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GRAY IDENTITIES, CANONICAL CONNECTION AND

INTEGRABILITY

ANTONIO J. DI SCALA AND LUIGI VEZZONI

Abstract. We characterize quasi Kähler manifolds whose curvature tensor
associated to the canonical Hermitian connection satis�es the �rst Bianchi
identity. This condition is related with the third Gray identity and in the
almost Kähler case implies the integrability. Our main tool is the existence of
generalized holomorphic frames introduced by the second author previously.
By using such frames we also give a simpler and shorter proof of a Theo-
rem of Goldberg. Furthermore we study almost Hermitian structures having
the curvature tensor associated to the canonical Hermitian connection equal
to zero. We show some explicit examples of quasi Kähler structures on the
Iwasawa manifold having the Hermitian curvature vanishing and the Riemann
curvature tensor satisfying the second Gray identity.

1. Introduction

Quasi Kähler and almost Kähler manifolds are special classes of almost Hermitian
manifolds and can be considered as natural generalizations of Kähler manifolds to
the context of almost symplectic and symplectic manifolds. It is well known that
if (M,ω) is a (almost) symplectic manifold, then there always exists an almost
complex structure J compatible with ω. Furthermore the choice of such an almost
complex structure is unique up to homotopy. Hence quasi Kähler and almost Kähler
structures can be consider as a tool to study (almost) symplectic manifolds.

The interplay between the integrability of almost Hermitian structures and the
curvature has been largely studied in the last years (see e.g. [3], [11] and the
references therein). One of the most important results in this topics is due to
Goldberg. Indeed Goldberg in [10] proved that if the Riemann curvature tensor
of an almost Kähler metric g satis�es the �rst Gray condition, i.e. if it commutes
with the almost complex structure, then g is a Kähler metric. Gray's conditions
were introduced in [9] and consist of some formulae involving the curvature tensor
of an almost Hermitian metric and the associated almost complex structure. The
Goldberg theorem has been further generalized to the following formula:

(1) s∗ − s = ‖∇ω‖2 ,
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2 ANTONIO J. DI SCALA AND LUIGI VEZZONI

where s and s∗ are the scalar curvature and the ∗-scalar curvature associated to an
almost Kähler structure (g, J, ω) respectively (see e.g. [3]). The classical proof of
this result is based on the Weitzenböck decomposition.

Another important curvature tensor in almost Hermitian geometry is the Her-

mitian curvature tensor R̃. This tensor is de�ned as the curvature of the unique

Hermitian connection ∇̃ whose torsion has (1, 1)-part vanishing.
In [6] de Bartolomeis and Tomassini proved that a quasi Kähler manifold al-

ways admits a special complex frame. This result has been improved by the second
author in [17] introducing generalized normal holomorphic frames. Such frames
have been further taken into account in [18] to prove that if the holomorphic bi-
sectional curvature associated to an almost Kähler metric g and the holomorphic
bisectional curvature associated to the canonical connection coincides, then g is a
Kähler metric. This result is not trivial, since the Hermitian curvature tensor does
not necessary satisfy the �rst Bianchi identity.

As �rst result of this paper we give a new proof of formula (1). Our proof is
elementary and does not make use of the Weitzenböck decomposition, but of the
existence of generalized normal holomorphic frames only. Sections 3, 4 are dedicated
to the study of the Hermitian curvature tensor in quasi Kähler and almost Kähler
manifolds. We show that in the quasi Kähler case this curvature tensor satis�es
the �rst Bianchi identity if and only if the curvature of g satis�es both the third
Gray condition and another special identity involving the derivative of the Nijenhuis
tensor. Namely,

Theorem 1.1. Let (M, g, J, ω) be a quasi Kähler manifold. The Hermitian curva-

ture tensor R̃ satis�es the �rst Bianchi identity

(2) S
X,Y,Z

R̃(X,Y, Z, ·) = 0 , for every X,Y, Z ∈ Γ(TM)

if and only if the following conditions hold:

1. the curvature tensor R associated to g satis�es the third Gray identity

R(Z1, Z2, Z3, Z4) = 0 , for every Z1, Z2, Z3, Z4 ∈ Γ(T 1,0M) ;

2. we have

R(Z1, Z2, Z3, Z4) =
1
4
F (Z3, Z1, Z2, Z4)

for every Z1, Z2, Z3, Z4 ∈ Γ(T 1,0M), where F is the tensor

F (X,Y, Z,W ) := g((∇XN)(Y, Z),W ) ,

∇ is the Levi-Civita connection of g and N denotes the Nijenhuis tensor.

The previous theorem allows us to prove the following

Corollary 1.2. Let (M, g, J, ω) be an almost Kähler manifold. Assume that the

Hermitian curvature tensor associated to (g, J) satis�es the �rst Bianchi identity

(2), then (M, g, J, ω) is a Kähler manifold.

