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Transient Field Coupling and Crosstalk
in Lossy Lines with Arbitrary Loads

L. Maio and F. G. Canavero, Member, IEEE

Abstract—In this paper, we extend the transient scattering analysis
of a lossy multiconductor transmission line to the evaluation of the
interference produced by a field illuminating the line. The external
interference is described by suitable voltage wave sources that are
readily computed in the time domain and do not affect the structure
of the transient scattering equations. The proposed formulation fully
exploits the advantages of the transient analysis based on the line
matched scattering parameters, dealing effectively with low-loss lines
and helping the understanding of the interference mechanism through
the physical interpretation of the results. The simplicity and efficiency
of our approach is evidenced by means of a numerical example of the
external interferences on a realistic nonlinearly loaded highly mismatched
3-conductor interconnect.

1. INTRODUCTION

Owing to the recent tendency toward decreasing rise times of the
signal waveforms and toward higher frequency carriers, electromag-
netic compatibility (EMC) is becoming a major concern in the design
of many interconnections and wired communication systems. More-
over, an increasingly larger part of interconnects, at any size scale,
behave as distributed structures and require transmission line (TL)
models to account for the signal degradation caused by propagation.
In consequence, a growing interest has developed for effective analy-
sis schemes devoted to arbitrarily loaded multiconductor transmission
lines (MTL’s), possibly under the influence of a disturbing external
field.

The coupling phenomenon of an external electromagnetic field
to a transmission line (both two-conductor and multiconductor was
extensively studied) and models using equivalent distributed voltage
and current generators located along the line [1]-[4] are commonly
employed. In the case of an electrical network with linear ter-
minations, the analysis is effectively carried out in the frequency
domain by means of a line characterization involving a proper set of
parameters (e.g., see [5]). In the widely diffused case of nonlinear
terminations, however, the analysis must be performed directly in
the time domain, where, unfortunately, the characteristics of the
transmission line and the evolution of the equivalent generators of
the electromagnetic interference are usually particularly difficult to
compute and handle.

The scattering parameter formulation, that offers relatively simple
time characteristics also for the important case of low-loss (wideband)
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Fig. 1. Nonlinearly loaded transmission line: the relevant quantities for our
formulation are indicated here and explained in the text.

TL’s, established itself as a direct and effective method for the time-
domain analysis of nonlinearly loaded MTL’s (e.g., see [6]-[9]).
In this paper, we extend the scattering formulation to the study of
MTL’s subjected to electromagnetic interferences, and we show that
the effects of the external field can be handled by simply adding to
the line ends proper source terms, which do not affect the structure
of the solution algorithm, and thereby preserve all the advantages
of the matched scattering formulation. Besides, the source terms for
the matched scattering characterization are available for any field
coupling formulation [4], have a particularly simple structure and
can be readily calculated in the time domain. A numerical example is
presented with the aim of showing that our formulation is an efficient
and accurate method for studying the effects of interferences (due
both to crosstalk and field coupling) on “long” interconnects that can
be modeled as transmission lines.

In this paper, Section II and the Appendix are devoted to review the
transient scattering equations of MTL’s. In Section III the equivalent
sources of the interfering field are evaluated and casted in a simple
and computationally efficient form and, in Section IV, a simulation
of the interference effects on a nonlinearly loaded 2-land PCB is
presented.

Finally, it is worthwhile to clarify the notations that we use in
this paper. Lower case letters represent time-domain variables and
upper case letters indicate their counterparts in the domain of the

X (s), and L, denotes the

Laplace transform operation. Also, the boldface character is used for
the collections of elements, so that ¢ indicates a time-varying vector
or matrix and Yy, is a scalar in the frequency domain.

[‘u
complex frequency s, ie., z(t) ;—‘

II. SCATTERING TRANSIENT ANALYSIS OF MTL’s

In this section, we review the scattering transient analysis of a
loaded lossy MTL. The problem considered is defined in Fig. 1,
where vr,, and iz, (® = 1,2 and ¢ = 1,---, N throughout
the paper) represent the load voltages and currents, respectively;
the voltage sources ep, at the line ends account for the system
excitation, and the equations fpq ({vLipq}s {iLpq}) = 0 (fpq functions
or operators) describe the behavior of the loads (linear or nonlinear).

