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Temperature and filling dependence of the superconductingp phase
in the Penson-Kolb-Hubbard model

Fabrizio Dolcini and Arianna Montorsi
Dipartimento di Fisica and Unita` INFM, Politecnico di Torino, I-10129 Torino, Italy

~Received 12 October 1999; revised manuscript received 2 February 2000!

We investigate in the Hartree approximation the temperature and filling dependence of the superconducting
p phase for the Penson-Kolb-Hubbard model. Due to the presence of the pair-hopping term, the phase survives
for repulsive values of the on-site Coulomb interaction, exhibiting an interesting filling and temperature
dependence. The structure of the self-consistent equations peculiar to thep phase of the model allows us to
explicitly solve them for the chemical potential. The phase diagrams are shown and discussed in dimension 2
and 3. We also show that, when a next-nearest-neighbors hopping term is included, the critical temperature of
the superconducting region increases, and the corresponding range of filling values is shifted away from
half-filling. Comparisons with known exact results are also discussed.
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I. INTRODUCTION

Interest in strongly correlated electron systems and su
conductivity has motivated some attention on the wide cl
of extended Hubbard models:1 indeed, a number of interes
ing results2–15 show that for some of these models a sup
conducting phase exists. The Hamiltonian of the exten
Hubbard models reads

HEH5HHub1HX1HX̃1HV1HW1HY , ~1!

where

HHub52t(̂
i,j &

(
s

ci,s
† cj ,s1U(

i
ni,↑ni,↓ ~Hubbard!,

HX5X(̂
i,j &

(
s

~ni,2s1nj ,2s!ci,s
† cj ,s ~bond charge!,

HX̃5X̃(̂
i,j &

(
s

ni,2snj ,2sci,s
† cj ,s ~correl. hopping!,

HV5
V

2 (̂
i,j &

ninj ~neighboring site charge!,

HW5
W

2 (̂
i,j &

(
s,s8

ci,s
† cj ,s8

† ci,s8cj ,s ~exchange!,

HY5Y(̂
i,j &

ci,↑
† ci,↓

† cj ,↓cj ,↑ ~pair hopping!.

Here ci,s
† and ci,s are fermionic creation and annihilatio

operators, wherei runs over theLd sites of ad-dimensional
latticeL, andsP$↑,↓% is the spin label; the usual anticom
mutation rules$ci,s8 ,cj ,s%50, $ci,s ,cj ,s8

† %5d i,jds,s8 hold.
The symbol̂ i,j & stands for nearest neighbors inL. Finally,
ni,s5ci,s

† ci,s is the number of electrons with spins at sitei,
andni5ni↑1ni↓ . For the ordinary Hubbard modelHHub no
exact result supports the existence of a superconduc
phase at finite values ofU, and even within a mean-field
PRB 620163-1829/2000/62~4!/2315~6!/$15.00
r-
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scheme this is achieved only forU,0. On the contrary, for
appropriate nonvanishing values of the other coupling c
stants, the superconducting phase can be proved to exis
means of exact integrability methods; the latter results
volve the states known ashf pairs, namely

uh&f5~Kf
† !mu0&; Kf

† 5 (
jPL

ei f• jcj↑
† cj↓

† 5 (
kPB

cf2k↓
† ck↑

† ,

~2!

wheref is ad-dimensional vector (f,f, . . . ), B is the first
Brillouin zone in the reciprocal lattice, andm51, . . . ,Ld.
Noticeably, the statesuh&f enjoy the property of ‘‘off diag-
onal long range order’’ ~ODLRO!, which implies
superconductivity.10 Therefore much effort has been don
through the last years to find which are the relations am
the coupling parameters in Eq.~1! guaranteeing that anuh&f
is the ground state.

A first set of remarkable results was obtained in 1D
the subclass of Hamiltonians characterized by the constr
X5t. In Refs. 6 and 7 the phase diagramU vs filling for the
AAS modelX5t,X̃5W5V5Y50 ~reported in Fig. 1! was
derived at T50: one can see a superconductive fillin
independent region, where theuh&f are degenerate groun
states for anyf, and a filling dependent zone~again super-
conducting because it contains at leastuh&0 pairs! rising up
to positive values ofU. Unfortunately, in contrast to the rea
case of superconducting materials, the superconduc
phase turns out to have a maximum at half filling. A simil
phase diagram~see Fig. 1! was also obtained in Refs. 4 an
5 for the EKS Hamiltonian, characterized byX5t,X̃50,
Y5W5V521. There the filling independent phase is ma
of uh&f with only f50, sinceYÞ0: in fact a nonvanishing
pair-hopping term removes the degeneracy ofuh&f , uh&0
being energetically favorite forY,0, while uh&p is favorite
for Y.0. Moreover, as Fig. 1 shows, a nonvanishingY also
contributes to rise up the superconducting region towa
positive values ofU.
2315 ©2000 The American Physical Society
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More recently, it has also been realized3 that, at least in
order to obtain the filling independent superconducting
gion, some of the constraints on the parameters~in particular
X5t, which is not very physical! are not necessary, provide
that a pair-hopping term is present. Also, as long asXÞt,
only uh&p states could become ground states, the ot
choices off in Eq. ~2! giving states that cannot be eige
states of Eq.~1!.