In section 4 we study almost Hermitian manifolds whose Hermitian curvature
tensor vanishes. By corollary 1.2 this condition forces a 4-dimensional quasi Kähler
structure to be Kähler. In higher dimensions things work di�erently even in the
compact case. We show that it is possible to construct examples of strictly quasi
Kähler nilmanifolds having the Hermitian curvature equal to zero.
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The study of the tensor R̃ is also related with a conjecture of Donaldson. Indeed,

R̃ has been recently taken into account by Tosatti, Weinkove and Yau in [15] to
study a Donaldson's conjecture stated in [5]. More precisely, they proved that if
(M,ω) is a symplectic manifold, J is an almost complex structure tamed by ω and
R(g, J) denotes the tensor

(3) Rijkl(g, J) := R̃j

ikl
+ 4Nr

lj
N i

rk
,

where g is the metric associated to (ω, J) and N is the Nijenhuis tensor of J , then
condition R(g, J) ≥ 0 implies that the Donaldson's conjecture holds.

It is important to observe that in the examples described in section 4 the tensor
R(g, J) vanishes.

Acknowledgments: We would like to thank Simon Salamon for useful conver-
sations. We are also grateful to Sergio Console, Valentino Tosatti, Anna Fino and
Sergio Garbiero for useful suggestions and remarks. We thank also the referee for
his help to improve the presentation of our results.

Notation. Given a di�erential manifold M , TM denotes its tangent bun-
dle. If a vector bundle F is �xed, then Γ(F ) denotes the vector space of the
relative smooth sections. If Zi is a complex vector �eld on a manifold M , then we
usually write Zi instead of Zi. The cyclic sum is denoted with the symbol S.

2. Review

2.1. Almost Hermitian manifolds. Let M be a 2n-dimensional manifold. An
almost complex structure on M is an endomorphism J of TM satisfying J2 = −Id.
An almost complex structure J is said to be integrable if the Nijenhuis tensor

N(X,Y ) := [JX, JY ]− J [JX, Y ]− J [X, JY ]− [X,Y ] , for X,Y ∈ Γ(TM)

vanishes everywhere. In view of the celebrated Newlander-Nirenberg Theorem (see
[12]), J is integrable if and only if it is induced by a system of holomorphic co-
ordinates. Any almost complex structure on M induces a natural splitting of the
complexi�ed tangent bundle into

TM ⊗ C = T 1,0M ⊕ T 0,1M ,

where T 1,0M and T 0,1M are the eigenspaces relatively to i and −i, respectively.
Consequently the vector bundle ∧pM ⊗ C of complex p-forms on M splits as

∧pM ⊗ C =
⊕

r+s=p

∧r,sM .

Since

d(Γ(∧r,sM)) ⊆ Γ(∧r+2,s−1M ⊕ ∧r+1,sM ⊕ ∧r,s+1M ⊕ ∧r−1,s+2M) ,

then the exterior derivative splits as

d = A+ ∂ + ∂ +A .

It is well known that J is integrable if and only if A = 0. Furthermore, it can be
useful to observe that the Nijenhuis tensor satis�es

(4) N(Z1, Z2) ∈ Γ(T 0,1M) , N(Z1, Z2) = 0
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for every Z1, Z2 ∈ Γ(T 1,0M). A Riemannian metric g on (M,J) is said to be J-
Hermitian if it is preserved by J . In this case the pair (g, J) is called an almost

Hermitian structure. Any almost Hermitian structure (g, J) induces a natural al-
most symplectic structure ω(·, ·) := g(J ·, ·).

De�nition 2.1. The triple (g, J, ω) is called:

• a quasi Kähler structure if ∂ω = (dω)1,2 = 0;
• an almost Kähler structure if dω = 0.

On the other hand, if ω is a non-degenerate 2-form on an almost complex man-
ifold (M,J), the we say that J is tamed by ω if

ω(X,JX) > 0 , for all X 6= 0 .

In this case we can de�ne a Riemannian metric g by

g(X,Y ) :=
1
2

(ω(X, JY ) + ω(Y, JX)) .

The following lemma will be useful in the sequel (see e.g. [13, 17])

Lemma 2.2. Let (M, g, J, ω) be an almost Hermitian manifold and let ∇ be the

Levi-Civita connection associated to g. Then the following facts hold:

a. The form ω is quasi Kähler if and only if

(5) ∇Z1
Z2 ∈ Γ(T 1,0M) , for all Z1, Z2 ∈ Γ(T 1,0M) ;

b. The form ω is almost Kähler if and only if it is quasi Kähler and the

Nijenhuis tensor of J satis�es

(6) g(∇Z1Z2, Z3) =
1
4
g(N(Z2, Z3), Z1)) , for all Z1, Z2, Z3 ∈ Γ(T 1,0M) .