The scattering parameter formulation is based on the representation
of the electrical state of each network conductor in terms of wave
variables. In the analysis of MTL problems, it is convenient to arrange
voltages and currents as well as wave variables in vector form. For
the problem of Fig. 1, the vector variables are obtained by collection
of the scalar quantities of the same type defined in the same transverse
section on the N+ 1 conductors. For example, the vector of currents
in the section of load no. 1 is i1 = (iri1, *--, iLlN)T, and

0018-9375/95$04.00 © 1995 IEEE
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Fig. 2. (a) Conventions for voliages v = (vi,---,vn)T, currents

i = (i1, -, iN)T, and voltage waves a and b in a generic section of
the (N+1)-conductor structure. (b) Scattering diagram for the problem of
Fig. 1.

the vector of sources at line end no. 2 is e2 = (e21, -+-, eQN)T
(T means matrix transposition). In this paper, the wave variables
corresponding to voltages and currents at any transverse section of
the structure are defined as

a:%(v—l—z*i)
b=1(v—zxi) €8]

where z is the transient characteristic impedance matrix of the MTL
(i.e., the matrix converting a current traveling wave on the MTL
into the corresponding voltage traveling wave) and * denotes the
convolution operator. The elements of vector a identify the signals
propagating on the line in the direction of positive current flow [see
Fig. 2(a)). The wave variables a and b defined in (1) have dimensions
of Volts and are called voltage waves. Other definitions of wave
variables are possible: current waves, defined as a'® = L(y*xv+1i),
b = Lyxv—i) withY = Z~", are also used in transient problems,
while power waves are typical of microwave applications [10]. The
reason for adopting wave variables defined by the line characteristic
admittance or impedance matrix, as done here, is that they lead to the
matched scattering characterization of the MTL, and, in the widely
diffused case of low-loss structures, this is preferable for the transient
analysis and allows simpler expressions of the sources accounting for
the external field interference (see next section).

The transient scattering equations of the system can be effectively
written based on the scattering characteristics of the various network
elements of Fig. 1. The scattering characterization is derived in the
Appendix. A summary is given in Table 1.

The combination of the scattering characteristics and the interpre-
tation of the final equations is facilitated by a scattering diagram
of the problem, indicating the scattering elements and their wave
signals. The complete scattering diagram of the original problem
is shown in Fig. 2(b). We introduce also the representation of the
driving generators in terms of voltage wave sources, as discussed in
the Appendix and described in Table II.

The - transient equations for the load wave variables indicated in
Fig. 2(b) follow by inspection, i.e.,

h(~L) * ars + %“’ -

bra =h(-L)*ar, + 5 -

b =

@

IR

TABLE I ,
SCATTERING CHARACTERISTICS OF NETWORK ELEMENTS
Element Scattering characteristics
TL section
i(2)
iy e T § ! b,
W et | o ]
" VE 77 5, )
iy(2) i
iwi {b1=h(“2’)*a2
) v, @4 vy \b2= h(-Z) xa;
Lumped load
a .
— . >
=3 o H (f2) o
1 : 1 e
o : b4 b
hnal o iN
Uy a+bh,y*(a-b)| =0
% w fq[ y*(a-b)]
Series voltage generators
: a b
i —>°—ﬁei“°‘- in Q’i’> + "Z’z
o 1‘”21 - -~
ke 7 by [
llN') N + - l?N b a 6’/2
< S o ;=
vy | d v {bz—a12+e/2
77 24
frglers + b1, y* (a1 —br1)] =0
faqlera +bra, g * (ap2 — br2)] =0 €))

where the matrix k(L) is the transmission response of the matched
MTL (i.e., the transient line propagation matrix) and is defined in
the Appendix .

1. FELD-COUPLING VOLTAGE WAVE SOURCES

In this section, we show that the interference effects caused by an
electromagnetic field impinging on the MTL are readily accounted
for by additional source terms included in the transient equations (2).

