andwt (¢, s', k) is the waiting time at stop’ before the arrival /g/g/ b
of the nextkth bus of line/’. To explain the formula forwe, 0g -
note that, to be able to forward the data successfully from on 30 35 40 45 50
bus to another, two transmissions must succeed: the one from Deadline [minutes]

a bus of? to s’ (which may fail) and the one from’ to a Fig. 5. Delivery probability CDFs of three disjoint patt3, P> and
bus of ¢/ (which will be successful after a geometric numbef’s. connecting a source and a destination with different tealetimes and
. e ; without transmission failuresp¢ = 0). Path P; has the lowest expected
of fallur_el's)'.The formula assumes that the transm|s§|d_nr{a| traversal time; the variance df; is the smallest, whilePs’s variance is the
probability is the same for every possible transmissiort, burgest.P;, P, and P are respectively the optimal paths computed by-O

the model can be easily extended to consider the case whEnE for deadlines betweeB4 and43 minutes, larger thad3 minutes, and
rter tharB4 minutes. The curve labele#; + P> + Ps corresponds to the

. . . . 0
It depends on the stop and on the line to WhICh the_vlehlcjgccess probability obtained by a multi-copy approachcitipdy all the three
belong. We assume that all the random variables defining paths concurrently.

are known (they will be characterized in Sec. IV-B); morepve
by Assumptions 3, 4 and 2, they are all independent.

Itis important to notice that the stop-line gra@ly; provides (numerical)convolutionof the different random variables dis-
a unified approach to deal with waiting times at the stopss thtributions along the path, yielding the end-to-end traaktime
solving shortcoming in previous approaches (e.g., tempotistribution. By this distribution, it is then easy to cdlie
network [34], or graphs with stops as nodes and lines @ssing the corresponding CDF) the delivery probability bg t
edges); further, although out of the scope of this pa@er.is deadline.
also usable in settings where Assumption 2 does not hold. Then, the algorithm proceeds by exploring the graph

Our model allows us to simply calculate the overall traversehrough a breadth-first search, looking for paths with a éigh
time of the data along a weighted paf as: tr(P) = on-time delivery probability. Apruning mechanism avoids
> ecp we. When transmission failures can occur, the Cumulgie need to determine and evaluate all the paths. Being that
tive Distribution Function (CDF) of the delivery time is $ed the traversal time is obtained by adding non-negative link
by a factor equal tq1 — py) for each transmission from aweights, for any pattP and any prefixP’ of P, Pr{tr(P) <
bus to a stop. Then the CDF of the delivery time along @ < Pr{tr(P’) < t}. Thus, we can perform hop-by-hop
given route has the horizontal asymptate= (1 — py)™, convolution and compute, for each resulting distributitirg
wherem is the total number of bus-to-stop transmissions iprobability that the weight (that is, traversal time) of sthi
the route. Now, given the grapfiy;, the on-time delivery path prefix is less thams., — tsiare; if the probability is
problem corresponds with finding a pafh from s, to s; smaller than that of the current best path, there is no need
such tha®r{tr(P) < tsiop — tstart ) is maximized. Note that, to consider the rest of the path. From a practical point of
under this construction, our problem is similar to the peobl view, working with a real transportation network, this simp
defined by Frank [24], with the differences highlighted a thpruning mechanism significantly reduces the number of paths
end of Sec. Il. to be considered, even if theoretically we may have a faaitori
number of paths to explore.

In our implementation, we have introduced some other
simplifications, which reduce the computation time, but, at

We now propose our routing algorithm, calledNd'IME, the same time, may lead to suboptimal paths. First, we have
which aims at solving the on-time delivery problemn@ IME  introduced a limith on the exploration depth during the search.
finds, in general, different paths for different values oé thGivenh as a constant, the algorithm is then guaranteed to run
(relative) deadling.,, —tstqrt. FOr example, Fig. 5 comparesin polynomial time. We observe that upon termination, we may
the Cumulative Distribution Functions (CDF) for the detiye be able to say if the algorithm has selected the optimal path o
times of 3 different paths, for a given source-destinatiait p there may be a better one. In fact, when we stop, if there is
and no transmission failurep{ = 0). In this case, @- still a path prefix that the pruning mechanism cannot discard
TIME chooses one of the three paths depending on the giien there could be a longer path with higher on-time dejiver
deadline. Nevertheless, the larger the deadline, therdhge probability. But if this is not the case, then the currenttbes
resulting on-time delivery probability is. candidate is actually the optimal path. In our experimemts o

