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a b s t r a c t

The paper deals with the development and computational assessment of three- and two-node beam finite
elements based on the Refined Zigzag Theory (RZT) for the analysis of multilayered composite and sand-
wich beams. RZT is a recently proposed structural theory that accounts for the stretching, bending, and
transverse shear deformations, and which provides substantial improvements over previously developed
zigzag and higher-order theories. This new theory is analytically rigorous, variationally consistent, and
computationally attractive. The theory is not affected by anomalies of most previous zigzag and
higher-order theories, such as the vanishing of transverse shear stress and force at clamped boundaries.
In contrast to Timoshenko theory, RZT does not employ shear correction factors to yield accurate results.
From the computational mechanics perspective RZT requires C0-continuous shape functions and thus
enables the development of efficient displacement-type finite elements. The focus of this paper is to
explore several low-order beam finite elements that offer the best compromise between computational
efficiency and accuracy. The initial attention is on the choice of shape functions that do not admit shear
locking effects in slender beams. For this purpose, anisoparametric (aka interdependent) interpolations are
adapted to approximate the four independent kinematic variables that are necessary to model the planar
beam deformations. To achieve simple two-node elements, several types of constraint conditions are
examined and corresponding deflection shape-functions are derived. It is recognized that the constraint
condition requiring a constant variation of the transverse shear force gives rise to a remarkably accurate
two-node beam element. The proposed elements and their predictive capabilities are assessed using sev-
eral elastostatic example problems, where simply supported and cantilevered beams are analyzed over a
range of lamination sequences, heterogeneous material properties, and slenderness ratios.

1. Introduction

Laminated composite structures have been used increasingly
over the past forty years in military and civilian aircraft, aerospace
vehicles, naval and civil structures. Offering extensive tailoring
capabilities to suit specific load paths, high stiffness-to-weight
and strength-to-weight ratios, these man-made materials have
also proven to provide major economic and environmental advan-
tages over the traditional metallic structures. When applied to pri-
mary load-bearing structures, the multilayered, sandwich, and
relatively thick-section composites are required. Such structures
are known to exhibit higher-order deformation effects due to
transverse shear and normal stresses and strains, thus requiring
advanced design and analysis methods that adequately take into
account these higher-order effects.

It

 
is

 
well

 
established

 
that

 
Bernoulli–Euler

 
(classical)

 
and

 
Timo-

shenko

 
[1]

 
beam

 
theories

 
are

 
not

 
well-suited

 
for

 
the

 
analysis

 
of

 laminated

 
composite

 
and

 
sandwich

 
beams.

 
This

 
is

 
because

 
neither

 theory

 
has

 
the

 
sufficient

 
kinematic

 
freedom

 
to

 
accommodate

 
the

 complex

 
cross-sectional

 
distortions

 
associated

 
with

 
the

 
bending

 and

 
axial-to-bending

 
coupling

 
deformations.

 
By

 
including

 
an

 additional

 
kinematic

 
variable

 
–

 
the

 
average

 
bending

 
rotation

 
–

Timoshenko

 
theory

 
accommodates

 
transverse

 
shearing

 
of

 
the

 cross-section;

 
however,

 
an

 
average

 
corrective

 
strategy

 
that

 
calls

 
for

 a

 
shear-correction

 
factor

 
is

 
used

 
to

 
correct

 
the

 
erroneous

 assumption

 
of

 
constant

 
transverse

 
shear

 
strain

 
through

 
the

 
depth

 of

 
the

 
beam

 
[2].

 
The

 
adoption

 
of

 
a

 
suitable

 
shear-correction

 
factor

 often

 
yields

 
relatively

 
accurate

 
predictions

 
of

 
deflection

 
and

 
lowest

 natural

 
frequencies;

 
however,

 
especially

 
for

 
laminated

 
composite

 and

 
sandwich

 
cross-sections,

 
Timoshenko

 
theory

 
fails

 
to

 
obtain

 adequate

 
solutions

 
for

 
the

 
important

 
design quantities such as the

peak

 
values

 
of

 
axial

 
stresses

 
and

 
strains.

Improvements to the classical theories have been obtained by:
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the

 

behavior

 

of

 

the

 

unknowns

 

(displacements

 

and/or

 

stresses)

 

through

 

the

 

laminate

 

thickness,

 

and

 

(2)

 

Layer-Wise

 

(LW)

 

theories,

 

in

 

which

 

the

 

distribution

 

of

 

the

 

unknowns

 

is

 

assumed

 

layer

 

by

 

layer.

 

ESL

 

theories

 

are

 

generally

 

computationally

 

efficient;

 

how-
ever,

 

they

 

often

 

produce

 

inaccurate

 

through-the-depth

 

distribu-
tions

 

of

 

strains

 

and

 

stresses,

 

particularly

 

the

 

transverse-shear

 

stresses

 

and

 

strains.

 

The

 

LW

 

theories

 

are

 

usually

 

sufficiently

 

accu-
rate;

 

however,

 

the

 

number

 

of

 

unknowns

 

is

 

proportional

 

to

 

the

 

number

 

of

 

material

 

layers,

 

and

 

for

 

multilayered composite lami-
nates

 

the

 

computational

 

effort

 

is

 

generally

 

prohibitively

 

expensive,

 

especially

 

for

 

large-scale

 

models.
An

 

attractive

 

compromise

 

between

 

the

 

accuracy

 

of

 

LW

 

theo-ries

 

and

 

the

 

computational

 

efficiency

 

of

 

ESL

 

theories

 

is

 

repre-sented

 

by

 

the

 

so-called

 

zigzag

 

theories.

 

In

 

this

 

class

 

of

 

theories,

 

the

 

axial

 

displacement

 

field

 

is

 

a

 

superposition

 

of

 

a

 

zigzag-like

 

dis-tribution

 

through-the-depth

 

and

 

linear

 

or

 

cubic

 

ESL-like

 

‘‘smeared’’

 

distributions.

 

The

 

resulting

 

theories

 

are

 

respectively

 

referred

 

to

 

as

 

the

 

linear

 

and

 

cubic

 

zigzag

 

theories.

 

These

 

theories

 

ensure

 

a

 

fixed

 

number

 

of

 

kinematic

 

variables

 

regardless

 

of

 

the

 

number

 

of

 

material

 

layers.

 

The

 

zigzag

 

kinematic

 

distributions

 

are

 

constructed

 

in

 

such

 

a

 

way

 

as

 

to

 

ensure

 

through-the-depth

 

continuous

 

transverse-shear

 

stresses,

 

that

 

are

 

constant

 

for

 

linear

 

theories

 

and

 

piecewise

 

parabolic

 

for

 

cubic

 

theories.

 

Zigzag

 

theo-ries

 

thus

 

provide

 

accurate

 

response

 

predictions

 

for

 

relatively

 

thick

 

laminated-composite

 

and

 

sandwich structures and yield response predictions comparable to
those

 

of

 

computationally

 

intensive

 

LW

 

theories

 

(e.g.,

 

refer

 

to

 

Reddy

 
[3]).

Averill

 

developed

 

the

 

linear

 

[4]

 

and

 

cubic

 

[5]

 

zigzag

 

beam

 

the-
ories

 

by

 

using

 

Timoshenko

 

theory

 

as

 

a

 

baseline

 

and

 

by

 

introducing

 

an independent kinematic variable associated with the zigzag

 

kinematics.

 

This

 

strategy

 

allows

 

the

 

use

 

of

 

C0-continuous

 

deflec-
tion

 

interpolations

 

instead

 

of

 

the

 

C1-continuous

 

deflection

 

required

 

in

 

Di

 

Sciuva

 

and

 

related

 

theories

 

[6–12].

 

Averill

 

also

 

enforces

 

a

 

con-
tinuous

 

transverse-shear

 

stress

 

through

 

the

 

laminate

 

thickness

 

using

 

an

 

exterior

 

penalty

 

formulation.

 

The

 

realization

 

of

 

the

 

erro-
neously

 

vanishing

 

transverse-shear stress at a clamped boundary
prompted

 

Averill

 

to

 

abandon

 

the

 

use

 

of

 

the

 

variationally

 

required

 

kinematic

 

boundary

 

conditions.
Tessler

 

et

 

al.

 

[13–20]

 

recently

 

developed

 

the

 

Refined

 

Zigzag

 

Theories

 

(RZT)

 

for

 

beams

 

and

 

plates

 

that,

 

in

 

a

 

manner

 

similar

 

to

 

Averill,

 

adopt

 

Timoshenko

 

(for

 

beams)

 

and

 

FSDT

 

(for

 

plates)

 

kinematic

 

assumptions

 

as

 

their

 

baseline;

 

the

 

components

 

of

 

the

 

inplane

 

displacements

 

are

 

enhanced

 

by

 

the

 

addition

 

of

 

piece-wise-
linear

 

(i.e.,

 

zigzag)

 

functions

 

that

 

have

 

a

 

novel

 

mathematical

 

description.

 

In

 

contrast

 

to

 

the

 

previous

 

zigzag-theory

 

attempts

 

including

 

those

 

by

 

Averill

 

[4,5]

 

–

 

in

 

which

 

zigzag

 

functions

 

are

 

designed

 

to

 

vanish

 

in

 

an

 

arbitrarily

 

specified

 

layer

 

–

 

these

 

new

 

zigzag

 

functions

 

have

 

the

 

property

 

of

 

vanishing

 

on

 

the

 

top

 

and

 

bottom

 

surfaces

 

of

 

a

 

laminate.

