
07 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

TLM 2.0 simple sockets synthesis to RTL / HATAMI MAZINANI, Nadereh; Ghofrani, A.; Prinetto, Paolo Ernesto; Navabi,
Z.. - ELETTRONICO. - 4th International Conference on Design & Technology of Integrated Systems in Nanoscal Era
DTIS '09:(2009), pp. 3-8. (Intervento presentato al convegno DTIS '09: IEEE Design & Technology of Integrated Systems
in Nanoscale Era, 2009 tenutosi a Cairo (Egypt) nel Apr 6-9, 2009) [10.1109/DTIS.2009.4938013].

Original

TLM 2.0 simple sockets synthesis to RTL

Publisher:

Published
DOI:10.1109/DTIS.2009.4938013

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2462623 since:

IEEE Computer Society

TLM 2.0 Simple Sockets Synthesis to RTL

Nadereh Hatami2, Amirali Ghofranil, Paolo Prinetto2, Zainalabedin Navabil

lCAD Research Group, ECE Department, University of Tehran, Tehran 14399, Iran

{ghofrani, navabi}@cad.ut.ac.ir,

2Dipartimento di Automatica e Informatica, Politecnico di Torino, 1-10129 Torino, Italy

{nadereh.hatami, pa%.prinetto }@polito.it

Abstract

Convenience sockets are a family of derived sockets
provided in utilities names pace of TLM 2.0 library which
add additional functionalities to TLM 2.0 sockets. As one of
the goals of high level modeling is to part communication
from computation, synthesizing communication mechanisms
including sockets can be a primary step to synthesize each
TLM 2.0 design on RTL. Synthesizing sockets on RTL can
provide the designer with the big picture of module's
functionality and communication requirements. In this
paper, algorithms are proposed to map TLM 2.0 simple
sockets down to RTL focusing on TLM 2.0 blocking and
non-blocking transport interfaces. The algorithms get TLM
2.0 sockets as an input and generate an intermediate
description of sockets in terms of ports. After that, RTL
descriptions of the ports are generated using the standard
generic payload packet as transaction type. The
automation caused by synthesis algorithms in this paper
can reduce the simulation speed and the designer's effort.

1. Introduction
Transaction Level Modeling (TLM) approaches have

been proposed to describe Systems-On-Chips (SoCs) at a
higher abstraction level than RTL. [2, 3, 4] describe TLM
as a high level transaction language based on SystemC.
TLM simulates faster than RTL, even for complex systems,
and it allows embedded software validation and integration
testing to be done earlier in the design cycle that is before
RTL is complete. TLM modules consist of two distinct
parts: TLM core modules which provide us with the
functionality of the individual components of the SoC and

978-1-4244-4321-5/09/$25.00 ©2009 IEEE 3

TLM interfaces which are the means of communication
between IP cores. Interface methods are implemented in the
modules and can be called via TLM 2.0 sockets to transfer
data packets from one module to the other. As the design
proceeds in the design flow, the abstract model should be
replaced by a more detailed architecture of what is really
going to be done. This detailed architecture can then be
synthesized to RTL.

Some works are done on TLM synthesis to extract RTL
model of the design from the transaction level description.
[5] is a high-level solution that integrates electronic system
level designs with block-level implementation. [6] also uses
a library of synthesizable TLM protocols to synthesize
transaction level descriptions into SystemC RTL code.
Although these tools facilitate TLM synthesis, they are all
designed to work with TLM 1.0 descriptions. Currently, no
available tool will synthesize TLM 2.0 architectures down
to RTL. This paper tries to prepare a path to synthesis of
high level TLM 2.0 architectures down to RTL by
introducing algorithms to synthesize TLM 2.0 simple
sockets to RTL. Sockets are introduced by TLM 2.0
standard to establish connection between two or more
modules. They provide two different paths from initiator to
target and vice versa to facilitate transaction in both
forward and backward path. This way, synthesizing sockets
to RTL description can be the first step to synthesize TLM
2.0 architectures to lower levels of abstraction. In this
paper, we focus our attention on blocking and non-blocking
transport interfaces and leave other interfaces for the future
works.

The next section contains an introduction to TLM 2.0
convenience sockets with focus on simple sockets. Section 3
describes our proposed scheme to synthesize TLM 2.0

simple sockets to RTL. Section 4 explains the experimental
results in terms of the overhead of the synthesized
description of TLM 2.0 simple sockets. Section 5 is the
conclusion.