ON-TIME works by first determining a potentially good pathTurin transportation networlt, = 8 was enough to find all the
between the source to the destination (for example, thdt whest paths. Although this value may change for other netsyork
the minimum expected traversal time), and evaluating its owe think that it will remain a relatively small constant. Mot
time delivery probability. This can be done by performing ¢hat a suitablé: for each network can be found by conducting

B. Single-Copy Routing Algorithm and Implementation



experiments similar to ours. The most intuitive approach (denoted asNvVDELAY) is to

A second simplification is that we restrict the set of eligiblroute in G, along the path whose expected traversal time is
paths such that each line can be used only in consecutiagimal. Note that, when the the transmission failure ptoba
edges. This prevents the algorithm to explore paths usirgg lity is null, MIN-DELAY is equivalent to @-TIME(50) under
¢ then line /s, and then again liné,;. We expect that these the Gaussian assumption on the distribution of the tralersa
paths have normally worse performance than those wherdirae. This is not true for different deadlines. For example
data message just remains on lifie Fig. 5 shows that patl®;, found by MN-DELAY, does not

Finally, we have avoided the computation burden of pealways provide the highest on-time delivery probabilitya O
forming numerical convolution by assuming that the end-téhe other hand, Mi-DELAY is computationally attractive,
end traversal time, which is a sum of independent randdiecause the path with the least expected traversal time can
variables, can be approximated by a normal distribution. le easily computed with Dijkstra’s algorithm (by lineariy
this case, it is sufficient to take into account the mean agdpectation). In Sec. V, we compare our optimal algorithm to
the variance of each edge weight, conditioned on the fabis sub-optimal heuristic and show that it often sufficease
that it is finite (respectivelyy. = E[w. | w.<oo] and this simple approach.
02 = Varlw,. | we.<oo]), and the probability that the edge A second algorithm, Mx-ProB, selects the path that
weight is finite (denoted by.). Then, the CDF of the traversalmaximizes the delivery probability on an infinite time-zmn.
time of pathP is equal to the CDF of a normal distributionAlso this path can be determined running Dijkstra’s aldurit
with mean}"_ . p. and variancey_ ., o2, multiplied by a on the line-stop graph with edge weights equaktog(p.).
scaling factor] [ . » p.. In the case of travel edges, averagéor high transmission failure probabilities, we can expect
and variance oft(l, s, s’) can be estimated directly from theMAX-PrRoOB and ON-TIME to select the same path. At the
traces. In the case of travel-switch edges, we have alsoefad of Sec. V we will show that this is the case.
evaluate the average and variancew(?, s, k) using the first ~ Another approach, denoted INFHEADWAY, tries to min-
three moments of the interarrival times of the liiduses to imize the sum of all lines headways along a path [4], thus
stops (which can be also estimated from the traces) and someeferring frequent lines over infrequent ones; it was psgul

basic Palm calculus [35]. originally for bus-to-bus communications. In Sec. V, wewho
For example, assuming perfect periodic bus arrivals withat it has the worst performance in our settings among all th
period§ and failure probabilityp, it can be shown that different algorithms.

E[wt(& S, k)] = 5(1/2 +pf/(1 _pf))

D. Extension to Multi-Copy Routin
E[wt(l, 5, k)2 = 62(1/3 + 2p;/(1 — ps)?) Py g

As shown in the toy-case of Fig. 5, using a multi-copy

Note that these values can be computed for the specific rrigaheme (the curve labeled; + P, + P5"), to exploit several
process observed in bus traces. paths simultaneously, increases the on-time delivery abibb