 

As

 

a

 

further

 

departure

 

from

 

the

 

previous

 

efforts,

 

the

 

transverse-shear

 

stresses

 

are

 

not

 

required

 

to

 

be

 

continuous

 

across

 

the

 

layer

 

interfaces,

 

resulting

 

in

 

the

 

piecewise-constant

 

functions

 

that

 

provide

 

sufficiently

 

accurate

 

estimates

 

of

 

the

 

true

 

shear-stress

 

distributions.

 

The

 

equilibrium

 

equations,

 

constitutive

 

equations,

 

boundary

 

conditions,

 

and

 

strain–
displacement

 

relations

 

are

 

consistently

 

derived

 

from

 

the

 

virtual

 

work

 

principle

 

without

 

engendering

 

any

 

transverse-shear

 

stress

 

(force)

 

anomalies.

 

The

 

resulting

 

transverse-shear

 

stresses

 

and

 

forces

 

are

 

fully

 

consistent

 

with

 

respect

 

to

 

the

 

physical

 

and

 

variational

 

requirements

 

and

 

they

 

do

 

not

 

vanish

 

erroneously

 

along

 

clamped

 

boundaries.

 

Moreover,

 

the

 

RZT

 

theories

 

yield

 

con-sistently

 

superior

 

results

 

over

 

a

 

wide

 

range

 

of

 

aspect

 

ratios

 

and

 

material

 

systems,

 

including

 

thick

 

laminates

 

with

 

a

 

high

 

degree

 

of

 

transverse

 

shear

 

flexibility,

 

anisotropy,

 

and

 

heterogeneity.

 

A

 

particularly
appealing aspect of RZT for application to the finite element
method is that its kinematic variables need not exceed

C0 continuity,

 

thus

 

the

 

possibility

 

for

 

developing

 

simple

 

and

 

effi-
cient

 

finite

 

element.
Although

 

computational

 

desirable

 

and

 

most-widely

 

used

 

in

 

commercial

 

finite-element

 

software,

 

C0-continuous

 

bending

 

ele-
ments

 

can

 

exhibit

 

excessively

 

stiff

 

behavior

 

when

 

applied

 

to

 

rela-
tively

 

thin

 

structural

 

members

 

–

 

the

 

phenomenon

 

commonly

 

referred

 

to

 

as

 

shear

 

locking.

 

When

 

the

 

full

 

quadrature

 

(exact

 

inte-
gration)

 

is

 

used

 

to

 

compute

 

the

 

strain

 

energy,

 

Timoshenko

 

ele-
ments

 

based

 

on

 

the

 

linear

 

isoparametric

 

shape

 

functions

 

(as

 

well

 

as

 

similar

 

FSDT

 

plate

 

elements)

 

exhibit

 

severe

 

shear

 

locking

 

in

 

the

 

thin

 

bending

 

regime.

 

The

 

reduced

 

integration

 

of

 

the

 

transverse

 

shear

 

energy

 

has

 

been

 

shown

 

to

 

be

 

effective

 

to

 

alleviate

 

shear

 

lock-
ing;

 

however,

 

when

 

applied

 

to

 

plate

 

elements

 

[21],

 

the

 

reduced

 

integration

 

elements

 

engender

 

the

 

non-physical

 

zero-energy

 

modes

 

which

 

require

 

special

 

suppression

 

techniques

 

to

 

be

 

useful

 

for

 

practical

 

applications.

 

The

 

use

 

of

 

higher-order

 

polynomials

 

gen-
erally

 

improves

 

thin-regime

 

predictions;

 

however,

 

the

 

rate

 

of

 

con-
vergence

 

is

 

commonly

 

diminished.

 

Several

 

other

 

successful

 

approaches

 

dealing

 

with

 

the

 

shear-locking

 

issues

 

have

 

been

 

ad-
vanced

 

which

 

include

 

the

 

discrete

 

penalty

 

constraints,

 

penalty-
relaxation

 

parameters,

 

rotational

 

bubble

 

modes,

 

and

 

anisoparamet-
ric

 

interpolations

 

(the

 

terms

 

interdependent

 

and

 

linked

 

interpola-
tions

 

have

 

also

 

been

 

used);

 

refer

 

to

 

[22,23]

 

for

 

the

 

technical

 

details

 

on

 

these

 

techniques

 

and

 

related

 

literature.

 

The

 

anisopara-metric

 

interpolation

 

strategy,

 

advanced

 

by

 

Tessler

 

and

 

co-workers,

 

for

 

beam,

 

plate,

 

and

 

shell

 

elements

 

(e.g.,

 

refer

 

to

 

[24–38]),

 

requires

 

the

 

deflection

 

variable

 

to

 

be

 

interpolated

 

with

 

a

 

complete

 

polyno-mial

 

one

 

degree

 

higher

 

than

 

the

 

bending

 

rotation

 

variables

 

(aniso-
parametric

 

element).

 

To

 

achieve

 

simple,

 

isoparametric-like

 

nodal

 

patterns,

 

the

 

higher-order

 

shear

 

strain

 

terms

 

are

 

set

 

to

 

zero

 

by

 

way

 

of

 

continuous

 

shear

 

constraints,

 

thus

 

eliminating

 

the

 

extra

 

deflection

 

degrees-of-freedom

 

(constrained

 

anisoparametric

 

ele-
ment).

 

The

 

resulting

 

elements

 

are

 

simple,

 

computationally

 

effi-
cient,

 

and

 

variationally

 

consistent.

 

In

 

the

 

case

 

of

 

the

 

constrained

 

anisoparametric

 

two-node

 

beam

 

element

 

[24],

 

it

 

was

 

shown

 

that

 

its

 

stiffness

 

matrix

 

is

 

identical

 

to

 

that

 

of

 

the

 

linear

 

isoparametric

 

element

 

whose

 

transverse-shear

 

strain

 

energy

 

is

 

obtained

 

by

 

re-
duced

 

integration

 

[21].

 

The

 

major

 

advantage

 

of

 

the

 

anisoparametric

 

elements

 

is

 

that

 

all

 

energy

 

integrations

 

are

 

performed

 

with

 

the

 

full

 

Gaussian

 

quadrature

 

to

 

maintain

 

the

 

required

 

variational

 

consis-
tency;

 

furthermore,

 

the

 

resulting

 

consistent

 

load

 

and

 

mass

 

matri-
ces

 

give

 

rise to superior predictions over the comparable reduced
integration

 

elements,

 

producing

 

elements

 

of

 

improved

 

accuracy

 
[21,23].

In

 

this

 

paper,

 

the

 

Refined

 

Zigzag

 

Theory

 

for

 

multilayered

 

com-
posite

 

and

 

sandwich

 

beams

 

is

 

used

 

to

 

derive

 

a

 

set

 

of

 

simple

 

and

 

efficient

 

three-

 

and

 

two-node

 

C0-continuous

 

anisoparametric

 

beam

 

elements

 

(several

 

formulations

 

for

 

the

 

RZT-based

 

beam

 

and

 

plate

 

elements

 

were

 

initially

 

explored

 

in

 

[39,40]).

 

The

 

analytic

 

theory

 

is

 

first

 

reviewed

 

to

 

establish

 

the

 

framework

 

for

 

the

 

finite

 

element

 

development,

 

and

 

to

 

ascertain

 

the

 

predictive

 

capability

 

of

 

the

 

the-
ory

 

for

 

composite

 

and

 

sandwich

 

laminates

 

in

 

cylindrical

 

bending.

 

The

 

choice

 

of

 

suitable

 

shape

 

functions

 

is

 

then

 

addressed

 

with

 

a

 

specific

 

focus

 

on

 

the

 

shear-locking

 

issues

 

and

 

their

 

consistent

 

res-
olution

 

within

 

the

 

variational

 

requirements.

 

Three

 

different

 

con-
straint

 

strategies

 

are

 

examined

 

to

 

derive

 

three

 

types

 

of

 

two-node

 

constrained

 

anisoparametric

 

elements

 

that

 

do

 

not

 

exhibit

 

any

 

path-
ological

 

stiffening

 

when

 

modeling

 

slender

 

beams

 

(i.e.,

 

no

 

shear

 

locking).

 

Computational

 

studies

 

with

 

simply

 

supported

 

and

 

canti-
levered

 

beams

 

are

 

performed

 

to

 

establish

 

the

 

elements’

 

conver-
gence

 

characteristics

 

and

 

predictive

 

capabilities

 

for

 

relatively

 

deep

 

(thick)

 

and

 

very

 

slender

 

(thin)

 

composite

 

and

 

sandwich

 

beams.

 

The

 

numerical

 

results

 

confirm

 

that

 

the

 

two-node element derived on
the basis of a constant shear-force constraint is the best performing
constrained anisoparametric element.

2



2. A brief review of Refined Zigzag Theory for beams

In this section, the basic assumptions of the new Refined Zigzag
Theory

 

for

 

composite

 

and

 

sandwich

 

beams

 

are

 

reviewed

 

and

 

the

 

equations

 

necessary for the subsequent finite element develop-
ment are derived. For the additional technical details on the theory,
refer

 

to

 

[14,15].

2.1. Displacements, zigzag kinematics, strains, and stresses

Consider

 

a

 

beam

 

of

 

length

 

L,

 

and

 

cross-sectional

 

area

 

A

 

= 2 h

 

�

 

b

 

made

 

of

 

N

 

orthotropic

 

material

 

layers

 

that

 

are

 

perfectly

 

bonded

 

to

 

each

 

other

 

(Fig.