2. Introduction to TLM 2.0 sockets

A socket is a high level construct introduced in the
TLM 2.0 standard which combines a port with an export to
provide designers the facility of sending packet in two
ways. An initiator socket offers a port for the forward path
and an export for the backward path, whilst a target socket
introduces an export for the forward path and a port for the
backward path.

The initiator and target sockets group the TLM 2.0
interfaces including transport blocking and non-blocking
transport interfaces for both the forward and backward
paths together into a single object. They also provide
methods to bind port and export of both the forward and
backward paths in a single function call. They also include
a bus width parameter as a template input type that may be
used to interpret the transaction. The tlm_initiator_socket
and tim _target _socket classes belong to the interoperability
layer the TLM 2.0 standard. Moreover, several derived
socket classes are provided in the utilities namespace,
known as convenience sockets [1].

Convenience sockets are designed to improve the
socketN communication ability by providing several
additional functionalities as well as the ones offered by
normal socket classes. There are five distinct convenience
sockets with different capacities in providing connection
between two modules. The simple sockets are members of
convenience socket family which are derived from the
tlm_initiator_socket and tlm_target_socket classes and can
directly bind to them.

Simple sockets offer methods to register callbacks for
incoming interface method calls. Registering a specific
method, the module is responsible for implementing the
registered function. In this case, the socket can use
combined interfaces to communicate with different modules
instead of binding to a single interface. The combined
forward and backward transport interfaces group the core
TLM 2.0 interfaces for use by the initiator and target
sockets. Note that the combined interfaces include the
transport, DMI and debug transport interfaces, while the
TLM 1.0 core interfaces are not included. The forward
interface provides method calls on the forward path from
initiator socket to target socket, and the backwards interface
on the backward path from target to initiator socket. Both
the blocking transport interface and the debug transport
interface use only the forward path for communication [1].

4

In addition to register call back facility, simple target
sockets are also able to convert incoming transport calls to
b_transport into nb_transport_fw calls and vice versa [1].

In addition to sockets, communication between two
modules is also dependant to the transaction type which is
transferred through sockets. TLM 2.0 introduces a standard
transaction type to be used by components.

The generic payload is introduced to improve the
interoperability of memory-mapped bus models and
facilitate the IP reuse ofTLM 2.0 IPs. It provides a general
purpose payload to guarantee the interoperability among
TLM 2.0 components when creating abstract models of
memory-mapped buses. It also provides the extension
mechanism which can be added to generic payload object
when generic payload attributes are not adequate to model
the full functionality of the architecture. Moreover, it is
capable of creating detailed models of specific bus
protocols, while reducing the implementation cost and
increasing simulation speed of the whole design. Using the
standard generic payload, IPs from different vendors are
capable of communicating together without the need of
unifying the transactions types.

To synthesize TLM 2.0 sockets to RTL, it is also
important to provide a method to synthesize generic
payload object as a standard transaction type in TLM 2.0
archi tectures.

3. Socket synthesis approach

To synthesize sockets, the first step is to understand the
inner structure of them. As sockets are derived from
tim_initiator _socket and tlm_target_socket classes which
are written in SystemC, it would be desirable to map TLM
2.0 sockets to communication types in SystemC ~sc_port
and sC3xport- and then find a direct path from this level
down to RTL. In this case, several details which are not
considered in high level TLM 2.0 description can be
implemented.

Moreover, socket synthesis is dependant to the type of
the transaction. Consequently, we first introduce methods to
synthesize generic payload object to RTL. After that, using
the RTL description of the generic payload object,
algorithms can be proposed to synthesize the initiators and
target sockets down to RTL.

3.1. TLM generic payload

From the definition, standard payload type of TLM 2.0
has several attributes. Table 1 shows these attributes with
their type and their default value.

Table 1. TLM generic payload attributes

Attribute Type Default Value

Command tim_command TLM_IGNORE_COMMAND

Address sc_dt::uint64 0

Data pointer unsigned char* 0

Data length unsigned int 0

Byte enable pointer unsigned char* 0

Byte enable length unsigned int 0

Streaming width unsigned int 0

DMIallowed bool false

Response status t1m_response_status TLM_INCOMPLETE_RESPONSE

Extension pointers 0

To synthesize sockets, we have to first figure out what is
going to be transmitted through them. So, having a picture
of generic payload in RT level is useful to propose
algorithms for socket synthesis.