In what follows, we evaluate the performance ofi-OIME ity to deliver the data within the deadline. In this specific
for different source-destination pairs under similar kiofl example, pathP, becomes “useful” only for large deadlines,
deadlines. If we had fixed a given deadline for all the pairsjhereasPs is “useful” for any deadline.
then this deadline could be unfeasible for some of themWe consider only Multi-Copy schemes, such that at most
(in the sense that there is no way to deliver the messagedistinct copies of each data packet are present in the
by this deadline, e.g. if the deadline is smaller than theetwork at a given time instant. Without such a constraint
time a vehicle would take to move from the source to the flooding scheme that copies the data whenever there is a
destination), and trivially satisfiable for other pairs fia contact, namely in arepidemic mannerwould achieve the
different paths would deliver with probability almost one)best possible delivery probability.
For this reason, given a soursg, a destinatiors; and a real ~ We propose a greedy Multi-Copy algorithm for on-time
valuez € [0,100], let ¢(x,s,,sq) be the deadling,,, for delivery problem, denoted simply as MCNDIME. It selects
which the on-time delivery probability of the path frosp to the k paths with the highest on-time delivery probability,
sq With minimum expected traversal time i/ (assuming without considering the interaction among them. This can
ps = 0). We denote by @-TIME(x) the on-time routing be easily implemented by saving the béstpaths while
algorithm where the deadline is set equaldter, ss, sq) for enumerating all possible paths as iN-JIME. Moreover,
every source-destination pais,, sq). Intuitively, the smaller our pruning mechanism is changed accordingly to compare
x is, the “shorter” the considered deadlines are, where t8hothe current path prefix with thé-th best path discovered
is in relation to the expected traversal time freamto s; and so far (rather than the best path). We can similarly extend
not in an absolute sense. the heuristics NN-DELAY, MAX-PROB and MIN-HEADWAY
presented in Sec. IV-C to respectively select theaths with
minimal expected traversal time, maximal success proitabil
and minimal total headway.

Although the algorithm we described is optimal under our Since our algorithm works in a greedy manner, it does
model assumptions, we also consider sub-optimal but simpiet consider the interaction between the paths, and more
heuristics. specifically the gain in probability over previously-sebst

C. Other Routing Approaches



paths (which can be very small in case the paths overlap3. Thi 1
leads to a theoretical performance degradation with reéspec
to an optimal, infeasible algorithm that considers the tjoin
probability over all sets of paths. The following theorem,
whose proof is in Appendix A, provides tight bounds on this
performance degradation:

Theorem 1:The MC-ONTIME algorithm always achieves
at leastl/k of the on-time delivery probability of an optimal
k-copy algorithm. In addition, there is a valid transpoudati
graph for which MC-QXTIME achieves at mo _15 ;- of the
on-time delivery probability of an optimal-copy algorithm,
for arbitrarily smalle > 0.

The performance degradation is mainly due to path ovefiy. 6. Complementary CDF of the critical time windd# guaranteeing
|apping; consider two paths with h|gh success probabimyl—time delivery probabilitye [0.1, 0.9] for the minimum expected traversal-
that differ only in one edge: MC-@TIME will choose both fme Path-
paths, while, in fact, the marginal gain in choosing the geco

path is small. Thus, we have considered also an algorithm

that ensures that the paths are disjoint. Namely, the M@- destination qsing only this subset. of lines is drastically
ONTIME-DISJOINT algorithm iteratively chooses the pathreduced. Data is assumed to be available at the source stop

with the highest on-time delivery probability, among althpa at 7 AM.

from source to destination whose corresponding lines ate noAs we mentioned in Sec. IV-B, for very short deadlines,
used by any previously-selected path. However, we can shiigre is probably no route that could deliver the packet with
that the worst-case performance of MQvDIME-DisJoINT @ feasonable probability, while for very long deadlinespyna

is the same as MC-Q@TIME. Moreover, some pre”minary different routes are able to deliver it with probablllty ast
simulations have shown that MCANTIME is superior in ©one (if all the transmissions succeed). Then, it exists an
practice, and therefore this is the multi-copy routing aitpon  interval of deadline values for which it makes sense to “spen

01¢p

P(W>w)

0.01}

0 10 20 30 40 50 60
Time interval [min]

we consider in the sequel effort” to determine good routes. In order to quantify this
interval, we introduce thécritical” time window of a route,
V. PERFORMANCE EVALUATION defined asiV = ¢(90) — ¢(10): this is the amplitude of the

We consider a set of 180 source-destinatien—{s,) stop interval of deadlines for which the route determined by-O

. . ¢ TiME(50) achieves delivery probabilities {i0.1,0.9]. Fig. 6
pairs among the 2550 stops inside the metropolitan area P(/)st the complementary CDF &F, for the whole set of

Turin. In the first 90 pairs both the source and the destinati 80 pairs. For more tha®0% of s,—s, pairs, the windows is

have been chosen uniformly at random in the entire metmp%rger than ten minutes and for more thEr% of them it is

tan area; in the second 90 pairs, the sowgeas located at . . " .
. . D . even larger than 20 minutes. The maximum critical window
a main transportation hub within the city center (close t® th..