On the contrary, no exact result is available concern
the existence of the more structured filling dependent su
conducting region when the above constraints on the par
eters are removed. It is one purpose of the present pap
investigate within the Hartree scheme such possibility,
well as to test how the superconducting region modifies
TÞ0.

Due to the relevance of the pair-hopping term to stabil
thehp-pairs phase, and in order to make the physical mec
nism more clear, we shall focus on a subcase of the exten
model in which, apart from the pure Hubbard terms, only
pair hopping amplitude is taken different from zero. This
known in the literature as Penson-Kolb-Hubbard model.
want to emphasize here that the presence of other term
Eq. ~1! is not expected to affect our results in a qualitati
way, as other recent numerical studies confirm.11,12

In Sec. II we give the Hamiltonian and derive within th
Hartree scheme the temperature dependent equations fo
filling and the self-consistent superconducting order para
eter. In Sec. III we solve the equations in dimension 2 and
and show the temperature and filling dependence of the
perconducting phase in these cases. In Sec. IV we add to
Hamiltonian a next-nearest-neighbors contribution to
hopping term, and we show how this affects the filling a
temperature dependence of the superconducting phase
nally, in Sec. V we discuss our results and give some c
clusions.

FIG. 1. Phase diagram ind51 at T50 of AAS model ~solid
curve! and EKS model ~dot-dashed curve!. In the filling-
independent~superconducting! region thehf pairs are ground state
Above it, a filling-dependent region~still superconducting! exists.
In the EKS model thepair hoppingterm contributes to extend th
superconducting zone towards positive values ofU. In such exactly
solved 1D models the phase diagram reaches a maximum ar
half filling.
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II. PENSON-KOLB-HUBBARD MODEL AND HARTREE
APPROACH TO THE p PHASE

The Penson-Kolb-Hubbard Hamiltonian reads

HPKH5HHub1HY1m(
i

ni , ~3!

whereHHub andHY are given in Eq.~1! and the last term is
the chemical potential. The caseU50 in 1D was first exam-
ined by Penson and Kolb13 to study a short range interactio
between electron pairs of small radius~actually zero!, in con-
trast with the BCS theory, where the size of the Cooper p
is comparatively large. This led to envisage areal space
formulation for the electron pairing, which is very interestin
in many contexts of condensed matter physics.

Later on, the Coulomb repulsion termU was also taken
into account by Ref. 14, where the PKH Hamiltonian w
proposed as an effective phenomenological model captu
the main physical features of doped materials, such as h
Tc superconductors. Indeed if we assume that, due to s
~yet unknown! microscopic mechanism, localized pairs c
be formed, then their displacement in the lattice should
described by a pair hopping term competing with a sin
carrier hopping amplitudet. The Coulomb repulsion term
should account for the insulating phase.

More recently a slave boson wide study of the differe
possible phases of the model at zero temperature has
been done.15 In particular, a region characterized by a no
vanishing value of the order parameterxp5(1/Ld)^Kp

† & was
found; hereKp

† is given by theKf
† in Eq. ~2! with f5p, and

^ & stands for the average value on the grand canonical
tistical ensemble. In the following we shall denote such
phase asp phase. The latter turns out to be favorite wi
respect to otherf phases with differentf values forY.0.
At zero temperature, the analysis performed in Ref. 15
means of different approximation schemes clarifies for wh
range of parameters thep phase is energetically favorite als
with respect to other~nonsuperconducting! ordered phases
Within this range, we expect that for low enough tempe
tures the thermal energy is not sufficient to let other pha
emerge. The Hartree approximation then decomposes
PKH Hamiltonian into the following sum ofk-space com-
muting Hamiltonians:

HPKH' (
kPB

„2~ tek1m̄ !nk↑2~ tep2k1m̄ !np2k↓

1Ũ@xpck↑
† cp2k↓

† 1xp* cp2k↓ck↑#2Ũuxpu2…, ~4!

whereŨ5U2qY (q being the number of nearest neighbo
equal to 2D for a hypercubic lattice!, andm̄5m2nU/2 is the
Hartree-renormalized chemical potential. The sum in Eq.~4!
runs over the Brillouin zoneB and thek vectors are mea-
sured in units of the inverse lattice spacing~i.e., 2p<ki
<p).