 

1);

 

each

 

layer

 

is

 

denoted

 

by

 

the

 

superscript

 

(k).

 

The

 

beam is referred to the Cartesian coordinate system (x, y, z), where

 

x

 

2

 

[xa,

 

xb]

 

denotes

 

the

 

beam

 

longitudinal

 

axis,

 

and

 

z

 

2

 

[�h,

 

h]

 

the

 

thickness

 

coordinate.

 

The

 

thickness

 

of

 

the

 

kth

 

layer

 

is

 

2h(k)(Fig. 2a).
Only planar deformations in the (x, z) plane are consid-ered under
the static loading which includes the distributed axial,

pb(x) and pt(x), and transverse, qb(x) and qt(x), loads (units of force/
length) applied at the bottom (z = �h) and top (z = +h) beam sur-
faces. In addition, the end cross-sections are subject to the pre-
scribed axial (Txa, Txb) and transverse shear (Tza, Tzb) tractions.

The orthogonal components of the displacement vector are de-
fined as

uðkÞx ðx; zÞ
uzðx; zÞ

( )
¼ 1 0 z /ðkÞ

0 1 0 0

" # uðxÞ
wðxÞ
hðxÞ
wðxÞ

8>>><
>>>:

9>>>=
>>>;
� Nzu ð1Þ

where uðkÞx and uz are the displacements in the directions of the x-
and z-axis, respectively, and u is a vector containing the four kine-
matic variables of the theory. Note that uz = w(x) is uniform across
the depth of the beam, hence the superscript (k) does not appear
in the notation for this quantity. The kinematic variables are the
uniform axial displacement, u(x), the deflection, w(x), the average
cross-sectional (bending) rotation, h(x), and the zigzag rotation,
w(x). This additional variable, which does not appear in Timoshenko
theory, serves the role of adjusting the magnitude of the total zigzag
displacement, /(k)w(x), which is responsible for the modeling of
cross-sectional distortion.

The zigzag function, /ðkÞ � /ðkÞðfðkÞ;hðkÞ;GðkÞxz ;GÞ, has units of
length, is a piecewise linear, C0-continuous function of the thick-
ness coordinate; /(k) is also lamination and material dependent,
where the f(k), h(k), GðkÞxz and G quantities will be defined subse-
quently. The /(k) function is defined in terms of its layer-interface
values /(i)(i = 0, 1, . . ., N) such that the homogeneous conditions on
the top and bottom beam surfaces are identically satisfied (see
Fig. 2b depicting the notation for a three-layered laminate), i.e.,

/ð1Þð�hÞ ¼ /ð0Þ ¼ 0; /ðNÞðþhÞ ¼ /ðNÞ ¼ 0 ð2Þ

Thus, for the kth material layer located in the range [z(k�1), z(k)], the
zigzag function is given by the linear polynomial

/ðkÞ � 1
2
ð1� fðkÞÞ/ðk�1Þ þ

1
2
ð1þ fðkÞÞ/ðkÞ; ð3Þ

where f(k) 2 [�1, 1] is the local, kth layer thickness coordinate de-
fined as

fðkÞ ¼ ½ðz� zðk�1ÞÞ=hðkÞ � 1� ðk ¼ 1; . . . ;NÞ ð4Þ

The first layer begins at z(0) = �h, the last N th layer ends at z(N) = h,
and the k th layer ends at z(k) = z(k�1) + 2h(k), where 2h(k) denotes the
kth layer thickness (Fig. 2a).

/ðkÞ ¼ /ðk�1Þ þ 2hðkÞ/ðkÞ;z ; /ðkÞ;z ¼ G=GðkÞxz � 1 ðk ¼ 1; . . . ;NÞ ð5Þ

In Eq. (5) G denotes a weighted-average transverse shear modulus
of the total laminate given by

G ¼ 1
2h

Z h

�h

dz

GðkÞxz

 !�1

¼ 1
h

XN

k¼1

hðkÞ

GðkÞxz

 !�1

ð6Þ

where GðkÞxz is the k th layer transverse shear modulus. The complete
derivation

 

of

 

Eqs.

 

(2)–(6)

 

can

 

be

 

found

 

in

 

[15],

 

and

 

the

 

approach

 

is

 

also

 

applicable

 

for

 

plates

 

[17–20].
An

 

examination

 

of

 

Eqs.

 

(5)

 

and

 

(6)

 

reveals

 

that

 

for

 

the

 

case

 

of

 

homogeneous,

 

single-layer

 

beams,

 

the

 

zigzag

 

function

 

/(k)

 

van-
ishes

 

identically

 

and

 

the

 

displacement

 

field,

 

Eq.

 

(1),

 

degenerates

 

to

 

that

 

of

 

Timoshenko

 

theory.

 

Tessler

 

et

 

al.

 

[19,20]

 

recently

 

showed

 

that,

 

by

 

adopting

 

a

 

novel

 

strategy

 

called

 

the

 

Homogeneous-Limit

 

Modelling

 

(HLM),

 

the

 

full

 

power

 

of

 

zigzag

 

kinematics

 

in

 

Eq.

 

(1)

 

can

 

be

 

exploited

 

even

 

for

 

homogeneous

 

cross-sections,

 

resulting

 

in

 

the

 

RZT

 

capable

 

of

 

predicting

 

highly

 

accurate

 

response

 

quanti-ties
including the strains and stresses. The approach constructs a
multilayered cross-section whose material layers differ in their

Fig. 1. Notation for beam geometry and applied loading.

Fig. 2. Through-thickness layer notation and zigzag function of the Refined Zigzag
Theory for a three-layered laminate: (a) layer notation and (b) zigzag function.
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transverse shear properties only infinitesimally. This strategy, in
effect, achieves a homogeneous cross-section by forcing the kine-
matics into an infinitesimally small heterogeneous behaviour.

Adopting the linear strain–displacement relations of elasticity
theory, the RZT strains become

eðkÞx

cðkÞxz

( )
¼ 1 0 0 0 z /ðkÞ

0 1 1 bðkÞ 0 0

" #
u;x
w;x

h

w

h;x
w;x

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð7Þ

where bðkÞ � /ðkÞ;z is a piecewise-constant function already defined in
Eq.

 

(5).
Within the assumptions that (i) each material layer is linearly

elastic and orthotropic with the orthotropy axes corresponding to
the Cartesian coordinates, (ii) the beam exhibits the plane-stress
behavior in the (x, z) plane, and (iii) the transverse normal stress
rðkÞz is negligibly small compared to the axial and transverse shear
stresses, the constitutive relations for the kth layer have the form

rðkÞx

sðkÞxz

( )
¼

EðkÞx 0

0 GðkÞxz

" #
eðkÞx

cðkÞxz

( )
ð8Þ

where EðkÞx and GðkÞxz denote, respectively, the kth layer axial and
transverse-shear moduli.

Note that the present zigzag function and associate kinematics
give rise to the transverse shear strain of the form

cðkÞxz ¼ w;x þ hþ GðkÞxz

h

XN

k¼1

hðkÞ

GðkÞxz

 !�1

� 1

2
4

3
5w ð9Þ

In addition, the average quantities of Timoshenko theory also ap-
pear in this theory, i.e.,

h � 1
2h

Z h

�h
uðkÞx;z dz and c � 1

2h

Z h

�h
cðkÞxz dz ¼ w;x þ h ð10Þ

2.2. Virtual work principle

The Principle of Virtual Work (PVW) can be employed to derive
the Euler–Lagrange equations of equilibrium and a set of consistent
boundary conditions. Presently, starting with the two-dimensional
elasticity theory and the corresponding form of the PVW, a one-
dimensional variational statement is obtained and then used to de-
velop several low-order beam elements. The two-dimensional
PVW corresponding to the assumptions of RZT has the formZ xb

xa

Z
A
½deðkÞx rðkÞx þ dcðkÞxz sðkÞxz �dAdx�

Z xb

xa

½duð1Þx ð�hÞpb

þ duðNÞx ðþhÞpt þ duð1Þz ð�hÞqb þ duðNÞz ðþhÞqt �dx

þ
Z

A
½TxaduðkÞx ðxa; zÞ þ TzadwðxaÞ�dA�

Z
A
½TxbduðkÞx ðxb; zÞ

þ TzbdwðxbÞ�dA ¼ 0 ð11Þ

Substituting

 

Eqs.

 

(1)

 

and (7) into Eq. (11) and integrating over the
beam’s

 

cross-section, a one-dimensional form of the PVW is ob-
tained

 

(see

 

Fig.