Command is a value of type tlm_command. The
definition oftlm_command in TLM 2.0 library is shown in
Figure 1.

enum tlm30mmand {
TLM_READ_COMMAND,
TLM_ WRITE_COMMAND,
TLM_IGNORE_COMMAND

};

Figure 1 tim_command definition

As tim_command is an enumeration type with three
values, it can be considered as a 2 bit std_Iogic_vector
value in VHDL.

Address is a value of type uint64 and so, in can be
considered as std_Iogic_vector type oflength 64.

Data pointer is a pointer to data array. As pointers are
not supported by VHDL, we can directly use the data array
to be transmitted by sockets. The length of the data array
can be a variable determined by a generic value. This
generic value can be obtained by Data length value. Data
length is an integer specifying the length of the data, so, it
can be used to define the data array:

Data_array: std_Iogic_vector (data_length-I downto 0);

Byte enable pointer is a pointer to byte enable array.
The byte enable array is applied repeatedly to the data
array. The elements in the byte enable array shall be
interpreted as follows. A value of 0 shall indicate that that
corresponding byte is disabled, and a value of Oxff shall
indicate that the corresponding byte is enabled. The
meaning of all other values shall be undefined. The value
Oxff has been chosen so that the byte enable array can be
used directly as a mask. Byte enables may be used to create

5

burst transfers where the address increment between each
beat is greater than the number of significant bytes
transferred on each beat, or to place words in selected byte
lanes of a bus [I]. As pointers are not supported by VHDL,
we can directly use the byte enable array to be transmitted
by sockets. The length of the array can be variable
determined by a generic value. This generic value can be
obtained by byte enable length value. Byte enable length is
an integer specifying the length of the byte enable array, so,
it can be used to define the byte enable array:

BE_array: std_Iogic_ vector (BE_length-I downto 0);

The Streaming width attribute determines the width of
the stream, that is, the number of bytes transferred on each
beat. Streaming affects the local address associated with
each byte in the data array. Streaming keeps the
organization of the data array unaffected. This value can be
represented by an integer in VHDL.

The dmi allowed attribute determines whether direct
memory interface can be used or not. This can be
implemented by a single bit of type std_Iogic in VHDL.

Response Status is an enumeration type with 7 values
shown in Figure 2. So, it can be described by 3 bits of type
std_Iogic_vector in VHDL.

enum tlm_response_status {

};

TLM_OK_RESPONSE = I,
TLM_INCOMPLETE_RESPONSE = 0,
TLM_GENERlC_ERROR_RESPONSE = -I,
TLM_ADDRESS_ERROR_RESPONSE = -2,
TLM_COMMAND_ERROR_RESPONSE = -3,
TLM_BURST_ERROR_RESPONSE = -4,
TLM_BYTE_ENABLE_ERROR_RESPONSE = -5

Figure 2 tlmJesponse_status definition

Extension pointer(s) are pointers to ignorable
extensions. To fit all the requirements,
tim Jjeneric yayload provides the facility to append
extensions of any type to generic payload object as
ignorable extensions. As this will complicate the synthesis
process, we assume to have no extensions in this paper.

Put everything together, the summary of generic payload
synthesis is shown in Table 2.

Table 2. Summary of generic payload synthesis

Attribute Required bits

Command Std_logic_ vector(1 downto 0)

Address Std_logic_vector(63 downtoO)

Data pointer Std_logic_ vector(Data length downto 0)

Data length

Byte enable pointer Std_logic_ vector(Byte enable length downto 0)

Byte enable length

Streaming width Int

DMI allowed Std_logic

Response status

Extension pointers

3.2. Simple sockets

As mentioned previously, simple sockets provide the
designer with the possibility of registering call backs. In
this case, the socket can use the grouped interfaces ofTLM
2.0 as communication interface by registering them in the
initiator. This way, the socket should implements incoming
interface method calls only by registering callbacks, not by
being bound hierarchically to another socket.