Proof. It is well known that for an almost Hermitian structure (g, J, ω) the following
fundamental relation holds

(7) 2g((∇XJ)Y,Z) = dω(X, JY, JZ)− dω(X,Y, Z) + g(N(Y,Z), JX) ,

for everyX,Y, Z ∈ Γ(TM). The items a. and b. can be obtained just by considering
the complex extension of (7). �

2.2. The canonical connection. A linear connection on an almost Hermitian
manifold (M, g, J) is called Hermitian if it preserves g and J . Any almost Hermitian

manifold admits a canonical Hermitian connection ∇̃, which is characterized by the
following properties

∇̃g = 0 , ∇̃J = 0 , Tor(∇̃)1,1 = 0 ,

where Tor(∇̃)1,1 denotes the (1, 1)-part of the torsion of ∇̃. In the special case of

a quasi Kähler structure, ∇̃ is given by

∇̃ = ∇− 1
2
J∇J ,

where ∇ is the Levi-Civita connection of g (see for instance [8]). We will call ∇̃ sim-

ply the canonical connection. The connection ∇̃ induces the Hermitian curvature

tensor

R̃(X,Y, Z,W ) = g(∇̃X∇̃Y Z − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z,W ) .
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Since ∇̃ preserves g, one has

R̃(X,Y, Z,W ) = −R̃(Y,X,Z,W ) = −R̃(X,Y,W,Z) .

Note that since ∇̃ has torsion, in general R̃ does not satis�es the �rst Bianchi

identity (2). Moreover in general we don't have R̃(X,Y, Z,W ) = R̃(Z,W,X, Y ).

2.3. The Gray conditions. In [9] Gray considered some special classes of almost
Hermitian manifolds characterized by some identities involving the curvature ten-
sor.

De�nition 2.3. Let (M, g, J) be an almost Hermtian manifold and let R be the
curvature tensor of g. Then R is said to satisfy

• the �rst Gray identity (G1) if R(Z1, Z2, ·, ·) = 0;
• the second Gray identity (G2) if R(Z1, Z2, Z3, Z4) = R(Z1, Z2, Z3, Z4) = 0;
• the third Gray identity (G3) if R(Z1, Z2, Z3, Z4) = 0;

for every Z1, Z2, Z3, Z4 ∈ Γ(T 1,0M).

Clearly one has

(G1) =⇒ (G2) =⇒ (G3)
and that the curvature tensor of a Kähler manifold satis�es (G1). Furthermore,
in view of a Theorem of Goldberg (see [10]), any almost Kähler manifold whose
curvature tensor satis�es (G1) is a genuine Kähler manifold. The same can not
be claimed for the condition (G2). Indeed in dimension greater than 6 there exist
examples of compact strictly almost Kähler manifolds whose curvature tensor sat-
is�es (G2) (see [4]). In dimension 4 there is a di�erent behavior since we have the
following theorem due to Apostolov, Armstrong and Dr ghici:

Theorem 2.4 ([2], Theorem 2). In dimension 4 there are no compact strictly

almost Kähler manifolds whose curvature tensor satis�es (G3).

2.4. Generalized normal holomorphic frames. Let (M, g, J, ω) be a 2n-
dimensional almost Hermitian manifold. Denote by ∇ the Levi-Civita connection
associated to the metric g, by R the curvature tensors associated to ∇ and by N
the Nijenhuis tensor of J .

De�nition 2.5. Let o be an arbitrary point in M . A generalized normal holo-

morphic frame (or shortly a g.n.h.f ) around o is a local (1, 0)-complex frame
{Z1, . . . , Zn} satisfying the following properties:

a. ∇iZj(o) = 0 ;

b. ∇iZj(o) is of type (0, 1) ;
c. gij(o) = δij , dgij(o) = 0 ;

d. ∇i∇jZk(o) = 0 ;
for every i, j, k = 1, . . . , n.

We can recall the following

Theorem 2.6 ([17], Theorem 1). The following facts are equivalent

a. ω is a quasi Kähler form;

b. Any point o in M admits a generalized normal holomorphic frame.
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The following lemma, whose proof is similar to the one of Theorem 3.3 of [18], will
be useful in the sequel

Lemma 2.7. Let F be the smooth tensor on M de�ned by

F (X,Y, Z,W ) := g((∇XN)(Y,Z),W ) for X,Y, Z,W ∈ Γ(TM) .

Consider an arbitrary point o of M and let {Z1, . . . , Zn} be a g.n.h.f. around o.
Then

Fijkl(o) = 4g([Zj , Zk],∇iZl)(o)
for every i, j, k, l = 1, . . . , n.

The next result is a slight improvement of Theorem 3.3 of [18] and can be viewed
as a corollary of Lemma 2.7

Theorem 2.8. Let (M, g, J, ω) be a quasi Kähler manifold and assume that the

Nijenhuis tensor of J satis�es

(8) S
X,Y,Z

∇XN(Y, Z) = 0 , ∀X,Y, Z ∈ Γ(TM) ,

then J is integrable.