The effects of an external field on a TL can be modeled by suitable
sets of voltage and currents generators distributed along the line and
located at the line ends. Three different combinations of distributed
and lumped generators can be used, which correspond to the three
equivalent (although different) formulations proposed for the field-
coupling process [1], [3], [4]. We then consider a MTL with a
distribution of series voltage and shunt current generators and show
their transformation into equivalent source terms that fit the model
of Fig. 2. The diagrams of Fig. 3 illustrate the sequence of steps
that are required for the evaluation of the scattering sources at the
line ends. The process starts with infinitesimal voltage dnd current
generators located on each wire of the line, at an arbitrary section
z [Fig. 3(a)]. These generators translate the effects of an external
interfering electromagnetic field, and their presence depends. on the
field coupling formulation adopted: they are both present in case of
a “balanced” formulation [1], while the current source is absent in
case of the “electric-field” formulation [3], and the voltage source is
omitted by the “magnetic-field” formulation [4]. The conversion of*
voltage and current sources into voltage wave generators is readily
accomplished by means of the schemes of Table II, explained in
the Appendix [see Fig. 3(b)). The voltage wave generators are then
moved from the arbitrary section z to the end of the line: this
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TABLE II
VOLTAGE WAVE SOURCES

Rightward voltage wave source

¢
a b,
~ Lo
o——] > ——o {1’1 =ay
- -~ by=a;+c¢

b, a,

Rightward voltage wave source
¢

4 b,
o | > b=a,+c
-~ < -~ bz =a

b a

Voltage wave source representation of
series-voltage generator

e
o %+ o -ef2 ef2

: ~ H g S
o %"’ o

Voltage wave source representation of
shunt-current generator
i
o —0 zxi  zxi

ot

implies the use of the transfer function of the matched MTL, H
[see Fig. 3(c)]. The three-step procedure of Fig. 3 must be repeated
for all line sections, and the result is obtained by integration of all
contributions along the line. This yields

see N
N\
| |

L
By =1 / H(=2)[ZX(s, 2) - E(s, )| dz @

L j— p—
Bp=1 /0 H(: - 0)[ZL(s, 2) + E(s, D) d=. (5

The above integral contributions can be interpreted as two extra
sources to be added at the line ends in the scheme of Fig. 2.
Correspondingly, (2) are completed with the field coupling terms,
and become

b =h(=£) « (azs + ZHT2)
+ Z*t12—81 +bf1
bis =h(=)x (ans + 25521
TR by ©

where the driving generators at the line ends e, 1, include the effects
of the possible field-induced terminal generators.

Our derivation of the source terms (4) and (5) is formally equivalent
to the Green function method used in [11] to compute the circuit
response of a linearly loaded line to an external field. In fact, By, are

oz o]

_El(s,z)dz b fz
+

T1(5, z)dz

7
—EN(s,z)dz
Nt

TN (s,2)dz
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Fig. 3. Voltage wave generators equivalent to the infinitesimal shunt-current
and series-voltage generators induced in the generic section z of the line.
The original current and voltage generators are shown in (a), their equiv-
alent voltage wave sources (for reference impedance Z) in (b), where

dC(e) = 1[27(s, 2)(7)E(s, #)]dz, and the equivalent voltage wave
sources at the line ends in ().

the voltage wave response of the MTL terminated on matched loads
and the transmission operators of the MTL, H(~z), H(z — L), are
the Green functions between any section z and the line ends. When
nonlinear loads are considered, however, closed form expressions of
the circuit response cannot be obtained and the source terms (4) and
(5) offer the simplest possible characterization of the influence of an
external field. In contrast with other possible field-coupling equivalent
sources (e.g., the line Thévénin generators of [12]), (4) and (5) are
free from multiple reflection resonances and their simplicity facilitates
the evaluation and representation of their transient expression to
be used in (6). Besides, the simplicity of the expressions of the
field-coupling voltage-wave sources allows us to construct the line
impulse responses to the external field. Such functions are useful
for the solution of closed loop problems, where the external field is
produced by the transient on the MTL (e.g., consider a power device
inducing an electromagnetic field on the interconnects of its low-
level driving circuit). Finally, the expressions of the voltage wave
sources, highlighting the physical mechanism of the field coupling,
help to study the sensitivity of the MTL to the external interference.
In fact, for a simple two-conductor line where H(z) = exp (—7z),
(4) and (5) can be interpreted as the Laplace transform of the spatial
distributions of the equivalent generators.