1 int k = 0;
2 for (int i=O; i<LUT.numberOfRows; i++)
3 {
4
5
6
7
8
9
10
11

RLUT[k]. type = port;
if (b_transport){

}

RLUT[k].interface = tlm_blockin~transporUf;
k++;

if (nb_transporCfw){
RL UT[k Jinterface = tlm_nonblocking..transportJw _if;
k++;

12 }
13 if(nb_transporCbw){
14 RLUT[kJinterface =

tlm_nonblocking..transporCbw _if;
15 k++;
16 }
17 if (DMLfw){
18 RLUT[k].interface =
tlm_direcCmemory_fw_if;
19 k++;
20 }
21 if(DMLbw){
22 RLUT[k].interface = tlm_direcCmemocy_bw_if;

Figure 3 socket to port mapping algorithm

To synthesize simple sockets, the first step is to map
them to SystemC ports to provide the synthesis algorithm
with the details which are not considered in TLM 2.0 high

6

level description. SpecifYing the interfaces each socket uses
is part of the job. After this step, we propose an RTL
description of the translated sockets to synthesize the ports
with the blocking and non-blocking transport interfaces. To
propose the algorithm, we take advantage of a look up table
as data structure which will be filled during first compiler
pass. This table has the following attributes:

a. Char* Socket: The name ofthe declared socket.
b. Bool Type: IDS if the socket is an initiator socket

and EtS ifit is a target socket.
c. Bool b_transport: true if the blocking transport

interface is registered for the socket, else false.
d. Bool nb_transport: true if the non-blocking

transport interface is registered for the socket, else
false.

e. Bool DMI: true if the direct memory interface is
registered for the socket, else false.

This data structure is called LUT. The results will be
stored in another table called RLUT (Result LUT) with the
following attributes:

a. Char* Port: the name of the ports or exports ofthe
mapped architecture

b. Bool Type: IDS for port and Et S for export
c. Char* Interface: the portN related interface

Using these data structures, Figure 3 shows the mapping
algorithm.

Each row in RLUT stores the name of a port derived
from the socket, its type (port or export) and the interface
bind to it. After this primary step which results in a filled
RLUT table, we can propose algorithms to synthesize TLM
2.0 sockets to synthesizable input and output ports.

We should mention that as the mapping is done by
processing the registered interfaces, the backward path will
automatically be considered in the synthesis process and
there is no need to check for backward paths after the
algorithm is executed.

The next step is to synthesize the obtained ports to RTL.
Figure 4 shows the socket synthesis process graphically.

1 entity NBPort is
2 port(
3 inPacket : in dataRecord;
4 inResponse : in NBResponse;
5 outPacket: out dataRecord ;
6 outResponse: out NBResponse
7);
8 end entity ;

9 architecture IMP ofNBPort is
10 signal PFifo : dataBuffer(BufferLen downto 0) ;
11 signal PHead : integer range 0 to BufferLen := 0 ;
12 begin
13 outResponse <= inResponse ;
14 outPacket<= PFifo(pHead);
15 process (inResponse, inPacket, PFifo, PHead)
16 variable check : boolean;
17 begin
18 if(not (PFifo(PHead - 1) = inPacket» then
19 if (Phead < BufferLen) then
20 PFifo(PHead) <= inPacket ;
21 PHead <= PHead + 1 ;
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

end if;
else

check := false;
if(inResponse.response = processFinished) then

for i in 0 to BufferLen - 1 loop
if (inResponse.ID = PFifo(i).ID) then

check := true ;
end if;
if (check) then

PFifo(i) <= PFifo(i + 1) ;
end if;

end loop;
if (check) then

PHead <= PHead - 1 ;
end if;

end if;
end if;

end process ;
end architecture IMP ;

Figure 6 Implementation ofthe corresponding RTL non-blocking
interface

4. Experimental results

We synthesized our proposed synthesis model of the
TLM 2.0 sockets on Cyclone EPIC12Q240C8 FPGA. The
synthesis results show the overhead of moving from high
abstraction level down to RTL. Table 2 shows the amount
of logic cells which must be added to the RTL design to

8

implement the blocking and non-blocking transport
interfaces.

Table 3 Hardware overhead of the synthesized sockets
Interface Type Total Logic Elements

TLM Blocking Transport Interface

TLM Non-blocking Transport Interfitce

647

3827

The fifo used in the non-blocking controller was
assumed to be of size 4. Bigger fifos will result in more
overhead. Also note that part of such an overhead is due to
the numerous 1I0s resulting from the nature of the design
and not to the transition from higher to lower abstraction
level.

5. Summary and future works

In this paper, we have proposed algorithms to synthesize
TLM 2.0 simple sockets with blocking and non-blocking
transport interfaces to RTL. We start our work by
implementing an algorithm to map TLM 2.0 simple
initiator and target sockets to an intermediate structure with
port and exports supported by SystemC. Then we continue
the work by synthesizing the mapped designs to RTL using
VHDL.