. . . . L Size we observed 67 minutes.
main train station of Turin), and all the destinatianshave Then. f Il 180 pai df 11100t luate th
been chosen uniformly at random. en, for a pairs and for a races, we evaluate the

To reduce deployment costs, we assume to employ el timal paths found by the IB TIME algorithm and compare

single throwbox covering close by stops. Hence, stops 4 ir theoretical on-time delivery probability with the pimical

aggregated after setting the transmission range of eaotvthr ©"€ determl_ned_ by simulations. We found a reasonable agree-
box equal to 100m; Sec. V-C discusses the effect of t ent, considering that there are some differences between

transmission range on the total number of throwboxes © mOdEI and the Sythet'C traces. I_n fact, nour model we
deploy. considered a constant line frequency in the time periodléwhi

We generate a set of 100 traces with the parameters obtailﬂ%%’e are some small changes in the schedule and then in

by the statistical analysis. The traces include the tripsibf € synthetic traces), gnd the same headway distribution at
vehicles of 250 bus lines for the four hours available from theac_h stop _along the trajectory (while for example th_e hegdwa
schedule. Appendix C discusses in details the trace gémera ariability is larger for the last stops than for the first shpe
process. We have developed a simulator that computes aQreover, in the synthetic traces we made sure that two buses
delivery probability of each path by averaging across tHee of the same line cannot overtake each other (see Appendix C
for the details). This introduces some further inhomogtgnei

traces; note that the real-life trace alone would not be ghouth ti ¢ taken int tinth del
to compute this probability with any accuracy. Moreovesthi at1s not taken into account in the modet. )
We start to compare the performance of the algorithms

trace includes only a small fraction of the lines in Turin,

and the number of possible paths between a source &ffdined in Sec. IV—namely, Mi-DELAY, ON-TIME, MAX-
ProB and MIN-HEADWAY—with the BEPIDEMIC algorithm

4MC-ONTIME-DisJoINT and MC-ONTIME are two extremes as for the that floods the network by taking advantage of all the possibl
amount of overlapping between the paths. In our future rebeave plan to  contacts (and therefore making very Iarge number of copies)
look also on hybrid heuristics with strict bounds on the nemiif overlapping . Lo . .
edges. While these variants yield the saf—pworst—case approximation, they We first assume that transmissions are rellable,pje: 0.
might be proved superior in real-life traces. Recall that in this case M-DELAY is equivalent to @-
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Fig. 7. Delivery probability (average and 90% confidencerial) for two  Fig. 8. Delivery probability (average and 90% confidencerivdl) for On-
deadlines and different routing algorithms, for reliabbnsmissionyf; = 0).  TIME(50), MIN-DELAY and Max -Pros for deadlineg(50) and for different
MIN-DELAY is the same as - TIME(50). values of transmission failure probabilify;.

TIME(50). We evaluate the actual on-time delivery probability
of the best path obtained by each algorithm; for each pair
ss—sq4, we set the deadline to(x) for different values ofz,
and we compute the 90% confidence interval of the delivery
probability considering all the possible 180 pairs. We w&l

Delivery probability

port the results only fox = 10 (“short deadline”) and: = 50 041
(“average deadline”), since these cases are representativ MC-OnTime(10)
. . . i 0.2+ MC-OnTime(50)

Fig. 7 compares the delivery probability of the different Epidemic -~
algorithms for the two deadlines. The gain ofIBEMIC with 0 ‘ ‘ ‘ ‘ ‘
respect to all the other single-copy algorithms decreasdisea 0 5 10 15 20 25 30
deadline increases:HIDEMIC achieves a delivery probability Number of paths

?ftimes Iarger than GD'_TIME for deadline¢>(10), but Only _1'5_ Fig. 9. Delivery probability (average and 90% confidenceerival) vs.
times larger for deadling(50). Indeed, when the deadline isnumber of paths for deadlines(50) and for multi-copy routing and no
large enough just one copy of the data is enough in orderttgnsmission failuresp(; = 0).