In the important case of a plane-wave interfering field, the spatial
integration in the field-coupling sources (4) and (5) can be carried
out analytically. For the following explicit calculations, we refer to
the field-coupling formulation that makes use of scattered voltages
and total currents [3]. This formulation models the field effect with a
continuous distribution of voltage generators proportional to the field
component parallel to the line, and two terminal voltage generators
depending on the transverse field component at the line ends. The
impinging plane wave is defined by its propagation unit vector %
and its electric field polarization unit vector p. The geometry of the
problem is shown in Fig. 4, where the angle § is defined between the
unit vectors & and 71, and the angle ¢ between Z and the projection
of 74 on the (y, z) plane. The expression of E takes the form [12]

E(s, z) = G(s)E(s)e” "%, @)
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Fig. 4. Geometry of the multiconductor transmission line illuminated by an
external interfering field; 72 is the propagation unit vector of the impinging
plane wave, and ¢ and ¢ are its characteristic angles.

where E(s) is the spectrum of the interfering signal, vo = (s/vo)# -
% = s sin § cos /vy is the propagation function in the z direction
of the plane wave (v, is the speed of light in the medium), and G(s)
contains transfer functions depending on the geometry and losses of
the guiding structure. For the above form of E(s, z), (4) becomes

c
Bflz—%/o H(—2z)G(s)E(s)e "% dz

——t[[ mepealowEe @

where the current contribution is not present [i.e., I(s, z) = 0], due
to formulation adopted. Since the matrix of voltage modal profiles is
independent of z, the integral of (8) can be computed separately for
any modal propagation factor, i.e.,

c
Bjp =-IMy diag{/o e~ (mtr0)2 dz}

My G(s)E(s)
1 1 — e~ Otr0)L
=——My di e —
2" diag { Y& + Yo }
- My G(s)E(s). )

This expression can be simplified by factorizing the propagation
matrix of the line:

By == My ding { 1 M7 69) B(6)

Y& + Yo

1 . L e 1
+ = My diag {e” %"} dia, { }
2 el } diag Yk + Yo

M G(s)E(s)e™ "

=L H(~£)e ) My diag {

=3

- My'G(s)E(s).
The field-coupling voltage wave source B - at the other line end can
be treated similarly, and results

Bja—}e ¢ — H(-2)]

Ye + Yo }
(10)

-Mvdiag{% - }M;lc(s)E(s). an
- 70

The inclusion of field-coupling voltage wave sources into (6) can
be simplified, based on a different arrangement of (10) and (11) and
on an interpretation similar to the one shown in Fig. 3. In fact, it is
evident that By is equivalent to a leftward voltage wave source

— 1 1
B = —-My dia;

+%}M7G®E® (12)

located at line end no. 1, plus a leftward voltage wave source

App = % My diag { } My'G(s)E(s)e ™" (13)

Y + Y0
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located at line end no. 2. Similarly, By, is split into two rightward
voltage wave generators at the two line ends, i.e.,

} M 'G(s)E(s)

Zﬂ=~%Mym%{ (14)

Ye — Yo
}M;IG(S)E(S){WC. (15)
0

1
B =§Mvdiag{

Yk —
The new sources Ay, and By, are free from the line propagation
matrix and can be easily inverse-transformed and included in the
system of transient equations. Moreover, this arrangement avoids the
numerical noise that can occur for some incidence directions and field
polarizations, if field-coupling sources computed by direct inversion
of (10) and (11) are used in the transient equations. In fact, noisy
numerical results can arise from the computation, because the by,
values are summed in (6) with similar contributions originating at
the other line end but obtained by convolution with the transient line
propagation matrix.