 

3)Z xb

xa

½Nxdu;x þMxdh;x þ Vxdðw;x þ hÞ þM/dw;x

þ V/dw� pdu� qdw�mdh�dx

þ ½�NxaduðxaÞ þ �MxadhðxaÞ þ �VxadwðxaÞ þ �M/adwðxaÞ�
� ½�NxbduðxbÞ þ �MxbdhðxbÞ þ �VxbdwðxbÞ þ �M/bdwðxbÞ� ¼ 0 ð12Þ

where

½Nx;Mx;M/;Vx;V/� �
Z

A
½rðkÞx ; zrðkÞx ;/ðkÞrðkÞx ; sðkÞxz ;b

ðkÞsðkÞxz �dA ð13:1Þ

½�Nxa; �Mxa; �M/a; �Vxa� �
Z

A
½Txa; zTxa;/

ðkÞTxa; Tza�dA ða ¼ a; bÞ ð13:2Þ

are the reactive and applied stress resultants, and

½p; q;m� ¼ ½pb þ pt ; qb þ qt;hðpt � pbÞ� ð14Þ

are the combined distributed loads.
Integrating Eq. (13.1) while making use of Eqs. (2)–(8) results in

the constitutive equations for the RZT beam

Nx

Vx

V/

Mx

M/

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

A11 0 0 0 B12 B13

0 Q þ k Q þ k �k 0 0
0 �k �k k 0 0

B12 0 0 0 D11 D12

B13 0 0 0 D12 D22

2
6666664

3
7777775

u;x
w;x

h

w

h;x
w;x

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
� Dx

ð15Þ

where the stiffness coefficients are defined as

A11;B12;D11½ � �
Z

A
EðkÞx 1;z;z2
� �

dA; B13;D12;D22½ � �
Z

A
EðkÞx /ðkÞ 1;z;/ðkÞ

h i
dA;

Q ;k½ � �
Z

A
GðkÞxz ð1þbðkÞÞ2;ðbðkÞÞ2
h i

dA

ð16Þ

Performing the variation by parts in Eq. (12) results in the
Euler–Lagrange

 

equilibrium equations

Nx;x þ p ¼ 0
Mx;x � Vx þm ¼ 0
Vx;x þ q ¼ 0
M/;x � V/ ¼ 0

ð17Þ

and a set of consistent geometric (kinematic-variable) and kinetic
(stress-resultant) boundary conditions at the beam ends,
xa � (xa, xb), i.e.,

Fig. 3. Kinematic variables, stress resultants, and applied loading for RZT beam: (a)
kinematic variables and (b) applied loading.
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either uðxaÞ ¼ �ua or NxðxaÞ ¼ �Nxa

either hðxaÞ ¼ �ha or MxðxaÞ ¼ �Mxa

either wðxaÞ ¼ �wa or VxðxaÞ ¼ �Vxa

either wðxaÞ ¼ �wa or M/ðxaÞ ¼ �M/a

ð18Þ

where

 

the

 

bar-superscripted

 

symbols

 

denote

 

the

 

prescribed

 

dis-
placements

 

and

 

stress

 

resultants.

 

Whereas

 

the

 

first

 

three

 

equilib-
rium

 

equations

 

in

 

Eq.

 

(17)

 

have

 

the

 

basic

 

form

 

of

 

Timoshenko

 

(or

 

classical)

 

theory,

 

the

 

fourth

 

equation

 

describes

 

the

 

higher-order

 

moment-shear

 

equilibrium

 

associated

 

with

 

the

 

cross-sectional

 

dis-
tortions

 

modelled

 

by

 

the

 

zigzag

 

function.

 

In

 

[14,15],

 

the

 

theory

 

is

 

assessed

 

by

 

way

 

of

 

the

 

analytic (exact) solutions to Eqs. (15)–(18)
for

 

simply

 

supported

 

and

 

cantilevered

 

beams

 

of

 

various

 

composite

 

and

 

sandwich

 

laminates.
The

 

one-dimensional

 

variational

 

statement,

 

Eq.

 

(12),

 

can

 

now

 

be

 

used to derive suitable beam elements. Since the strain quanti-ties

 

in

 

the

 

variational

 

statement

 

do

 

not

 

exceed

 

first

 

spatial

 

deriva-tives

 

of

 

the

 

kinematic

 

variables,

 

C0-continuous

 

shape

 

functions

 

may

 

be

 

used

 

to

 

derive

 

kinematically

 

compatible

 

beam

 

elements.

 

This

 

aspect

 

makes

 

the

 

use

 

of

 

RZT

 

quite

 

attractive

 

for

 

developing

 

fi-nite

 

elements.

 

As

 

can

 

be

 

observed,

 

the

 

form

 

of

 

Eq.

 

(12)

 

is

 

analogous

 

to

 

that

 

of

 

Timoshenko

 

theory;

 

note that in this theory there are
additional terms associated with the zigzag rotation variable, w,
and

 

its

 

first

 

derivative,

 

w,x

 

.

3. Beam element formulation

To

 

derive

 

the

 

beam-element

 

stiffness

 

matrix

 

and

 

forces

 

vector

 

corresponding

 

to

 

RZT,

 

a

 

suitable

 

interpolation

 

strategy

 

has

 

to

 

be

 

adopted and then used in the virtual work principle, Eq. (12). I n
what

 

follows,

 

several

 

viable

 

interpolation

 

schemes

 

are

 

examined.

3.1. Criteria for element interpolations; stiffness matrix and load
vector

The

 

standard

 

formulation

 

of

 

Timoshenko

 

beam

 

elements,

 

using

 

the

 

linear

 

Lagrange

 

polynomials

 

for

 

u,

 

w

 

and

 

h,

 

and

 

the

 

full

 

Gauss-
ian

 

quadrature

 

necessary

 

for

 

obtaining

 

exact

 

integrals

 

of

 

the

 

ele-
ment

 

matrices,

 

always

 

results

 

in

 

an

 

element

 

that

 

tends

 

to

 

produce

 

overly

 

stiff

 

solutions

 

(with

 

a

 

near-zero

 

curvature)

 

for

 

slen-der

 

beams.

 

This

 

type

 

of

 

pathological

 

behavior

 

is

 

commonly

 

re-ferred

 

to

 

as

 

shear

 

locking

 

[21].

 

Tessler

 

and

 

Dong

 

(1981)

 

identified

 

the

 

main

 

modeling

 

deficiency

 

of

 

the

 

linear

 

isoparametric

 

element,

 

recognizing that in the thin beam limit (L/2h ?1), the shear strain
measure,

 

relative

 

to

 

the

 

curvature, must vanish in a limiting sense,
i.e.,

c ¼ w;x þ h! 0 or w;x ! �h ð19Þ

The implication is that the deflection w(x) needs to be approximated
by a polynomial that is one degree higher than that used for h(x), such
that the above constraint condition can be achieved without any
deleterious effects on the bending curvature. This interpolation
strategy was originally labelled interdependent to emphasize the
interdependent nature of w(x) and h(x) approximations, and later
the term anisoparametric interpolations was introduced to empha-
size the different polynomial degrees used in interpolating the
w(x) and h(x) variables, to contrast a commonly used term isopara-
metric interpolations.

The

 

anisoparametric

 

interpolation

 

strategy

 

results

 

in

 

elements

 

that

 

have

 

(i)

 

an

 

extra

 

w-dof

 

specified

 

at

 

a

 

node

 

that

 

has

 

no

 

other

 

dof’s

 

(Fig.

 

4a),

 

and

 

(ii)

 

the

 

transverse

 

shear

 

strain

 

and

 

force

 

that

 

are

 

described

 

by

 

a

 

polynomial

 

one

 

degree

 

higher

 

than

 

the

 

polyno-mial

 

which

 

interpolates

 

the

 

bending

 

strain

 

and

 

moment.

 

A

 

simple
resolution is to develop the corresponding constrained elements
that have the standard, isoparametric-like nodal patterns

(Fig.

 

4b).

 

This

 

is

 

accomplished

 

by

 

reducing

 

the

 

polynomial

 

degree

 

of

 
the

 

shear

 

strain

 

measure,

 

c,

 

(or,

 

equivalently,

 

the

 

shear

 

force

 

Vx) by
one

 

order,

 

resulting

 

in

 

a coupled deflection interpolation in which
the rotational dof’s contribute to the deflection only in the interior
part

 

of

 

the

 

element.

3.2. Three-node, nine-dof anisoparametric element

Employing the anisoparametric (interdependent) interpolation
strategy, the lowest-order RZT element can now be formulated by
interpolating the kinematic variables as follows

u ¼

u

w

h

w

8>>><
>>>:

9>>>=
>>>;
¼ Nue ð20Þ

where N is a matrix containing the shape functions, and ue is the
vector of nodal dof’s; the N and ue are defined as

N ¼

NL
1 0 0 0 0 NL

2 0 0 0

0 NQ
1 0 0 NQ

m 0 NQ
2 0 0

0 0 NL
1 0 0 0 0 NL

2 0

0 0 0 NL
1 0 0 0 0 NL

2

2
66664

3
77775 ð21:1Þ

ue ¼ ½u1 w1 h1 w1 wm u2 w2 h2 w2 �
T ð21:2Þ

and

½NL
1;N

L
2� ¼

1
2
ð1� nÞ;1

2
ð1þ nÞ

� �
;

½NQ
1 ;N

Q
m;N

Q
2 � ¼

1
2

nðn� 1Þ; ð1� n2Þ;1
2

nðnþ 1Þ
� � ð21:3Þ

where n � 2x/Le � 1 2 [�1, 1] is a non-dimensional axial coordinate,
with x 2 [0, Le] and Le denoting the element length; the
Ni

LðnÞði

 

¼

 

1;

 

2Þ

 

and

 

Nj
Q

 

ðnÞðj

 

¼

 

1;

 

m;

 

2Þ

 

are

 

respectively the
standard linear and quadratic Lagrange polynomials. For the
nodal

 

pattern

 

of

 

this

 

element

 

refer

 

to

 

Fig.

 

5a.