reach100% delivery probability. In such a casepPBEMIC

does not introduce any gain in terms of performance, and the

cost in terms of copies and transmissions is much larger tHiR€ (that is, the simple Mi-DELAY algorithm), making it
under single-copy algorithms. For example we observed &fundant to run the complex optimal algorithmiJ'IME.
average more thafi00 copies for¢(10) and more thard00 We now investigate the effect of transmission failures.
copies foré(50) under EPIDEMIC up to the deadline, while Fi9- 8 shows the delivery probability for different values o
for all single-copy algorithms the number of transmissitars {fansmission failure probability;. Even with failures, @-
each data is on average 5.0, and always less than 12.  1/ME(S0) and MN-DELAY behave similarly. Only wheip,
ON-TIME(10) and QN-TIME(50) obtain the maximum de- increases, Mx-PrRoB shows an average delivery probability

livery probability respectively, for deadling(10) and ¢(50), comparable to the two other algorithms; mc_iee.zda)MP_ROB

as expected. But comparing the corresponding confide#%comfes more eff.|C|ent w_hen the transmission failures are

intervals, they behave almost the same. A somewhat surgris igh, since t_he optimal policy tends tq minimize the number

results is that in many cases2( out of 180) ON-TIME(L0) of _tr_ansm|35|ons. Hence, all the algorithms appear to kehav

performsexactlyas ON-TIME(50) (or, equivalently, as M- efficiently for largep;.

DELAY). In fact we verified by direct inspection thatNno

TIME(10) and Qu-TIME(50) select exactly the same optimaf. Multi-copy routing

path. We turn now to deal with multi-copy settings. Fig. 9
These results have been confirmed also for other deadlst®ws the performance of the MCnDIME(X) policy, that

values: The optimal route is not very sensitive to the deadli takes advantage of thé paths with the highest delivery

In most of the cases the best path computed By TOME(50) probability by the deadline(x). The figure shows the results

is the best for every deadlingx) with = € [0, 100]. Recall the obtained for all the 180 source-destination pairs, assgmin

example in Fig. 5, showing that the best path does in generaliable transmissiong¢=0). For deadlinep(50), ON-TIME

depend on the deadline. Our experiments lead us to concludth one copy reaches a delivery probability which is about

that these cases are very rare in a real transportationnsys&6% of that achieved by #iDEMIC, and a few more copies

when transmissions always succeed. Thus, one can chosigaificantly reduces the performance gap. Yet, after 10esop

the path solely on the basis of the minimum expected trawge observe only a negligible improvement. This is partially
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TABLE |

3500 : : : ‘ EFFECT OF AGGREGATING STOPS IN THE ENTIRE TOWN
2000 puehe B TX-RANGE | THROWBOXES | REDUCTION RATIO
r — — — bus-stop _
— — all-all _ = Im 6868 0.00
= 50m 4385 0.36
2500 1 100m 3464 0.49
150m 3055 0.56
2000} 1 200m 2752 0.60
250m 2394 0.75

1500

Number of Infected Stops

] immediately after the generation of the message.
It is important to note that this evaluation neglects fagtor
. such as contact duration, physical/link layer constraiats.
Burgesset al. report that the contact duration between two
%5 o pr p— - 500 mobile nodes in a vehicular network may eventually be too
t(min) short to transfer a message [6]. These effects are expexted t
be more significant in the bus-bus scenario when both nodes
Fig. 10. Comparison of Epidemic Routing with bus-bus & bteps are mobile. On the contrary, in the bus-stop scenario, cbnta
communications opportunities can be quite long, also because buses need to
stop to let passengers board and alight. Hence, we expéct tha
the performance gain of the bus-stop scenario in comparison
to the bus-bus one increases when these other effects are
considered.

1000 -

500 -

due to the fact that MC-QTIME exploits a given sequence of
paths provided by the algorithms, whose internal “divgfsit
is limited. Furthermore, BIDEMIC exploits low-probability

paths that are efficient just for the specific trace instance
considered in each simulation run; since the number of thege
low-probability paths can be very large, due to the reduhdan An urban area transportation network typically contains a

connectivity of the bus transportation system metropolitddrge number of stops. For example, there are 6868 stops in
area, there is a high probability that at least one of therh wilurin, among which 2550 are in the metropolitan area. It may

be used to deliver to the destination. Note that the costinge be unfeasible to install a throwbox at each of these stops. At
of transmissions and copies foPBEMIC (on average, more the same time this may not be necessary. In fact, many of these
than 900) is at least one order of magnitude larger than tB@ps are close to each other so that a single throwbox can be

multicopy approach using a pre-selected subset of 10 pathgsed to cover multiple of them. In this section we quantify
how many stops can be “aggregated”, in the sense that they

i _are close enough to use a unique wireless box for all of them.