Proof. Let o ∈M and let {Z1, . . . , Zn} be a g.n.h.f. around o. By (4), we have

Nik(o) = 0 ; Nik(o) ∈ T 0,1
o M , for every i, j = 1, . . . , n .

Furthermore, by the properties of the g.n.h.f., we have

S
i,j,k

(∇iN)(Zj , Zk)(o) = ∇i(N(Zj , Zk))(o) .

Hence equation (8) implies (∇iN)jk = 0 which, in view of Lemma 2.7, is equivalent
to N = 0. �

A direct computation gives the following

Proposition 2.9. The components of the curvature tensor with respect to a g.n.h.f.

{Z1, . . . , Zn} around a point o write as

Rijkl(o) = −g(∇j∇iZk, Zl)(o) ;

Rijkl(o) = g(∇i∇jZk, Zl)(o) ;

Rijkl(o) = −g(∇[Zi,Zj ]
Zk, Zl)(o) ;

Rijkl(o) = g(∇i∇jZk, Zl)(o)− g(∇j∇iZk, Zl)(o) .

2.5. Proof of formula (1). The aim of this section is to give an alternative proof
of formula (1) without use the Weitzenböck decomposition:

Proof of formula (1). Let (M, g, J, ω) be an almost Kähler manifold. First of all
we recall the de�nition of the ∗-Ricci tensor and the ∗-scalar curvature

r∗(X,Y ) :=
2n∑
i=1

R(JX, JXi, Xi, Y ) , s∗ :=
2n∑
i=1

r∗(Xi, Xi) ,

where {X1, . . . , X2n} is an arbitrary orthonormal frame onM . It is easy to see that
in complex coordinates the scalar curvature and the ∗-scalar curvature write as

s = 2
n∑

i,j=1

{Rijji −Rijij} , s∗ = 2
n∑

i,j=1

{Rijji +Rijij} ,
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being {Z1, . . . , Zn} an arbitrary unitary (1, 0)-frame on M . In particular

s∗ − s = 4
n∑

i,j=1

Rijij

and formula (1) can be rewritten as

n∑
i,j=1

Rijij =
1
4
‖∇ω‖2 .

Fix an arbitrary point o of M and let {Z1, . . . , Zn} be a g.n.h.f. around o. Since
∇iZj(o) ∈ T 0,1

o M , then Nij(o) = −4[Zi, Zj ](o); hence formula (6) reads at o as

g([Zi, Zj ], Zl)(o) = −g(∇lZi, Zj)(o) .

Since {Z1, . . . , Zn} is an unitary frame we have

[Zi, Zj ](o) = −
n∑

l=1

Γj
li(o)Zl(o) ,

where Γj
li := g(∇lZi, Zj). Furthermore we have

Rijij(o) = −g(∇[Zi,Zj ]Zi, Zj)(o) =
n∑

l=1

Γj
lig(∇lZi, Zj)(o)

=
n∑

l=1

Γj
li(o)Γ

j

li
(o) =

n∑
l=1

|Γj
li|

2(o) .

Hence
n∑

i,j=1

Rijij(o) =
n∑

l,i,j=1

|Γj
li|

2(o)

and the claim follows since (∇Zω)(X,Y ) = 1
2g(N(X,Y ), JZ) . �

Condition (1) is related to the subspace W4 described in [16, pag. 372] (see also
[7] where W4 = C4). Indeed, by using Lemma 4.5 at page 371 in [16] it is easy to
see that the projection RW4 of R to W4 is given by

RW4 =
(s− s∗)

16n(n− 1)
=

1
4n(n− 1)

n∑
i,j=1

Rijij =
1

16n(n− 1)
‖∇ω‖2 .

3. The first Bianchi identity for the Hermitian curvature

In this section we are going to prove Theorem 1.1 and its Corollary 1.2.

Let ∇̃ be the canonical connection associated to a quasi Kähler structure (g, J, ω)
on a 2n-dimensional manifold M . We have

Lemma 3.1. Let Z1, Z2 be two arbitrary (1, 0)-vector �elds on M . Then

∇̃Z1Z2 ∈ Γ(T 1,0M) , ∇̃Z1
Z2 = ∇Z1

Z2 ∈ Γ(T 1,0M) .

Proof. It is enough to consider the de�nition of ∇̃ and to apply Lemma 2.2. �

As a direct consequence of Lemma 3.1 we have the following
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Proposition 3.2. Let {Z1, . . . , Zn} be an arbitrary (1, 0)-frame on M and let R̃
be the Hermitian curvature tensor of M . Then

1. R̃ijkl = Rijkl ;
2. R̃ijkl = R̃ijkl = R̃ijkl = 0 .

Lemma 3.3. Let o be an arbitrary point of M and let {Z1, . . . , Zn} be a g.n.h.f.

around o. Then

∇̃iZj(o) = 0 , ∇̃iZj(o) = 0 , for any i, j = 1, . . . , n ,

i.e. the canonical connection acts on generalized normal holomorphic frames in

quasi Kähler manifolds as the Levi-Civita connection acts on normal holomorphic

frames in Kähler manifolds.