3.3. Two-node, eight-dof constrained anisoparametric elements

In the constitutive relations of RZT, Eq. (15), the transverse
shear force is a function of the two strain measures,

cðxÞ ¼ w;xðxÞ þ hðxÞ and gðxÞ ¼ w;xðxÞ þ hðxÞ � wðxÞ ð22Þ

and, in terms of these strain measures, Vx(x) can be expressed as

VxðxÞ ¼ QcðxÞ þ kgðxÞ ð23:1Þ

or, alternatively, Vx(x) can be expressed in terms of the c(x) and w(x)
quantities

Fig. 4. Nodal configurations for three-

 

and two-node anisoparametric elements based
on Timoshenko theory [24]: (a) anisoparametric element and (b) constrained
anisoparametric

 

element.

5



VxðxÞ ¼ ðQ þ kÞ½cðxÞ þ rwðxÞ� ð23:2Þ

where r 2 [�1, 0] is a dimensionless transverse-shear material
parameter given by

r � � k
Q þ k

¼
R

A bðkÞGðkÞxz dAR
A GðkÞxz dA

ð24Þ

The extreme values of this material parameter are: (a) r = 0 for
homogeneous cross-sections (when b(k) = 0), and (b) r ? �1 for
highly heterogeneous cross-sections, such as in soft-core sandwich
laminates (refer to the numerical studies in Section 5).

In

 

Eq.

 

(23)

 

the

 

transverse

 

shear

 

force,

 

Vx(x),

 

has

 

the

 

proper

 

linear

 

interpolation

 

since

 

c(x),

 

g(x),

 

and

 

w(x)

 

are

 

linear

 

functions

 

of

 

the

 

x

 
coordinate.

 

Both

 

c(x)

 

and

 

g(x)

 

include

 

w,x(x)

 

(deflection

 

slope)

 
which

 

is

 

also

 

linear.

 

Intuitively,

 

with

 

reference

 

to

 

Eq.

 

(23.1),

 

the

 

‘optimal’ constraining strategy for condensing out the wm

 

dof

 

would be to reduce the Vx(x) distribution from a linear to a con-
stant.

 

This

 

constraint

 

scheme

 

would

 

retain

 

the

 

linear

 

character

 

for

 
both

 

c(x)

 

and

 

g(x)

 

while

 

making

 

wm

 

=

 

wm(wi,

 

hi,

 

wi,

 

r,

 

Le)

 

(depen-
dent

 

on

 

the

 

wi,

 

hi

 

and

 

wi

 

(i

 

=

 

1,

 

2)

 

dof’s

 

at

 

the

 

two

 

end

 

nodes,

 

the

 
material

 

parameter,

 

r,

 

and

 

the

 

element

 

length,

 

Le).

 

Alternatively,

 

the

 
polynomial

 

degree

 

reduction

 

of

 

either

 

c(x) o r

 

g(x)

 

can

 

be

 

imple-
mented

 

leading

 

to

 

wm

 

=

 

wm(wi,

 

hi,

 

Le)

 

in

 

the

 

first

 

case,

 

and wm =
wm(wi,

 

hi,

 

wi,

 

Le)

 

in

 

the

 

second,

 

with

 

the

 

latter

 

scheme

 

(g

 

=

 

const.)

 
appearing

 

to

 

be

 

preferable

 

over

 

the

 

former (c = const.).
The expression for wm that encompasses all three constraint

strategies just described has the form

wm ¼
w1 þw2

2
þ Le

8
½ðh2 þ cw2Þ � ðh1 þ cw1Þ� ð25Þ

where (i) c = r if Vx = const., (ii) c = �1 if g = const., and (iii) c = 0 if
c = const.

The constrained deflection that also encompasses all three con-
straint cases is given by the hierarchical form

wðxÞ ¼ 1
2
ð1� nÞw1 þ

1
2
ð1þ nÞw2 þ a

Le

8
ð1� n2Þ½ðh2 þ cw2Þ

� ðh1 þ cw1Þ� ð26Þ

where the leading term is the standard linear Lagrange interpola-
tion in terms of the wi (i = 1, 2) dof’s, and the higher-order term is
a bubble function which vanishes at the two end nodes of the beam
element. The tracer a, which equals 1 in this formulation, can be set
to 0 to exclude the bubble-function term in order to obtain the lin-
ear isoparametric interpolation.

The

 

shape

 

function

 

matrix

 

and

 

the

 

vector

 

of

 

nodal

 

dof’s

 

for the
constrained elements, including the linear element, has the form
(refer to Fig. 5b for the nodal pattern of these elements)

N ¼

NL
1 0 0 0 NL

2 0 0 0

0 NL
1 �a Le

8 NQ
m �ac Le

8 NQ
m 0 NL

2 a Le

8 NQ
m ac Le

8 NQ
m

0 0 NL
1 0 0 0 NL

2 0

0 0 0 NL
1 0 0 0 NL

2

2
66664

3
77775
ð27Þ

ue ¼ ½u1 w1 h1 w1 u2 w2 h2 w2 �
T

3.4. Element stiffness matrix and load vector

Substituting

 

Eq.

 

(20)

 

into

 

Eq.

 

(15)

 

and

 

then into Eq. (12), and
after

 

some straightforward operations, the element-level equilib-
rium equations take on the matrix form

Keue ¼ fe ð28Þ

The stiffness matrix may be calculated as follows

Ke ¼
Z Le

0
BeTDBedx ð28aÞ

where

 

Be

 

is

 

the

 

element

 

strain–displacement

 

matrix

 

containing

 

the

 

derivatives of the shape functions with respect to the x-coordinate,

 

and

 

D

 

is

 

the

 

beam

 

constitutive

 

matrix

 

defined

 

in

 

Eqs.

 

(15)

 

and

 

(16).

 

The

 

Be

 

matrices

 

corresponding

 

to

 

the

 

three-node

 

anisoparametric
and

 

two-node

 

constrained

 

elements

 

are

 

summarized

 

in

 

Appendix A.
For

 

the case of distributed loading due to p, q, and m, Eq. (14),
the

 

element

 

consistent load vector, fe, is defined as

fe ¼
Z Le

0
N
_

Tqdx ð28bÞ

_

where N is composed by the first three rows of shape-function ma-
trix,

 

N

 

(Eqs.

 

(21.1)

 

and

 

(27)),

 

and

 

q

 

� ½ pðxÞ;

 

qðxÞ; mðxÞ � T .

4. Example problems and numerical results

In this section analytic and finite element results are presented,
first highlighting the capability of RZT to model laminated compos-
ite and sandwich laminates, and then focusing on the predictive
capabilities of the RZT-based beam elements.

4.1. Problem description

Simply

 

supported

 

and

 

cantilevered

 

three-layered

 

beams

 

are

 

considered,

 

having

 

various

 

laminations

 

and

 

material

 

compositions

 

through

 

the

 

depth.

 

Unless

 

specified

 

otherwise,

 

the

 

beam

 

has

 

a

 

rect-
angular

 

cross-section

 

of

 

width,

 

b

 

=

 

4

 

cm,

 

depth

 

2h

 

=

 

4

 

cm,

 

and

 

span

 

L

 

=

 

20

 

cm.

 

The

 

mechanical

 

material

 

properties

 

are

 

summarized

 

in

 

Table

 

1. I n

 

Table

 

2

 

are

 

listed

 

the

 

laminate

 

ply-thickness

 

distribu-
tions,

 

material

 

stacking

 

sequences,

 

and

 

magnitudes

 

of

 

the

 

applied

 

loadings.

 

Material

 

‘‘f’’

 

has

 

a

 

variable

 

Young’s

 

modulus

 

ranging

 

from

 

7.3

 

�

 

10�4

 

to

 

73.0

 

GPa,

 

and

 

a

 

transverse

 

shear

 

modulus

 

that

 

is

 

cal-
culated

 

by

 

using

 

a

 

Poisson

 

ratio

 

of 0.25. The material layer thick-
nesses

 

are

 

denoted

 

as

 

2h(1), 2 h(2),

 

and

 

2h(3),

 

where

 

the

 

first

 

layer

 

starts

 

at

 

z

 

=

 

�h

 

(refer

 

to

 

Fig.

 

2).
The

 

simply

 

supported

 

beam

 

is

 

subjected

 

to

 

the

 

transverse pres-
sure

 

loading

 

given by the sine function q(x) = q0 sin (px/L), with

 

the

 
geometric boundary conditions defined as (see Fig. 6a)

w ¼ 0 at x ¼ 0; L ð29Þ

The

 

cantilevered

 

beam

 

is

 

subjected

 

to

 

three

 

distinct

 

loading

 

condi-
tions

 

which

 

include

 

a

 

tip

 

transverse

 

shear

 

force,

 

F,

 

applied

 

at

 

x

 

=

 

L

 

(Fig. 6b), a uniform pressure applied along the top surface
(Fig. 6c), and a linearly distributed pressure applied along the top

Fig. 5. Nodal configurations for three- and two-node anisoparametric elements
based on Refined Zigzag Theory for beams: (a) anisoparametric element and (b)
constrained anisoparametric element.
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surface (Fig. 6d). The geometric boundary conditions for the
canti-levered

 

beam

 

are

u ¼ w ¼ h ¼ w ¼ 0 at x ¼ 0 ð30Þ

Note

 

that

 

the

 

transverse

 

shear

 

strain

 

at

 

the

 

clamped

 

end

 

(x

 

= 0 )

 

i s simply

 

cxz =

 

w,x,

 

which

 

is

 

a

 

non-vanishing quantity for this
theory (see the discussion in [15] on the clamped-end anomaly
engen-dered

 

by

 

other

 

zigzag

 

theories).