B' Comparison of Bus-to-Bus vs. Bus-to-Stop Communicary e parameter used in aggregation is the communication
tions range of wireless boxed,,, and it is assumed to be homoge-

Prior work on bus-based delay tolerant networks mainhous across all the stops. Two nodes are considered neghbor
has focused on exploiting opportunistic contacts betwéen tif their distance is less thard;,. We use a simple, greedy
buses. In our scenario, we utilize bus-stop contacts rafitagr heuristic algorithm to group closeby stops. L€t be the set
bus-bus ones. In this section, we provide a first comparisofistops. We first pick the node, saysit’, that has the largest
of the two approaches in terms of the speed of messagember of neighbors. We place one wireless boxat Then,
propagation when flooding is used. we removes™ and the neighors of" from N. We iterate

Fig. 10 shows how fast epidemic routing diffuses a messathés step until\ is empty.
in the network if it utilizes only stop-bus communication The number of stops groups, or number of wireless boxes
opportunities, only bus-bus communication opportunities that should be installed in order to cover all the 6868 stops
both (referred to as all-all). In all cases, we consider thptesent in Turin is shown in Table | for different values of
the message is generated by a user located at a main thestransmission range; the reduction is evaluated as the ra
stop in Turin and copied to all the buses that go through thetween the number of stops that so not need a throwbox
stop. In order to compare the message spreading speed inahé the total number of stops. As the communication range
different scenarios, we have considered the stops theesselwcreases, a larger number of stops are grouped together.
as potential destinations. Fig. 10 shows the number of stagence, the number of wireless boxes required to provide
that are reached by a copy of the message over time. It appeargerage decreases and the reduction ratio of the aggragati
that using bus-stop communications is more effective thamcreases. We see that even a 100-meter communication range
using only buses and achieves almost the same performacae result in a large reduction (almost 50%) in the number
of the all-all scenario. In particular, we observe that natf throwboxes (i.e., in hardware cost) to deploy the bustas
all the stops can be reached when we rely only on buse3N.
without using the stops as fixed relays. On the contrary, theTable Il shows the effect of aggregation when only the 2550
bus-bus communication scenario seems to be slightly fasstops in the metropolitan area of Turin are considered. Bsza

Bus stops aggregation
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TABLE Il

EFFECT OF AGGREGATING STOPS IN THE MAIN METROPOLITAN AREA Lemma 1:The MC-ONTIME heuristic always achieves at
leastl/k of the success probability of an optimfamulticopy
Tx-RANGE | THROWBOXES | REDUCTIONRATIO heuristic.
1m 2550 0.00 Proof: Let py,...pr be the success probability of the
50m 1552 0.39 .
100m 1084 0.57 paths selected by the MCANOIME algorithm, such thap;
150m 844 0.67 corresponds to the path selected at iteratiobet ¢4, .. ., g
200m 687 0.73 be the success probability of the paths selected by the aptim
250m 517 0.80 algorithm, and byQi,...Q the corresponding events of

successful delivery (namelyr[Q;] = g¢;). Note that by
definition, p; > max; ¢;. Thus,

the stops are more closely placed in the metropolitan area, L

the aggregation mechanism with the same transmission ran§&(GREEDY succeeds > p; > Flisi G 2

results in a larger reduction ratio for the number of wirsles 1 Pr {\/f:1 Ql} = 1 Pr[The optimal algorithm succedds

access points that need to be deployed. S o )
where the third inequality is due to the union bound. =

Lemma 2:There is a valid transportation graph for which
MC-ONTIME achieves at mo js - of the success probabil-