Proof. Let {Z1, . . . , Zn} be a g.n.h.f. around o. Since ∇iZj(o) ∈ T 0,1
o M , then we

have

∇̃iZj(o) =
1
2
{∇iZj − J∇iJZj}(o) =

1
2
∇iZj(o)− i

1
2
J∇iZj(o)

=
1
2
∇iZj(o)− 1

2
∇iZj(o) = 0 .

Moreover since ∇iZj(o) = 0, we have

∇̃iZj(o) =
1
2
{∇iZj − J∇iJZj}(o) =

1
2
∇iZj(o)− i

1
2
J∇iZj(o) = 0

and the claim follows. �

We have the following

Proposition 3.4. The components of the Hermitian curvature tensor R̃ with re-

spect to a g.n.h.f. {Z1, . . . , Zn} around a point o write as

1. R̃ijkl(o) = Rijkl(o)− g(∇iZk,∇jZl)(o) ;
2. R̃ijkl(o) = Rijkl(o) ;
3. R̃ijkl(o) = R̃ijkl(o) = R̃ijkl(o) = 0 .

Proof. The items 2. and 3. come from Proposition 3.2. The proof the �rst identity
can be obtained as follows:
By de�nition of R̃ and the equation [Zi, Zj ](o) = 0, we have

R̃ijkl(o) = g(∇̃i∇̃jZk − ∇̃j∇̃iZk − ∇̃[Zi,Zj ]
Zk, Zl)(o)

= g(∇̃i∇̃jZk − ∇̃j∇̃iZk, Zl)(o) .

Applying Lemma 3.1 and Lemma 3.3, we get

R̃ijkl(o) =g(∇̃i∇̃jZk − ∇̃j∇̃iZk, Zl)(o)

=g(∇̃i∇jZk, Zl)(o)− g(∇̃j∇̃iZk, Zl)(o)

=Zig(∇jZk, Zl)(o)− g(∇jZk, ∇̃iZl)(o)− Zjg(∇̃iZk, Zl)(o)

+ g(∇̃iZk, ∇̃jZl)(o)

=Zig(∇jZk, Zl)(o)− Zjg(∇̃iZk, Zl)(o) .
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Finally, taking into account Lemma 2.2 and that ∇ and ∇̃ preserve g, we obtain

R̃ijkl(o) =Zig(∇jZk, Zl)(o)− Zjg(∇̃iZk, Zl)(o)

=g(∇i∇jZk, Zl)(o) + g(∇jZk,∇iZl)(o)

− ZjZigkl(o) + Zjg(Zk, ∇̃iZl)(o)

=− ZjZigkl(o) + Zjg(Zk, ∇̃iZl)(o)

=− Zjg(∇iZk, Zl)(o)− Zjg(Zk,∇iZl)(o)

− Zjg(Zk,∇iZl)(o)

=− g(∇j∇iZk, Zl)(o)− g(∇iZk,∇jZl)(o)

− g(∇jZk,∇iZl)(o)− g(Zk,∇j∇iZl)(o)

=Rijkl(o)− g(∇iZk,∇jZl)(o) ,

i.e.

R̃ijkl(o) = Rijkl(o)− g(∇iZk,∇jZl)(o) ,

and the claim follows. �

Now we are ready to prove Theorem 1.1:

Proof of Theorem 1.1. Let o ∈ M be an arbitrary point and let {Z1, . . . , Zn} be a
g.n.h.f. around o. By Proposition 3.4, we have

S
i,j,k

R̃ijkl(o) = S
i,j,k

R̃ijkl(o) = 0 .

Moreover

(9) S
i,j,k

R̃ijkl(o) = Rkijl(o) .

Furthermore

S
i,j,k

R̃ijkl(o) =R̃ijkl(o) + R̃kijl(o) + R̃jkil(o)

=R̃ijkl(o) + R̃jkil(o)

=Rijkl(o) +Rjkil(o)− g(∇iZk,∇jZl)(o) + g(∇kZi,∇jZl)(o)

=−Rkijl(o)− g([Zi, Zk],∇jZl)(o) ,

i.e.

(10) S
i,j,k

R̃ijkl(o) = Rikjl(o)− g([Zi, Zk],∇jZl)(o) .

Hence the Hermitian curvature R̃ satis�es the �rst Bianchi identity at o if and only
if the following equations hold:

Rkijl(o) = 0 ;(11)

Rikjl(o)− g([Zi, Zk],∇jZl)(o) = 0 .(12)

Equation (11) is the third Gray condition, while, in view of Lemma 2.7, equation
(12) is satis�ed if and only if

R(Z1, Z2, Z3, Z4) =
1
4
g((∇Z3

N)(Z1, Z2), Z4)

for every Z1, Z2, Z3, Z4 ∈ Γ(T 1,0M). �
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Now we can prove Corollary 1.2.