4.2. Review of RZT predictive capabilities

A

 

cantilevered

 

beam

 

under

 

a

 

transverse

 

shear

 

force,

 

F,

 

applied

 

at

 

the

 

tip

 

(x

 

=

 

L)

 

is

 

analyzed

 

using

 

the

 

laminate

 

stacking

 

sequence

 

A

 

(see

 

Table

 

2).

 

The

 

RZT

 

analytic

 

solutions,

 

labeled

 

‘‘RZT’’,

 

are

 

de-
picted

 

in

 

Figs.

 

7–11.

 

In

 

addition,

 

for

 

comparison

 

purposes

 

the

 

fol-
lowing

 

solutions

 

are

 

also

 

shown

 

in

 

the

 

figures:

 

(i)

 

a

 

reference
solution, labeled ‘‘NASTRAN’’, using a high-fidelity, two-dimen-
sional, plane-stress FEM model obtained with MSC/NASTRAN�

Table 1
Material mechanical properties.

Material type Young’s modulus EðkÞx (GPa) Shear modulus GðkÞxz (GPa)

a 73.0 29.2
b 21.9 8.76
c 3.65 1.46
d 0.73 0.292
e 0.073 0.029
f Ranging from 7.3 � 10�4 to 73.0 EðkÞx =2:5

Table 2
Laminate stacking sequences and applied loading. (Note: the first layer is the bottom
layer.)

Laminate
designation

Normalized layer
thickness 2h(i)/2h

Materials Applied loads

q0 (N/m) F (N)

A (0.10/0.80/0.10) (a/e/b) 3 � 106 2 � 103

C (0.33/0.33/0.33) (d/a/c) 2 � 10�3 –
D (0.33/0.33/0.33) (a/f/a) 1.5 � 107 –

Fig. 6. Geometry, boundary conditions, and applied loading for the four example problems: (a) simply supported beam under sinusoidal pressure, (b) cantilevered beam
under tip shear force, (c) cantilevered beam under uniform pressure and (d) cantilevered beam under linear pressure.

Fig. 7. Normalized deflection of a cantilevered beam under a tip shear force
(laminate A, q = 5).

Fig. 8. Normalized axial stress at the clamped end of a cantilevered beam under a
tip shear force (laminate A, q = 5).
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[14];

 

(ii)

 

an analytic

 

solution

 

using

 

Timoshenko

 

Beam

 

Theory

 

(shear

 

correction

 

factor

 

k2

 

=

 

5/6),

 

labeled

 

‘‘TBT’’,

 

and

 

(iii)

 

a

 

trans-
verse

 

shear-stress

 

solution,

 

labeled

 

‘‘EQ.’’,

 

which

 

is

 

obtained

 

by

 

integrating the elasticity-theory equilibrium equation
rðx;kx

Þþ

 

sðxz
k
;
Þ
z

 

¼

 

0,

 

where

 

rðxkÞ

 

represents

 

the

 

axial

 

stress

 

computed

 
by

 

RZT.
In the figures, the special coordinates and response quantities

are normalized as follows

ð~x;~zÞ � ðx=L; z=hÞ;

~uðkÞA ; ~wA

� �
� D11

10FL3 ðu
ðkÞ
x ;wÞ; ~rðkÞA ; ~sðkÞA

� �
� A

Fq
rðkÞx ; sðkÞxz

� 	 ð31Þ

where

 

q

 

=

 

L/2h

 

represents

 

the

 

beam

 

span-to-span

 

ratio.

 

The

 

RZT

 
analytic

 

solutions

 

are

 

in

 

close

 

agreement

 

with

 

the

 

NASTRAN

 

predic-
tions

 

and

 

are

 

also

 

considerably

 

more

 

accurate

 

than

 

those

 

of

 

Timo-
shenko

 

theory:

 

TBT

 

underestimates

 

the

 

maximum

 

deflection

 

by

 

over

 

80%

 

(Fig.

 

7)

 

and

 

the

 

maximum

 

axial

 

stress

 

by

 

over

 

75%(Fig.

 

8).

 

Fig.

 

9

 

reveals

 

that

 

RZT

 

provides

 

a

 

highly

 

accurate

 

assess-ment

 

of

 

the

 

axial

 

displacement

 

through

 

the

 

depth

 

of

 

the

 

beam,

 

manifesting

 

in

 

a

 

zigzag-like

 

distribution.

 

Fig.

 

10

 

depicts

 

the

 

trans-verse

 

shear

 

stress

 

at

 

the

 

clamped

 

end

 

where

 

both

 

TBT

 

and

 

RZT

 

pro-vide

 

relatively

 

accurate

 

piecewise-constant

 

approximations

 

of

 

the

 

stress.

 

However,

 

at

 

the

 

tip

 

of

 

the

 

beam

 

(Fig.

 

11)

 

only

 

RZT

 

retains

 

the

 

desired

 

degree

 

of

 

accuracy

 

–

 

the

 

transverse

 

shear

 

stress

 

com-puted

 

by

 

RZT

 

has

 

a

 

correct

 

variation

 

along

 

the

 

beam’s

 

span,

 

whereas TBT is limited to a
non-varying (constant) solution and, as evi-denced from the
reference solution, its solution is erroneous.

Fig. 9. Normalized axial displacement at the free end of a cantilevered beam under
a tip shear force (laminate A, q = 5).

Fig. 10. Normalized transverse shear stress at the clamped end of a cantilevered
beam under a tip shear force (laminate A, q = 5).

Fig. 11. Normalized transverse shear stress at the free end of a cantilevered beam
under a tip shear force (laminate A, q = 5).

Table 3
Element designation, kinematic interpolation, and nodal configuration.

Element type Deflection
interpolation

Constraint
imposed

No. of nodes
(dof’s) (Figs. 4,5)

XL: Linear isoparametric Eq. (26): a = 0 None 2 (8)
X0: Anisoparametric Eqs. (20), (21) None 3 (9)
Xc: Constrained

anisoparametric
Eq. (26): a = 1, c = 0 c = const. 2 (8)

Xg: Constrained
anisoparametric

Eq. (26):a = 1, c = �1 g = const. 2 (8)

XV: Constrained
anisoparametric

Eq. (26): a = 1, c = r Vx = const. 2 (8)

Fig. 12. Normalized center deflection, ~wðL=2Þ, versus span-to-depth ratio, q, for a
simply supported beam under sinusoidal pressure (laminate C; ne = 50
discretization).
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4.3. Beam element results

To

 

facilitate

 

the

 

discussion

 

of

 

the

 

beam

 

finite

 

element

 

results,

 

Table

 

3

 

summarizes

 

the

 

element

 

designation

 

and

 

their

 

associate

 

kinematic

 

interpolations

 

and

 

nodal

 

configurations.

 

Subsequently,

 

the

 

label

 

‘‘A’’

 

is

 

used

 

to

 

denote

 

an

 

analytic

 

solution

 

obtained

 

by

 

RZT

 

[14,15],

 

whereas

 

‘‘FEM’’

 

denotes

 

a

 

finite

 

element

 

solution

 

using

 

one

 

of

 

the

 

present

 

beam

 

elements,

 

and

 

ne

 

indicates

 

the

 

number

 

of

 

elements

 

used

 

in

 

a

 

uniform

 

discretization

 

of

 

a

 

beam.

 

Thus,

 

in

 

the

 

present

 

convergence

 

studies

 

the

 

following

 

response

 

quantities

 

are

 

examined:

 

(a)

 

deflection,

 

~w

 

�

 

wFEM=wA,

 

computed

 

at

 

the

 

center

 

(x

 

=

 

L/2)

 

of

 

simply

 

supported

 

beams

 

and

 

at

 

the

 

tip

 

(x

 

=

 

L)

 

of

 

canti-
levered

 

beams;

 

(b)

 

axial

 

displacement,

 

u~

 

�

 

uFEM=uAðL;

 

�hÞ;

 

(c)

 

axial

 

stress,

 

~r

 

�

 

rFEM=rAðLe=2;

 

�hÞ,

 

and

 

(d)

 

transverse

 

shear

 

stress, s~ �
sFEM=sAðLe=2;

 

�hÞ.

 

The

 

computed

 

values

 

of

 

the

 

RZT

 

analytic

 
solutions

 

[wA,

 

uA,

 

rA,

 

and

 

sA]

 

are

 

summarized

 

in

 

Appendix

 

B.
Initially,

 

the

 

element

 

performance

 

is

 

examined

 

over

 

a

 

range

 

of

 

span-to-depth

 

ratios,

 

q

 

=

 

L/2h,

 

with

 

the

 

focus

 

on

 

slender

 

beams

 

for

 
q

 

is

 

relatively

 

large.

 

Herein

 

the

 

simply

 

supported

 

beam

 

in

 

Fig. 6a

 

(laminate

 

C)

 

is

 

analyzed

 

using

 

the

 

ne

 

=

 

50

 

discretization.

 

In

 

Fig.

 

12,

 

the

 

maximum

 

(center)

 

deflection,

 

w~

 

,

 

is

 

plotted

 

versus

 

q,

 

where

 
the

 

finite

 

element

 

solutions

 

for

 

the

 

XL,

 

X0

 

and

 

XV

 

ele-ments

 

are

 

represented.

 

The

 

results

 

obtained

 

with

 

the

 

Xc

 

and

 

Xg

 

elements

 

are

 

practically

 

identical

 

to

 

those

 

of

 

the

 

XV

 

element.