We are now working on other interfaces such as direct
memory interface and we are going to provide the same
procedure to synthesize these ports to RTL. Extending the
method to other kinds of convenience sockets is the next
step for future works. We also planned to extend the
method to other parts of a TLM design and finally propose
methods to synthesize TLM 2.0 architectures.

6. References
[I] M. Montoreano. Erransaction Level Modeling using OSCI TLM 2.08,

Technical report, Open SystemC Initiative, 31 May 2007.
[2] F. Ghenassia, Transaction Level Modeling with Systemc. Springer,

Dordrecht, Netherlands, 2005.
[3] J. Cornet, F. Maraninchi, L. M. Contoz, FA Method for the Efficient

Development of Timed and Untimed Transaction-Level Models of
Systems-on-Chip8, Design, DATE 2008.

[4] http://www.forteds.com/productsitlmsynthesis.asp. October 26, 2008.
[5] http://utcadlab.netiProjects.aspx, October 26, 2008.
[6] Z. Navabi, VHDL: Analysis and Modeling of Digital Systems,

Second Edition, McGraw-Hili, 1998.
[7] SystemC 2.0.1 Language Reference Manual Revision 1.0, Open

SystemC Initiative, San Jose, California, 2003.
[8] http://www.systemC.org,November 16, 2008.
[9] M. Montoreano, Erransaction Level Modeling using OSCI TLM 2.08,

Synopsys, Inc. May 31, 2007.
[10] A. Rose, S. Swan, J. Pierce, and J. Fernandez, Erransaction Level

Modeling in SystemC8, OSCI TLM Working Group, 2004.
[11] D. C. Black, J. Donovan, B. Bunton, SystemC from the Ground Up,

Kluwer Academic Publishers, 2004.

~ Target Socket 0 InpuI_1

Figure 4 TLM 2.0 Socket Synthesis process

As it can be seen in Figure 4, the target socket with
combined communication interface is synthesized to several
input ports. The input ports are connected directly to a
communication controller. The functionality of the
communication controller is to define interface rules to the
RTL module. Each input signal should be processed by
communication controller. The system inputs are connected
to the output of the communication controller to provide the
whole architecture with the behavior of the corresponding
socket. In this paper, we focus our attention under blocking
and non-blocking interfaces and propose communication
controllers to model the behavior of these two kinds of
interfaces in RT level.

To do the job, we assume a socket as a component with
inputs and outputs. The idea is to embed the interface in the
input or output port structure to manage the communication
protocols. In case of simple initiator sockets, the socket is a
component with inputs from the module itself and outputs
to a target socket. In other case, the process is reverse. The
TLM target socket is a component with inputs from an
initiator socket and outputs to connect to module signals. In
VHDL implementation, we pack the input and output
signals to an input and output records and write a controller
in the module side of the socket to apply communication
rules to the component. We categorize the synthesized
sockets with respect to the interface to which they are
bound.

In both cases, we have assumed that both the packet and
the response will remain on the port input until a new
packet arrives.

7

1 entity BPort is
2 port(
3 inPacket : in dataRecord ;
4 inResponse : in BResponse;
5 outPacket: bufferdataRecord ;
6 outResponse: buffer BResponse
7);
8 end entity;

9 architecture IMP ofBPort is
10 begin
11 outResponse <= inResponse ;
12 process (inResponse, inPacket)
13 begin
14 if (inResponse = BResponse(processFinished)

and NOT (inPacket = outPacket» then
15 outPacket<= inPacket ;
16 else
17 outPacket<= outPacket ;
18 end if;
19 end process ;
20 end architecture IMP ;

Figure 5 implementation of the corresponding RTL blocking interface

3.2.1. TLM blocking transport interface

For the blocking transport interface, no new packet can
be accepted before the processFinish response on the
previously received one. Figure 5 shows the complete
process.

3.2.2. TLM non-blocking transport interface

The synthesized ports with TLM non-blocking transport
interface obtained from the TLM 2.0 simple socket
mapping algorithm of3.2 is demonstrated in Figure 6.

As shown in Figure 6, for the non-blocking transport
interface, there a buffer of predefined size is used to store
the input packets .. Each time a new packet arrives, it will
be stored in the head of this buffer. Each time a response is
received from the contributing module, from inResponse
port, this response will be transmitted to the outResponse
port unchangeably. This response is monitored to check
whether it is a processFinished response, or not. In this
case, the corresponding packet in the buffer should be
removed, as its processing is done. To do so, the ID of the
inResponse will be checked with the ID of the packets
stored in the buffer, and in case ofa match, the fifo will be
shifted afterwards.