Proof of Corollary 1.2. Assume that (M, g, J, ω) is an almost Kähler manifold and

let R̃ be the Hermitian curvature of (g, J). Fix an arbitrary point o ofM , consider a

g.n.h.f. {Z1, . . . , Zn} around o and assume that R̃ satis�es the �rst Bianchi identity.
Then, in view of Theorem 1.1, we have

0 = Rikjl(o)− g([Zi, Zk],∇jZl)(o) = −g(∇[Zi,Zk]Zj , Zl)(o)− g([Zi, Zk],∇jZl)(o) ,

i.e.

(13) g(∇[Zi,Zk]Zj , Zl)(o) = −g([Zi, Zk],∇jZl)(o) .

In particular

g([Zi, Zk],∇jZl)(o) = −g([Zi, Zk],∇lZj)(o) ,

i.e. g([Zi, Zk],∇jZl)(o) is skew-symmetric with respect to the indexes j, l. In view

of formula (6), we have

g(∇[Zi,Zk]Zj , Zl)(o) =
1
4
g(Njl, [Zi, Zk])(o) = −g([Zj , Zl], [Zi, Zk])(o)

=− 2g([Zi, Zk],∇jZl)(o)

Hence equation (13) implies

g([Zi, Zk],∇jZl)(o) = 0

which forces J to be integrable. �

4. The condition R̃ = 0 in quasi Kähler manifolds

In this section we investigate the case R̃ = 0. We start by considering the following
preliminar

Lemma 4.1. Let (M, g, J, ω) be a quasi Kähler manifold. Then the following are

equivalent:

1. the curvature tensor of the canonical connection associated to (g, J) van-

ishes;

2. every o ∈M admits an open neighborhood U and a complex unitary (1, 0)-
frame {Z1, . . . , Zn} on U such that

∇iZj ∈ Γ(T 0,1U) , ∇iZj = 0 , i, j = 1, . . . , n .

Proof. The condition R̃ = 0 is equivalent to require that every point o ofM admits
an open neighborhood U equipped with a complex unitary (1, 0)-frame {Z1, . . . , Zn}
such that

(14) ∇̃iZj = 0 , ∇̃iZj = 0 , i, j = 1, . . . , n .

Since

∇̃iZj = 0 =
1
2
∇iZj −

1
2
J∇iJZj =

1
2
∇iZj −

1
2

i J∇iZj ;

and

∇̃iZj = 0 =
1
2
∇iZj −

1
2
J∇iJZj =

1
2
∇iZj −

1
2

i J∇iZj ,

then (14) is equivalent to require that ∇iZj ,∇iZj ∈ Γ(T 0,1U) for every i, j =
1, . . . , n. By the assumption on M to be quasi Kähler we have ∇iZj = 0. �
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Remark 4.2. Note that the second item of the previous Lemma in particular

implies that if g is an R̃-�at quasi Kähler metric, then we can always �nd a local
unitary (1, 0)-coframe {ζ1, . . . , ζn} such that

∂ζi = ∂ζi = 0 , i = 1, . . . , n .

We recall that a 4-dimensional quasi Kähler manifold is always almost Kähler.

Hence, in view of Theorem 1.1, if a 4-dimensional quasi Kähler manifold has R̃ = 0
then it is Kähler. In greater dimension things work di�erently:

Theorem 4.3. There exists a quasi Kähler structure (g0, J0, ω0) on the Iwasawa

manifold with the following properties:

1. the Hermitian curvature of (g0, J0) vanishes;

2. the Riemann curvature of g0 satis�es the second Gray identity (G2).

Proof. Let G be the complex Heisenberg group

G :=


 1 z1 z2

0 1 z3
0 0 1

 : zi ∈ C , i = 1, 2, 3


and letM be the compact manifoldM = G/Γ, where Γ is the co-compact lattice of
G formed by the matrices with integral entries. ThenM is the Iwasawa manifold. It
is well known thatM admits a global frame B = {X1, X2, X3, X4, X5, X6} satisfying
the following structure equations

[X1, X2] = X3 , [X4, X5] = −X3 [X2, X4] = X6 , [X5, X1] = X6 .

Let J0 be the almost complex structure de�ned on the basis B by

J0X1 = X4 , J0X2 = X5 , J0X3 = X6 ,

J0X4 = −X1 , J0X5 = −X2 , J0X6 = −X3 ,

let g0 be the J0-almost Hermitian metric

g0 =
6∑

i=1

αi ⊗ αi ,

and let
ω0 := α1 ∧ α4 + α2 ∧ α5 + α3 ∧ α6 ,

being {α1, . . . , α6} the dual frame of B. Then (g0, J0, ω0) is a quasi Kähler structure
on M .
The almost complex structure J0 induces the (1, 0)-frame

Z1 = X1 − iX4 , Z2 = X2 − iX5 , Z3 = X3 − iX6 .