This paper lays the foundations for a framework to analyzg of an optimalk multicopy algorithm, for arbitrarily small
bus-based networks, where communication is between the (.
mobile buses and the stops along their trajectories. THr@aug  Proof: Consider a transportation graph in which, from the
statistical analysis of traces, taken from a real transpiort source to the destination, there &e paths:
system of a large urban area, we were able to obtain a succinct ;. two-edge paths, which share their first edge. The
stochastic graph representation of the system, and to elevis
routing algorithms on this graph. In addition, we were able
to develop a synthetic trace generator, which in turn altbwe
us to perform an extensive simulation study, verifying the edge isp(1 — £/2).
performance of our proposed algorithms. = e\2

An important outcome of this study is that, although diﬁerﬁ%snﬂmvsﬁi ;h(i(/) (s(ek t_hiz) (f}rs_t ki)p;th-rshes:\:;-(();T—IMaE/ 46)“92'
ent from the optimal but computationally-intensive algjom, ' P

the simple MN-DELAY algorithm achieves excellent resultsp(1 — ¢/2). Since all these paths need to traverse the first

in term of success probability for any reasonable deadlineec,jge’ the probability that MC-RTIME succeeds is at most

when transmissions succeed all the time. In addition, wevsh8
that increasing the number of data copies beybmhdoes not
provide any meaningful boost in performance.

As final comment, we note that our model can be extend

VI. CONCLUSIONS

probability to traverse this first edge is while the
probability to traverse the second edgé is /4.
« k single-edge paths, such the probability to traverse the

On the other hand, the optimal algorithm will do better than
the algorithm that chooses the lastpaths. The inclusion-
eéclusion principle (a.k.a Bonferroni inequality) yieldsat

o bus-bus communications by introducing soviteual stops fie success probability of the optimal algorithm is at least

located in correspondence to possible physical contacttgoi B C(F\ 24 2

between two different lines. By appropriate choice of wésgh Fp(l —/2) 2 )P (1—e/2)"

on the corresppndmg edges (e.0., no waiting time a_nd r_"qjﬂis implies that the ratio between the success probalidity
failure probability), one can capture the nature of thlsdkmat most

of communication as well. The main challenge, left for fetur

research, is to locate the physical contact points and tadou p = 1 )

their number so that the running time of the algorithm remain kp(1—5)— (5)p2(1—5)  k(1-¢)

feasible. m
In future work, we also plan to extend our approach by

releasing some or most of our assumptions discussed in APPENDIX B

Sec. III. BUsS MOBILITY MODELS IN TRANSPORTATION

This investigation of the transportation literature is nhai
based on the overviews in [36], [37].

Some works provide probability distribution for arrivaing
or lateness or delay, based on empirical studies (e.g. [B3]—

In this section we provide the proof for Theorem 1 obr on model simplification (e.g., [43], [44]). Most studieseu
Section 1V-D, which deals with the performance of the multia skewed distribution for the lateness, since it is mordyike
copy MC-ONTIME algorithm. This algorithm computes thebe behind schedule than ahead. Lognormal or gamma random
success probability of all paths in isolation and chose ithevariables are the most common assumptions (see the summary
best paths (without considering the interaction betweemph table in [36]).
Theorem 1 comprises of the following lower- and upper- About the statistical dependency of these quantities, con-
bounds. trasting effects hold. In general once a bus with low headway

APPENDIXA
TIGHT BOUNDS ON THEPERFORMANCE OFMULTI-COPY
ALGORITHMS
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is late at a given stop, it is difficult to recover its latenesgase, we expect different routing algorithms to select dmes

In fact, for lines with low headways, passengers usually gmath, and it would not be possible to really evaluate the
not regulate their arrival on the basis of the schedule. Henpotential gain -but also the computational complexity- af o
passenger arrival can be assumed to be a Poisson procagproach in comparison to simpler ones. Moreover, we are
When a bus is late, the longer waiting time at following stopsterested to evaluate the best performance achievable by a
causes an increase in the number of passengers who bdarstbased DTN, so we want to consider a massive deployment
(and later alight) resulting in longer dwell times and higheof WiFi-enabled buses and stops in the metropolitan area. Fo
and higher delay en-route. Therefore, lateness and dety #hrese reasons, we have decided to rely on synthetic traces
positively correlated in such cases: high lateness at a stigscribing the mobility of all the buses in the network. In
results in increased delay over the subsequent segment [38f section, we explain how these synthetic traces have bee
This phenomenon does not always occur on buses with higlgenerated on the basis of our statistical analysis of the rea
headway. In fact, passengers now tend to arrive just befatata, discussed in Section Ill.