In summary, the complete transient equations for the network of
Fig. 1 interfered by a plane wave are

)
br1 = h(—L)* (aLZ + & 5 2 +Ef2)

/
vy — €3

2
’
bro = h(—ﬁ) 3 (am -+ ia Sl —|—Ef1>

+ + b1

2
!
Vo > €2 +Ef2
fralary + b1y, y* (arp —brp)] =0

+

(16)

where v, are the vectors of voltage generators at the line ends
accounting for the field component transverse to the line [12].

IV. NUMERICAL EXAMPLE

The proposed approach to the evaluation of interferences on MTL’s
was extensively validated against a conventional frequency domain
analysis tool [5], [12] applied to structures with linear loads: the
results of the two approaches are in perfect agreement, but not shown
here for brevity. We concentrate, however, on the discussion of the
interference effects in a realistic nonlinearly loaded interconnect.

A. Circuit and Models

The circuit of this example is described in Fig. 5, where an
asymmetric 2-land PCB, driven and loaded by inverter gates, is
exposed to an impinging plane wave with a biexponential time
envelope, whose expression is
7t 7

E(t, 7) = pA(e™" /1 — o7V,

t=t—

an

where 7 is the position vector in the reference frame of Fig. 5, A is
a dimensional constant, and ¢y, fo are time constants. The reference
conductor (ideal) of the MTL coincides with the (y, z) plane and the
two lands (of widths w; and ws, and of thickness.d) lie along the z
axis at (z,, £Ay/2), where z, is the thickness of the dielectric
substrate (see Fig. 5 and the parameter values of Table III). The
driving inverters are assumed to be in the HIGH logical state and
are modeled by a two-segment static characteristic in parallel with a
capacitor of 1 pF, whereas the receiving inverters are modeled with
the sole capacitor of 1 pF (see [13]). The two-segment characteristic
is described by the following Thévénin equivalent:

E., =4V,
4092, wp, <4V
Req = { 4509, wpip >4 V. (18)
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TABLE HI
PARAMETER VALUES OF THE EXAMPLE

Interfering plane wave parameters (see

(17))

A 10* V/m
ty 1078 s
t2 10-° s
0 45°

P 60°
p-& 0

Geometrical and electrical characteris-
tics of the line (see Fig. 5)

L 0.25 m

Ay 150 pm

o 200 pm

wy 60 um

we 30 pm

d 30 pm

€, substrate 9

o strip 5.6 x10” m™tQ?!

Line parameters

Rpca 100

Rpc,2 20

Tl 1.27 ns

T2 1.44 ns
AN\ A\

Fig. 5. Top view of the circuit of the numerical example developed in
Section IV. It consists of a low-loss asymmetric 2-land PCB loaded by
inverters. The two driving inverters at z = O are in the HIGH state and
are represented by a nonlinear equivalent [see (18) in the text], while the
receivers at z = £ are simple 1-pF capacitors. The values of the geometrical
and electrical parameters of the line, and of the interfering wave are given
in Table IIL

The transfer functions G = [G1(s), G2(s)]" for the distributed
voltage generators [see (7)] are obtained from the primary electric
field [12] in the stratified dielectric medium, i.e.,

G =.‘Zsin¢cosc9a:oi
)

Vo
: <1¢ﬂ sinwsinei)
2 vﬂ

where the electric field is assumed to be contained in the (y, ) plane,
and the approximations allowed by the condition of a slowly varying
disturbing field (i.e., t1,2 > To/vo, Ay/v,) are also exploited.

The source terms and the line transient characteristics needed in
the system transient equations (16) are obtained by numerical inverse
Laplace Transform [14] of the corresponding frequency functions. In
particular, the sources A5, By, are obtained by means of the inverse
transformation of (12)—(15), whereas k and y come from the inverse
transformation of (see Appendix)

19)

H = My diag {"*“} My

rnj.