Clearly
[Z1, Z2] = 2Z3 , [Z1, Z2] = 2Z3

and all other brackets involving the vectors of the frame vanish. Furthermore, a
direct computation gives ∇iZj = 0, for i, j = 1, 2, 3 and

∇1Z1 = 0 , ∇2Z1 = −Z3 , ∇3Z1 = Z2 ,

∇1Z2 = Z3 , ∇2Z2 = 0 , ∇3Z2 = Z1 ,

∇1Z3 = −Z2 , ∇2Z3 = Z1 , ∇3Z3 = 0

where ∇ is the Levi-Civita connection associated to g0. Hence ∇iZj ∈ Γ(T 0,1M)
and in view of Lemma 4.1 the Hermitian curvature tensor of (g0, J0) vanishes.
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Furthermore a straightforward application of our formulae yields that the curvature
tensor associated to g0 satis�es the second Gray identity. �

Remark 4.4. The almost Hermitian structure J0 described in the proof of the
above theorem corresponds to the almost complex structure denoted by J3 [1].

The Iwasawa manifold is (in some fashion) the unique example of a 6-dimensional

non-Kähler almost complex nilmanifold admitting a quasi Kähler R̃-�at metric.
More precisely we have the following

Theorem 4.5. Let (G, J) be a 6-dimensional Lie group equipped with a left-

invariant non-integrable almost complex structure admitting a J-compatible quasi

Kähler metric g with vanishing Hermitian curvature tensor. Then the Lie alge-

bra of G endowed with the almost complex structure induced by J is isomorphic as

complex Lie algebra to the one of the complex Heisenberg group equipped with the

almost complex structure induced by J0.

Proof. Let g be the Lie algebra of G. In view of Lemma 4.1 there exists a complex
(1, 0)-frame {Z1, Z2, Z3} on g such that

[Zi, Zj ] =
3∑

k=1

Ak
ijZk , [Zi, Zj ] = 0 , i, j = 1, 2, 3.

Since J is by hypothesis non-integrable, there exists at least a bracket di�erent
from zero. We may assume

[Z1, Z2] 6= 0 .

Now we observe that A3
12 6= 0. Indeed, if by contradiction A3

12 = 0, then

[Z1, Z2] = A1
12Z1 +A2

12Z2

and by the Jacobi identity

0 = [[Z1, Z2], Z1] = −A2
12[Z1, Z2] ,

0 = [[Z1, Z2], Z2] = −A1
12[Z1, Z2]

which implies [Z1, Z2] = 0. Hence A3
12 has to be di�erent from zero and, conse-

quently,

W1 := Z1 , W2 = Z2 W3 :=
1
A3

12

(Z3 −A1
12
Z1 −A2

12
Z2)

is a (1,0)-frame on (g, J). Such a frame satis�es

[W1,W2] = W3 .

Finally, using again the Jacobi identity, we get

0 = [[W1,W2],W1] = −[W2,W3] ,

0 = [[W1,W2],W2] = −[W1,W3] ,

i.e.
[W2,W3] = [W1,W3] = 0

which ends the proof. �

It is possible to �nd some non-equivalent quasi Kähler structures on the Iwasawa

manifold having R̃ = 0. For instance we have the following example
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Example 4.6. It easy to show that the Iwasawa manifold M admits a global
coframe {α1, . . . , α6} satisfying the following structure equations

dα1 = dα3 = −α1 ∧ α2 + α4 ∧ α5 − α2 ∧ α3 + α5 ∧ α6 ;
dα2 = dα5 = 0 ;
dα4 = dα6 = −α2 ∧ α4 + α1 ∧ α5 − α3 ∧ α5 + α2 ∧ α6 .

Let {X1, . . . , X6} be the frame dual to {α1, . . . , α6} and consider the almost com-
plex structure J on M de�ned on {X1, . . . , X6} by

JX1 = X4 , JX2 = X5 , JX3 = X6 ,

JX4 = −X1 , JX5 = −X2 , JX6 = −X3 .

Let

ω := α1 ∧ α4 + α2 ∧ α5 + α3 ∧ α6 ;

then a direct computation gives that ω is a ∂-closed form compatible with J . The
basis {X1, . . . X6} induces the complex (1, 0)-frame

Z1 = X1 − iX4 , Z2 = X2 − iX5 , Z3 = X3 − iX6 .

One easily gets

[Z1, Z2] = 2(Z1 + Z3) , [Z2, Z3] = 2(Z1 + Z3) , [Z1, Z3] = 0 .

Since [Zi, Zj ] = 0 and (g, J, ω) is a quasi Kähler structure, in view of Lemma 2.2
we have

∇iZj = 0 ,

being∇ the Levi-Civita connection associated to the metric g. Furthermore a direct
computation gives

∇1Z1 = −2Z2 , ∇2Z1 = −2Z3 , ∇3Z1 = 0 ,
∇1Z2 = 2Z1 , ∇2Z2 = 0 , ∇3Z2 = −2Z3 ,
∇1Z3 = 2Z1 , ∇2Z3 = 2Z1 , ∇3Z3 = 2Z2 ;

hence

∇iZj ∈ Γ(T 0,1M) , for every i, j = 1, 2, 3 .