 

The

 

results

 

show

 

that the RZT-based linear isoparametric element, XL,

 

suffers

 

from

 

shear

 

locking

 

–

 

the

 

behavior

 

that

 

manifests

 

itself

 

with

 

progressively

 

stiffer

 

response

 

as

 

the beam becomes more slender. In contrast, the
four

 

anisoparametric

 

elements

 

do

 

not

 

ex-hibit

 

any

 

deterioration

 

for

 

slender

 

beams.
The following numerical study is focused on demonstrating

the differences in the predictive capabilities between the four
anisoparametric elements considered herein, by examining their

performance

 

over

 

a

 

wide

 

range

 

of

 

material

 

heterogeneity

 

and

 

anisotropy.

 

In

 

Table

 

4,

 

the

 

maximum

 

deflection

 

results

 

for

 

a

 

deep

 

simply

 

supported

 

beam

 

(laminate

 

D,

 

q

 

=

 

5)

 

are

 

compared

 

for

 

the

 
four anisoparametric elements, where the laminate material prop-
erties

 

are

 

varied

 

from

 

highly

 

heterogeneous

 

(r

 

?

 

�1)

 

to

 

nearly

 

homogeneous

 

(r

 

?

 

0).1

 

For

 

the

 

finest

 

discretization,

 

ne

 

=

 

50,

 

the

 

four

 

anisoparametric

 

elements

 

produce

 

comparably

 

accurate

 

results.

 

The

 

largest discrepancies are manifested for the ne

 

= 6 mesh – the coars-
est

 

mesh

 

in

 

this

 

study.

 

At

 

this

 

level

 

of

 

discretization

 

and

 

for

 

r

 

?

 

�1

 

(highly

 

heterogeneous

 

cross-sections),

 

the

 

X0,

 

XV

 

and

 

Xg

 

elements

 

produce

 

nearly

 

identical

 

results

 

of

 

high

 

accuracy,

 

where

 

the

 

errors

 

do

 
not

 

exceed

 

3%;

 

whereas

 

the

 

Xc

 

element

 

solution

 

(for

 

ne

 

= 6 )

 

underestimates

 

the

 

deflection

 

by

 

about

 

50%.

 

The

 

Xc

 

results,

 

how-
ever,

 

tend

 

to

 

improve

 

as

 

r

 

?

 

0

 

(nearly

 

homogeneous

 

cross-sections).

 

The

 

results

 

for

 

the

 

X0

 

and

 

XV

 

are

 

consistently

 

identical

 

at

 

the

 

end-
nodes.

 

The

 

Xg

 

element

 

predictions

 

are

 

only

 

slightly

 

less

 

accurate

 

than

 

those

 

of

 

the

 

X0 and

 

XV elements.

 

Of

 

the

 

three

 

versions

 

of

 

con-strained

 

elements

 

the

 

XV

 

element

 

is the best performer. For this rea-son
subsequent

 

numerical

 

results

 

will

 

focus

 

on

 

the

 

relative

 

accuracy

 

of
the

 

XV and

 

X0 elements.
Since both XV and X0 predict identical displacements at the end

nodes, it is worth to examine if there exist any discrepancies

Table 4
Simply supported beam, laminate D, q = 5. Normalized center deflection, ~wðL=2Þ, obtained with X0, XV, Xg, and Xc element discretizations, for different number of elements, ne,
and material parameter, r.

Stacking sequence properties Core-to-face Young’s modulus ratio, Eð2Þx =Eð1Þx(refer to Tables 1 and 2)

10�5 10�4 10�3 10�2 10�1 9 � 10�1 9.99 � 10�1 9.9999 � 10�1

Material parameter, r

�1.000 �9.996 � 10�1 �9.955 � 10�1 �9.561 � 10�1 �6.429 � 10�1 �2.463 � 10�3 �2.224 � 10�7 �2.22 � 10�11

ne Elem. Normalized center deflection ~w

6 X0, XV 0.977 0.978 0.981 0.990 0.985 0.979 0.979 0.979
Xg 0.977 0.978 0.981 0.990 0.984 0.971 0.972 0.972
Xc 0.483 0.489 0.540 0.784 0.970 0.979 0.979 0.979

10 X0, XV 0.992 0.992 0.993 0.996 0.995 0.993 0.992 0.992
Xg 0.992 0.992 0.993 0.996 0.994 0.986 0.985 0.985
Xc 0.714 0.719 0.759 0.908 0.989 0.993 0.992 0.992

50 X0, XV 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Xg 1.000 1.000 1.000 1.000 1.000 0.999 0.992 0.992
Xc 0.984 0.984 0.987 0.996 1.000 1.000 1.000 1.000

Table 5
Cantilevered beam, laminate A, q = 5. Normalized deflection, wXV =wX0 , at various locations for one and two element discretizations and three loading conditions.

ne 1 2
XV mesh

X0 mesh

wXV =wX0

Points along the beam – A B – A B C D
Tip load – 1.000 1.000 – 1.000 1.000 1.000 1.000
Uniform load – 0.987 1.000 – 0.995 1.000 0.999 1.000
Linear load – 0.974 1.000 – 0.987 1.000 0.999 1.000

1

 

Recently,

 

in

 

[19,20],

 

the

 

authors

 

proposed

 

the

 

Homogeneous

 

Limit

 

Modelling

 

(HLM)

 

strategy

 

to

 

model

 

the

 

response

 

of

 

homogeneous

 

beams

 

accurately.

 

The

 

HLM

 

methodology

 

takes

 

full

 

advantage

 

of

 

the

 

RZT’s

 

zigzag

 

kinematics

 

even

 

for

 

homoge-
neous

 

beams:

 

the

 

RZT

 

does

 

not

 

degenerate

 

to

 

Timoshenko

 

theory

 

and

 

requires

 

no

 

shear

 

correction

 

factors.

 

The

 

approach

 

yields

 

superior

 

predictions

 

for

 

all

 

of

 

the

 

response

 

quantities

 

including

 

the

 

strains

 

and

 

stresses,

 

producing

 

highly

 

accurate

 

parabolic

 

shear

 

stress

 

and

 

cubic

 

axial

 

stress

 

distributions through-the-thickness in
deep homogeneous beams. The deflection predictions with and without the use of
HLM, however, do not differ substantially. It is noted that in generating the results in
Table 4 for r ? 0, the HLM was not employed.
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in the case of a distributed shear loading.

Fig. 16. Convergence of normalized center deflection, ~wðL=2Þ, for a simply
supported beam under sinusoidal pressure using X0 and XV element discretizations
(laminate A, q = 5).

Fig. 17. Convergence of normalized axial displacement, ~uðL;�hÞ, for a simply
supported beam under sinusoidal pressure using X0 and XV element discretizations
(laminate A, q = 5).

Fig. 13. Convergence of normalized tip deflection, ~wðLÞ; for a cantilevered beam
under a tip shear force using X0 and XV element discretizations (laminate A, q = 5).

Fig. 14. Convergence of normalized axial stress ~rðLe=2;�hÞ for a cantilevered
beam under a tip shear force using X0 and XV element discretizations (laminate A,
q = 5).

Fig. 15. Convergence of normalized transverse shear stress ~sðLe=2;�hÞ for a
cantilevered beam under a tip shear force using X0 and XV element discretizations
(laminate A, q = 5).

10

between the results within the element span produced by these ele-
ments. In Table 5, maximum deflection results are compared for the 
problem of a cantilevered beam (laminate A) subjected to various 
transverse loads, for one- and two-element discretizations. It is seen 
that slightly different results are obtained within an element when 
the beam is subjected to a distributed loading. For example, for ne = 
2, the differences are less than 2%. All other response quan-tities, 
including the kinematic variables [u(x), h(x), w(x)] and the ax-ial 
strain and stress [eðxkÞ; rðxkÞ] are predicted identically by the two 
types of elements. This is because u(x), h(x), and w(x) are interpo-
lated by the same linear interpolations. At the element centers, the 
axial and transverse-shear strain and stress predictions by XV and X0 
correspond identically. Clearly, the XV element represents the 
desirable compromise between the nodal simplicity, accuracy, and 
computational efficiency. Furthermore, the XV element, based on the 
constant shear-force constraint, ensures comparable accu-racy even 
when the global, beam-level distribution is non constant,

Convergence studies examining displacement and stress predic-
tionsg., by the various anisoparametric elements for the 
cantilevered beam under a tip shear force are shown in Figs. 13–
15, and for the simply supported beam under sinusoidal 
pressure (laminate A), in



Figs.

 

16–18.

 

Figs.

 

13

 

and

 

16

 

depict

 

rapid

 

convergence

 

of

 

the

 

maxi-
mum

 

deflection

 

where

 

even

 

a

 

coarse

 

discretization

 

(ne

 

=

 

4)

 

leads

 

to

 

errors

 

not

 

exceeding

 

2.5%.

 

Note

 

that

 

for

 

the

 

cantilevered

 

beam

 

problem,

 

the

 

analytic

 

solutions

 

for

 

the

 

kinematic

 

unknowns

 

u,

 

w,

 

h,

 
and

 

w

 

in

 

the

 

framework

 

of

 

RZT

 

involve

 

both

 

polynomial

 

and

 
hyperbolic

 

functions

 

[15]

 

–

 

hence

 

the

 

need

 

for

 

a

 

relatively

 

fine

 

dis-
cretization

 

to

 

achieve

 

displacement

 

convergence.

 

The

 

convergence

 

of

 

the

 

axial

 

displacement,

 

Fig.

 

17,

 

is

 

also

 

rapid.