L§11

r~ arararars -

"2

~

&
X
T
PSR

LIAE
_0'6 1 L L 1 1
0 0.5 1 15 2 2.5 3

Time (ns)

Fig. 6. Transmission step responses rpq = fot hpq dt' for the 3-conductor
TL of the example discussed in Section IV.

Y =¥ My diag { i} M. 20)
Yk

The MTL is assumed of RLC type, i.c., Z = R(s)+sL andY = sC,

where R, L, and C are the per-unit-length resistance, inductance

and capacitance matrices of the guiding structure, respectively. The

resistance matrix is assumed of the form R(s) = diag {R,}, and its

elements are approximated as in [15], i.e.,

R, V2
Ry(s) = ’QRS\/% : @1)
oo )
3 q

where Rpc,, and R, (/25 are the per-unit-length DC' and high-
frequency skin effect resistances [16] of each copper strip, respec-
tively. This resistance model is one of the simplest available for
rectangular conductors, yet it is fairly adequate for the considered
example, because in the simulation band of interest the line impulse
responses are mainly determined by skin losses. If needed, more
accurate resistance models can be handled by the numerical inversion
of Laplace Transform for a negligible additional computational cost.

The transmission step Tesponses rpq = [y hpq dt’ for the structure
under analysis are shown in Fig. 6. The reason for using such
step responses is that they are easier to represent than the impulse
responses hpq. The differences between the step responses of the
same type in Fig. 6 arise from the longitudinal asymmetry of the
MTL. For this example, the convolution integrals of the transient
scattering equations (16) are computed by representing the unknown
variables as piecewise linear functions with nonuniformly spaced time
samples and by a summation formula involving the step responses
and their integrals (c.g., see [17]). Although the cost of this method
is proportional to the square of the number of time steps, it is suited
for testing purposes, since it offers accurate and reliable results.

Finally, it should be emphasized that the asymmetry of the line
is aimed at showing the feasibility of the proposed approach in the
most general case of MTL structures with frequency dependent modal
profiles. However, for practical applications, in most low-loss MTL’s
(included the one of the example) the frequency dependent modal
profiles can be approximated by the constant modal profiles of the
lossless structure, without appreciable errors in the transient evolution
but with large computational savings.

B. Numerical Results

The end voltages vrp,, obtained with our formulation for the
problem of Fig. 5 are shown in Fig. 7, where the time behavior and
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Fig. 7. Transient end voltages vz,,1 (solid curves) and vr,p (dotted curves)
due to a planc-wave interference on the transmission line loaded by inverters
and shown in Fig. 5.

Time (ns)
Fig. 8. Decomposition of the vr;; waveform of Fig. 7 (dotted curve) in
terms of the transient voltage waves ar1; and bry1 (solid curves). Also,
the source terms Efu and @797 (dashed curves) are shown. In the text, it
is illustrated how these quantities can help in the physical interpretation of
the results.

levels of the noise induced into the electronic system are represented.
The differences between the responses of the two lands are mainly
due to their asymmetry, because the external excitation is nearly
symmetric (i.e., Tp1 & Tspe and bsp1 2 bpp2, due to the small
phase difference of the field on the two conductors) and the line
drivers and loads are symmetric. From the EMC point of view, this
example points out the insensitivity of the structure under study to
the external disturbances, since the signals induced on the line are on
the order of 1 V, for a peak electric field of 10* V/m. The immunity
of the structure is mainly controlled by the distance z, of the signal
conductors from the reference conductor: this distance, that appears
as a multiplicative factor in G, terms [see (19)], is very small in
the structure considered. Significant disturbances can be produced by
moderate external fields in structures that have z, values on the order
of 1072% m and larger, like wired interconnects and communication
cables.

The above example is well suited to evidence an important advan-
tage of our formulation, i.e., its ability to provide an interpretation of
the output waveforms, by shading light on the propagation mecha-
nisms of the external interferences. This is obtained by the adoption
of the voltage waves, that have an intrinsic physical meaning, and
by the form of the external interference generators given at the end
of Section IIl. For example, the vr11 signal shown in Fig. 7 is

Time (ns)

Fig. 9. Long-time evolution of the vr1; and vzo; waveforms.

readily verified and interpreted with the help of Fig. 8, where the
component voltage waves ar11, bri1, and the voltage wave sources
Tfo1, b £11, which are attenuated and slightly distorted replicas of the
field biexponential waveform, are shown.