By Lemma (4.1), we get that the Hermitian curvature tensor of g vanishes. Also
in this case a straightforward computation gives that the curvature tensor of the
metric g satis�es the second Gray identity (G2).

Remark 4.7. In the quasi Kähler case the condition R̃ = 0 implies that the tensor
R(g, J) described by (3) vanishes. Hence it is very natural to take into account the
following problem:

• Does there exist a symplectic form ω′ on the Iwasawa manifold taming
the almost complex structure J0 and such that the pair (ω′, J0) induces an
R̃-�at quasi Kähler structure on M ?

(This problem was suggested us by Valentino Tosatti). The answer is negative. In

order to show this we �x a quasi Kähler R̃-�at metric g on the Iwasawa manifold
M compatible with J0. Then we can �nd a global unitary (1, 0)-coframe {ζ1, ζ2, ζ3}
such that

(15) dζ1 = dζ2 = 0 , dζ3 = −ζ1 ∧ ζ2 .



14 ANTONIO J. DI SCALA AND LUIGI VEZZONI

Assume that there exists a symplectic structure ω′ taming J0 and such that the
pair (ω′, J0) induces the metric g. Then one necessary has

ω′ = ω + β + β

ω being the quasi Kähler form associated to g and β a complex form of type (2, 0).
Equation dω′ = 0 reads in terms of ω and β as{

Aω + ∂β = 0
∂β +Aβ = 0 .

We can write β = aζ12 + bζ23 + cζ13, where a, b, c are smooth functions on M .
Taking into account equations (15), one has

∂β =
3∑

r=1

ζr(a)ζ12r + ζr(b)ζ23r + ζr(c)ζ13r ,

Aβ = b ζ122 + c ζ121

Hence equation ∂β +Aβ = 0 readily implies that b, c are holomorphic functions on
M and that the map a satis�es

ζ1(a) = c , ζ2(a) = b , ζ3(a) = 0 .

SinceM is compact, b and c have to be constant. In particular one has ∂∂a = 0 and,
consequently, also a has to be constant. Since the components of β are constant,
one has ∂β = ∂β = 0 and this condition contradicts equation Aω + ∂β = 0.

In view of Remark 4.2, require that a quasi Kähler metric g locally admits a
complex unitary (1, 0)-frame {ζ1, . . . , ζn} satisfying

∂ζi = ∂ζi = 0 , i = 1, . . . , n

is a bit less than require that the Hermitian curvature tensor of g vanishes. Hence it
is rather natural to wonder if an almost Kähler structure can admit such a coframe.
The answer is negative, since we have the following

Proposition 4.8. Let (M, g, J, ω) be an almost Kähler manifold. Assume that M
admits a global unitary (1, 0)-coframe {ζ1, . . . , ζn} satisfying

∂ζi = ∂ζi = 0 , i = 1, . . . , n .

Then M is Kähler.

Proof. Assume that such a coframe exists and let {Z1, . . . , Zn} be the dual frame.
Then we have

[Zi, Zj ] = 0 , [Zi, Zj ] ∈ Γ(T 0,1M) , i, j = 1, . . . , n .

In particular, we can write

[Zi, Zj ] =
n∑

k=1

Ak
ij Zk

and the Nijenhuis tensor of J satis�es

N(Zi, Zj) = −4
n∑

k=1

Ak
ijZk .
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Now we recall that the Nijenhuis tensor of an almost Kähler manifold always sat-
is�es

S
X,Y,Z

g(N(X,Y ), Z) = 0 .

This formula in our case reads as

(16) Ak
ij +Aj

ki +Ai
jk = 0 , 1 ≤ i, j, k ≤ n .

Since the brackets of the form [Zi, Zj ] vanish, then the Jacobi identity in terms of
Zi's reads as

[[Zi, Zj ], Zr] = 0 , 1 ≤ i, j, r ≤ n ,
i.e.

0 = [[Zi, Zj ], Zr] =
n∑

k=1

[Ak
ijZk, Zr] = −

n∑
k=1

Zr(Ak
ij)Zk +

n∑
k,s=1

Ak
ijA

s

krZs .

In particular one has

(17)

n∑
k=1

Ak
ijA

s

kr = 0 , 1 ≤ i, j, s, r ≤ n .

Using equations (16) and (17), we get

0 =
n∑

k=1

Ak
ijA

j

ki = −
n∑

k=1

{Ak
ijA

k

ij −Ak
ijA

i

kj} = −
n∑

k=1

|Ak
ij |2

which forces (M, g, J, ω) to be a Kähler manifold. �
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