the scheduled departure time of desired bus. Hence, latd-or each vehicle we generate the sequence of the arrival
buses do not board significantly more passengers than times at the different stops in its trajectory according ¢p @):

time buses. Furthermore, since higher headway buses often o1

have slack built into their schedule, there is opportungy t _ o

recover some of the lost time [45]. Penalties t?)pdriversyfor ossi) = T+ 10, 50) + D 110 83, 8i),
being excessively late encourage them to catch up to the

schedule. Thus, the delay in a segment is negatively cdxecbIaWhereTO is the scheduled departure time of the vehicle from

with the lateness at the start of the segment. Because [t first stop; the lateness at the first sté, so), and the
these two phenomena, the delay on a bus line segment ggyel times, tt(v, si, si41), are assumed to be independent
either be negatively or positively correlated with the tass random variables (see Sectlc_m . F‘”.‘“‘? Iat_eness_ at the fi

at the start of the segment, depending in large part on tiee ITOp we have assumed a triangular dlstnbu_tl_on W'_th _SUpPO”
headway. Moreover, we observe that the lateness of a bus 56 T2 minutes, that_ resembles the empirical distribution
has consequences on following buses on the same line observed. Travel times are assumed to have a truncated
direction. A late bus boards more passengers, and so itde normal distribution, as it is common in tr_ansportatlon
less of them for the following bus. This effect would lead toahterature._The truncated Iognormal d'SF“b““O” IS comp_ly
negative correlation between the lateness of consecuiisesh characterized by its meadrr), its variance Vrr) and its

At the same time in many cases transport agency policiesrBf"X'mum value ). We have assu_med that these quan_tl-
es depend only on the corresponding scheduled travel time

traffic conditions make overtaking impossible or quite rar ! ) .
TT). By trying to match the moments of the empirical

Hence a bus that is significantly late would cause also t . SR i,
consecutive ones to begllate y istribution and the lognormal distribution, we have idéed

Regarding dwell time, this can be a significant part ¢he following empirical relations:

i=0

the total service time (up to 16% of the total service time Mpr = 0.7(STT+0.5) [min] )
according to [37]). This time clearly depends on the number M2

of passengers boarding and alighting (empirical formutas a Vrr = ZT [min?] (3)
proposed in [46] and [47]), but also on the crowding, fare th = 2Mpp. (4)

types [40], payment modalities, bus design (separate/ammm

doors for boarding and alighting), mode (i.e. bus or met@ccasionally we have been forced to increase artificially
lines) and service type48]. Also, the contribution of dwell in order to be able to guarantee the headway constraint (see
time to lateness correlation is not immediate. For examplebalow).

large dwell time can be due to a large number of passengerdhe arrival times at the stops could be calculated indepen-
boarding or alighting. In the first case the alighting atdaeling dently for each bus generating the random variab{ess)

stops will in general large, in the second will be small. andtt(v, s;, s;+1) (Whose parameters can all be evaluated from
the schedule using (2) and (3)) and summing them according
APPENDIXC to (1), or equivalently in the following iterative way:
GENERATION OF TUNABLE SYNTHETIC TRACES t(v, s0) = 7o + (v, s0), )
The real traces fronGTT (Gruppo Torinese Trasporti) t(v,s;) = t(v,si-1) + tt(v, si—1, $;)-

transportation network provide data about 26 lines thatantpee.l.hiS procedure can produce synthetic traces where a bus can

in the city. The variety in the traces allow us to mod : .
S : overtake another bus serving the same line, for example when
properties like headway, travel time and lateness. However ; ; . o
. ; e second is particularly late. This happens with highebpr
real traces cannot be used in performance evaluation becaus. . ; N )
. . ) . ability the smaller is the headway of the line in comparison
they cover only a small fraction of the lines in Turin, and th . .
) . o the scheduled travel times. Being that we do not observe
number of possible paths between a source and a destinafjon ; L
: . . ; ) . IS phenomenon in the real traces, we want to avoid it also
using only this subset of lines is drastically reduced. lis th.

in the synthetic ones by introducing titeadway constraint
5Service type can be rapid, limited, local, or combined deljyenon the buses belonglng to the same line arrive at each stop In the
vehicle speed, and the distance between consecutive stops. same order.
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