The voltage wave generators @ya1, b r11 are the only sources for
this example, since the vy, terms are absent due to § - & = 0.
The interpretation of the features of Fig. 8 is then straightforward.
In particular, the 0.3 ns-delay of the field contribution at line end
no. 2 (@s21) is caused by the angle of incidence of the interfering
wave; the initial contribution to bz11 coincides with the source term
gf]] at the same line end, until the contributions of @2, reaches
end no. 1 (in fact, the “even mode” propagation delay is m» =
1.44 ns); the jump from the 40-Q2 branch of the nonlinear load
characteristic to the other branch is evident for £ &~ 2.3 ns (in fact, at
such instant, the instantaneous reflection coefficient becomes positive,
since vri11 becomes larger than 4 V). It should be pointed out that
such detailed physical interpretation of the transient signals is useful
for a qualitative analysis of the circuit behavior: in fact, it can help
the designer to track the interference sources and derive bounds for
the interference levels. )

The long-time evolution of the waveforms v,y is finally repre-
sented in Fig. 9, in order to show the good stability properties of the
proposed approach.

V. CONCLUSION

In this paper, we extend the scattering transient analysis of lossy
MTL’s to include the interference effects produced by an external
electromagnetic field. The advantages of the transient scattering
formulation, i.e., its ability to handle effectively low-loss lines and
its physical meaning are fully exploited. The extension is based
on voltage wave sources depending on the field coupling, that
are directly derived in the scattering parameter framework. Such
equivalent scattering sources are readily available for any field
coupling formulation and have a simple structure, that makes easier
the evaluation of their transient expressions. Besides, their physical
meaning provides insight in the interference process and helps both
the validation of simulation results and the construction of worst-case
rules for circuit qualitative analysis.

The efficiency and accuracy of the proposed approach is demon-
strated in the numerical example of Section IV, where a realistic
nonlinearly loaded highly mismatched two-conductor interconnect
is examined and the results are produced in a matter of minutes
on a personal computer, for an implementation in an interpreted
programming language. The structure of the formulation is also
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suitable for the implementation in standard circuit simulators, thus
increasing the potential of such tools.

APPENDIX

In this Appendix, we derive the scattering characteristics of the ele-
ments of the distributed network of Fig. 1. For simplicity, frequency-
. domain notation is used wherever possible. The discussion is carried
out for the general case of an (N+ 1)-conductor line (of course,
N =1 refers to a two-conductor line). The results are collected in
Tables I and II

A. Transmission Line Section

The scattering description of a two-sided network is
B\ _ofA
(5:)=5(%)
_ (51 Su\ (A
521 S]l AZ

where By and B represent the scattered voltage waves at the ports
(possibly more than one) on sides no. 1 and 2, respectively; A; and
A are the corresponding impinging voltage waves.

There are several ways to obtain the scattering parameter matrices
S11, S12, S21, S22 for a MTL (e.g., see [6]). We obtain them by
exploiting their relationships with the line voltages and currents, i.e.,

Ap = %(Vp + ZI,)
B, = %(Vp -ZI,), p=12.

(22)

23

In fact, the vectors of voltage V() and current I(z) distributions
along the MTL have the following structure:

V(z)=H(-2)Vt + H(z)V~

I(z)=Y[H(-2)V* — H(z)V ] 24)

where VT, V'~ are constant vectors determined by the line boundary
conditions, Y is the line characteristic admittance matrix, H(z) =
My diag {e"**}M" is the line propagation mairix, My is the
matrix of voltage modal profiles, v are the modal propagation
constants, and the z axis is assumed to originate at line end no. 1 and
directed toward line end no. 2. The matrix of voltage modal profiles
and the modal propagation constants are solutions of the eigenvalue
problem

ZYMy = My diag {+}} (25)

where Z and Y are the per-unit-length line impedance and admittance
matrices, respectively.