 

As

 

evidenced

 

from

 

Figs.

 

14,

 

15

 

and

 

18,

 

to

 

achieve

 

accurate

 

stresses,

 

finer

 

discretiza-
tions

 

are

 

required.

 

A

 

slightly

 

slower

 

convergence

 

is

 

observed

 

for

 

the

 

transverse

 

shear

 

stress,

 

Fig.

 

15,

 

where

 

for

 

the

 

mesh

 

ne

 

=

 

15

 

the

 

error

 

in

 

the

 

transverse

 

shear

 

stress

 

is

 

under

 

5%.

 

These

 

results

 

further

 

demonstrate

 

that

 

the

 

XV and

 

X0 element

 

solutions

 

produce

 

identi-
cal predictions for the kinematic dof’s at the element end nodes as
well

 

as

 

the

 

identical strains and stresses at the element centers.

5. Conclusions

In this paper, simple and efficient three- and two-node beam
elements were developed which include the effects of the axial
stretching, transverse shear deformation, and zigzag kinematics.
The underlying structural theory is the Refined Zigzag Theory
(RZT) for multilayered composite and sandwich beams recently
developed by the authors. For planar deformations, four kinematic
variables – one more than in Timoshenko theory – are required
within RZT. The additional kinematic variable, the zigzag rotation,
ensures a zigzag-like axial displacement and piecewise-constant
rotations closely resembling solutions of elasticity theory for lam-
inated composite structures. The theory enables a more accurate
representation of all displacement, stress-resultant, strain and
stress quantities, and unlike Timoshenko theory there is no reli-
ance on shear correction factors to yield accurate results.

The anisoparametric (aka interdependent), C0-continuous inter-
polations were employed for the kinematic variables of the theory
to obtain a three-node element. This interpolation strategy, which
involves independent assumptions of a quadratic deflection and
linear interpolations for the axial displacement, bending rotation,
and zigzag rotation, ensures free of shear locking performance for
the entire range of moderately thick to very slender beams.

By imposing three types of continuous shear constraints – two
on the distribution of the transverse shear-strain measures and one
on the distribution of the transverse shear force – three
constrained elements were generated, each having the desired

two-node configuration. Stiffness and consistent load vectors were
formulated by Gaussian quadrature using formulas for exact inte-
gration. For comparison purposes, a fully integrated, two-node iso-
parametric linear element was also formulated and examined in
the studies of shear locking. This latter element was shown to ex-
hibit severe stiffening due to shear locking.

The new anisoparametric RZT-based elements demonstrated
excellent modelling capabilities and suffered no shear locking ef-
fects. The constrained anisoparametric elements produced compa-
rable accuracy of the unconstrained element, with the element
derived on the basis of a constant shear-force constraint demon-
strating the best overall performance of the three constrained ele-
ments. An important aspect of this two-node element is that it is a
true constant-stress beam element, with all of its classical stress
resultants being constant along the element length, thus enabling
optimal stress evaluation at the element center.
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Appendix A

The strain–displacement Be matrix for the three-node, nine-dof
anisoparametric element is given by

Be ¼ 1
Le

NL
1;n 0 0 0 0 NL

2;n 0 0 0

0 NQ
1;n 0 0 NQ

m;n 0 NQ
2;n 0 0

0 0 LeNL
1 0 0 0 0 LeNL

2 0

0 0 0 LeNL
1 0 0 0 0 LeNL

2

0 0 NL
1;n 0 0 0 0 NL

2;n 0

0 0 0 NL
1;n 0 0 0 0 NL

2;n

2
66666666664

3
77777777775

ðA:1Þ

Fig. 18. Convergence of normalized transverse shear stress, ~sðLe=2;�hÞ, for a simply
supported beam under sinusoidal pressure using X0 and XV element discretizations
(laminate A, q = 5).

Table B1
Simply supported beam, laminate C. Analytic center deflection, wA(L/2), obtained with
Refined Zigzag Theory for different span-to-thickness ratios.

Laminate thickness
2 h (mm)

Span-to-thickness
ratio, q

Center deflection
wA(L/2) (mm)

40.000 5 1.319 � 10�9

33.333 6 2.265 � 10�9

28.571 7 3.584 � 10�9

25.000 8 5.338 � 10�9

22.222 9 7.588 � 10�9

20.000 10 1.024 � 10�8

10.000 20 8.286 � 10�8

4.000 50 1.293 � 10�6

2.000 102 1.034 � 10�5

0.200 103 10.0 � 10�3

0.020 104 10.340
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whereas for the two-node, eight-dof constrained anisoparametric
elements, Be has the form

Be¼ 1
Le

NL
1;n 0 0 0 NL

2;n 0 0 0

0 NL
1;n �aLe

8 NQ
m;n �acLe

8 NQ
m;n 0 NL

2;n aLe

8 NQ
m;n acLe

8 NQ
m;n

0 0 LeNL
1 0 0 0 LeNL

2 0

0 0 0 LeNL
1 0 0 0 LeNL

2

0 0 NL
1;n 0 0 0 NL

2;n 0

0 0 0 NL
1;n 0 0 0 NL

2;n

2
66666666664

3
77777777775
ðA:2Þ

Appendix B

The results summarized in the following tables correspond to
the

 

analytic

 

solutions

 

of

 

the

 

Refined

 

Zigzag

 

Theory [14,15]. These
results serve as normalizing factors for the solutions presented in
Table

 

4

 

and

 

Figs. 12–18 (see Tables B1–B3).
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Table B2
Analytic results using Refined Zigzag Theory for laminate A, q = 5.

Problem Deflection (mm) Axial displacement
uA(L, �h) (mm)

Stresses at z = �h

x/L rA (Mpa) sA (Mpa)

Simply supported beam
under sinusoidal pressure

wA(L/2) �0.373 1/8 �163.686 4.428

9.759 1/12 �110.706 4.629
1/20 �66.912 4.731
1/28 �47.892 4.761
1/48 �27.975 4.782
1/100 �13.434 4.788

Cantilevered beam under
tip shear force

wA(L) 0.199 1/8 161.205 3.128

9.014 1/12 207.338 4.488
1/20 258.950 6.045
1/28 286.350 6.883
1/48 319.025 7.885
1/100 345.800 8.713

Table B3
Simply supported beam, laminate D, q = 5. Analytic center deflection wA(L/2) obtained
with Refined Zigzag Theory for different core-to-face Young’s modulus ratio.

Core to face Young’s modulus ratio,

Eðx
2Þ=Eðx

1Þ (Tables 1 and 2)
Material
parameter, r

Center deflection,
wA(L/2) (mm)

10�5 �1.000 8.603
10�4 �9.996 � 10�1 8.437
10�3 �9.955 � 10�1 7.094
10�2 �9.561 � 10�1 3.030
10�1 �6.429 � 10�1 1.000
9 � 10�1 �2.463 � 10�3 0.696
9.99 � 10�1 �2.224 � 10�7 0.690
9.9999 � 10�1 �2.222 � 10�11 0.690

12



[30] Fried I, Johnson AR, Tessler A. Minimum-degree thin triangular plate and shell
bending finite elements of order two and four. Comput Methods Appl Mech
Eng 1986;56:283–307.

[31] Tessler A, Spiridigliozzi L. Resolving membrane and shear locking phenomena
in curved shear-deformable axisymmetric shell elements. Int J Numer
Methods Eng 1988;26:1071–86.

[32] Tessler A. A C0-anisoparametric three-node shallow shell element. Comput
Methods Appl Mech Eng 1990;78:89–103.

[33] Barut A, Madenci E, Tessler A. Nonlinear elastic deformations of moderately
thick laminated shells subjected to large and rapid rigid-body motion. Finite
Elem Anal Des 1996;22:41–57.

[34] Barut A, Madenci E, Tessler A. Nonlinear analysis of laminates through a
Mindlin-type shear deformable shallow shell element. Comput Methods Appl
Mech Eng 1997;143:155–73.

[35] Barut A, Madenci E, Tessler A, Starnes JH. A new stiffened shell element for
geometrically nonlinear analysis of composite laminates. Comput Struct
2000;77:11–40.

[36] Liu J, Riggs HR, Tessler A. A four-node, shear-deformable shell element
developed via explicit Kirchhoff constraints. Int J Numer Methods Eng
2000;49:1065–86.

[37] Barut A, Madenci E, Tessler A. Nonlinear thermoelastic analysis of composite
panels under non-uniform temperature distribution. Int J Solids Struct
2000;37:3681–713.

[38] Tessler A. Comparison of interdependent interpolations for membrane and
bending kinematics in shear-deformable shell elements. In: Proceedings of
international conference on computational engineering and sciences, Los
Angeles, CA; 2000.

[39] Guzzafame D. Finite element formulation for the analysis of multilayered
plates in cylindrical bending. M.S. thesis, Politecnico di Torino; October 2006.

[40] Fasano C. Development and implementation of interface techniques for beam
finite elements. M.S. thesis (in Italian), Politecnico di Torino; March 2008.

[41] Oñate E, Eijo A, Oller S. Two-noded beam element for composite and sandwich
beams using Timoshenko theory and Refined Zigzag Kinematics. Publication
CIMNE No-346; October 2010.

13


	2370813pdf.pdf
	An Adaptive Control System to Deliver Interactive Virtual Environment Content to Handheld Devices
	Abstract
	Introduction
	Related work
	The control algorithm
	Tests and results
	Control vs. optimization

	Conclusions
	References