If we consider the TL diagram in the first row of Table I, we can
substitute (24) in (23), obtaining the following relations in matrix

form:
(ﬁ;) B (H o (1)) G;t) 26)
@;) B (fll H(()ﬁ)) (gt) @

The steps necessary for the computation of A; are shown for example,
ie.,
1
A, = '2-(V1 +ZI)
=Li[V(z=0)+ ZI(z = 0)]
=1Vt +V +2ZY(VT -V7))
=vt (28)

where, of course, ZY = 1

The substitution of (26) and (27) into the left- and right-hand side
of (22) yields an expression for the scattering super-matrix S, i.e.,

5= (H(?—ﬁ) (1)) ((1) H(()ﬁ))_l

~(a2e) 37

where H'(£) = H(—L) has been used.
Finally, the matched scattering characteristic of the MTL in the
time domain is

() =(e ") (@)

h(=L) = £ [My diag {e—*k“}M;I].

29

(30)

(31

The scattering characteristics for a general (nonmatched) reference
impedance matrix can be obtained similarly. In such a case, the
relations between the voltage waves and the solution constants
of (26) and (27) are represented by full matrices involving the
reflection coefficient between the selected reference impedance and
the line characteristic impedance. However, in this paper we limit
our discussion to the matched scattering characteristics since, in the
widely diffused case of low-loss lines, the transient expressions of
the nonmatched scattering parameters contain multiple peaks and are
difficult to compute and represent.

B. Lumped Loads

The load scattering characteristics are simply obtained by substi-
tuting v and ¢ in the load characteristic in terms of the voltage wave
variables a and b. The resulting equations fy[a + b, y* (a —b)] = 0
(second row of Table I) are used to compute the voltage wave a
reflected by the load, for a known impinging voltage wave b. It
should be remarked that we express the load equations by means
of the transient characteristic admittance, because y(¢) has finite
asymptotic values also for the RLC TL [18], which is the most
common interconnect model. For the same reason, current waves
rather than voltage waves should be used in RLC lines, since they
are defined for steady state (s = 0) problems, too. Voltage waves are
used in this paper instead, because we assume they are more familiar
to the reader.

C. Lumped Sources

The scattering representation in the third row of Table I follows
from (23), by means of the definition of the ideal series voltage
source, i.e.,

Bl = %(Vl - ZIl)
= %(Vg —-FE+ ZI2)
E
By =3(V2 - ZI1)

=LV, + E+2IL)

Sy 32)

Also, we found useful the definition of voltage wave sources
as in the first and second rows of Table II. They are elements
transparent to the voltage waves impinging on them and simply add
their signal to the output voltage wave propagating in the direction
of the arrow. Voltage wave sources allow a unified representation
of voltage and current generators and help in the evaluation of the
scattering characteristics of complex nonautonomous networks (e.g.,
see Section ITI). The last two rows of Table II show the use of voltage
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Fig. 10. Electric equivalent of the “voltage wave source” block. In (a), a
circuit equivalent is derived, and in (b) it is used to convert a voltage wave
source C, defined for the characteristic reference impedance Z, to the case
of an arbitrary reference impedance Z..

wave sources to represent the series voltage generators and the shunt
current generators. The equivalence shown in row 3 of Table O is
obtained by direct comparison of the scattering characteristics of row
3 of Table I with rows 1 and 2 of Table II. The equivalence for the
current generators follows similarly.

In Fig. 10(a) it is also shown that the voltage wave sources have
an electric equivalent. The basic steps of the demonstration are
graphically represented in Fig. 10(a); the equivalence follows from
the properties of rows 3 and 4 of Table II. The electric equivalent
can be used to find how a given voltage wave source changes
when the reference impedance defining the voltage waves is varied,
as it is shown by the sequence in Fig. 10(b). The equivalence of
Fig. 10(b) allows us to obtain the source terms for the nonmatched
characteristics from the sources of the matched characteristics, that
are much easier to compute.
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