In contrast with Eq.~3!, the linearized Hamiltonian~4!
does not preserve the number of particles; indeed in a H
tree picture thep phase has to be thought of as a superpo
tion of hp pairs involving different number of pairs, th
averagenumber of electrons being fixed through the chem

nd
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cal potential. A standard calculation allows to derive t
Hartree grand potential~per particle! v in the thermody-
namic limit as

v52
1

~2p!dEB
dkS Ak1

1

b (
s561

lnF2 coshb
Dk1sRk

2 G D ,

with Dk5t(ek2ep2k)/2, Ak5Ck
21Ũuxpu2, Rk5(Ck

2

1Ũ2uxpu2)1/2 andCk5m̄1t(ek1ep2k)/2. In order to inves-
tigate the thermodynamical properties of the system one
to implement the self-consistency equation]v/]xp50 for
the order parameter. Such equation gives, as usual, a sol
xp[0 for T>Tc , and a solutionxpÞ0 for T<Tc . It can be
shown that thep phase~i.e., xpÞ0) exists only whenŨ
5U2qY<0, that is when the pair-hoppingY.0 term
renormalizes the interactionU.0 to an effectiveattractive
regime. Investigating in particular theT<Tc regime, the
self-consistency relation can be written as

Ũ2152
1

~2p!dEB
dk

1

4Rk
(

s561
s tanhb

Dk1sRk

2
. ~5!

Moreover, one must also satisfy the filling equation,n
5]v/]m, which reads

n511
1

~2p!dEB
dk

Ck

2Rk
(

s561
s tanhb

Dk1sRk

2
. ~6!

Equations~5! and ~6! constitute theparametric form of the
equation of state. In order to get to oneclosed form, one
should in principle invert Eq.~6! obtainingm̄ as a function of
n, T and Ũ, and then insert it into Eq.~5!. The thermody-
namics of the model will then be expressed in terms ofn,T
and Ũ. Noticeably, comparing Eqs.~5! and ~6! it is easy to
show that wheneverep2k52ek the chemical potential can
be exactlyinverted. In this case we have

m̄5
12n

2
Ũ. ~7!

We wish to stress that for a given model, even within t
Hartree approximation, it is not obvious at all that the chem
cal potential can be inverted exactly: in the PKH model t
is a peculiar feature of thep phase~not shared by 0 phase!.
Equation~7! holds in any dimension for a hypercubic lattic
when dealing with anearest-neighborshopping term, since
the dispersion relation isek5( i 51

d 2 coski . However, when a
next-nearest-neighborsterm is included, the form ofek
changes so that Eq.~7! does not hold any longer~see Sec.
IV !.

III. TEMPERATURE AND FILLING DEPENDENCE
OF THE PHASE DIAGRAM IN dÄ2 AND dÄ3

In this section we consider the case of a nearest neigh
hopping term. We aim to derive the features of the criti
values ofŨ versusn for a given temperatureT, in order to
compare them with known solution of similar models~see
Sec. V!. The critical curveŨc5Ũc(n) is obtained from Eqs.
~5! and ~6! by settingxp50 into Rk .
as

ion

e
i-
s

rs
l

As noticed in Sec. II, besides the parametric form~5! and
~6!, in this case we can also deal with one closed for
indeed, sinceek52ep2k , Rk is independent ofk, and thus
Eq. ~7! holds. By substitutingm̄ into Rk , and thenRk into
Eq. ~5!, we obtain from Eq.~6! the critical equation

1

~2p!dEB
dk (

s561

s

2
tanhFb

tek1sŨcd~n!/2

2
G5d~n!, ~8!

whered(n)512n is the ‘‘doping.’’
Since Eq.~8! is invariant under the transformationd(n)

→2d(n), it is easily seen thatŨc is symmetric with respec
to the value at half-filling (n51). The critical curves ind
52 andd53 are plotted in Figs. 2 and 3 respectively, whe
use has been made of the density of statesg(d)(e) @with
normalization (2p)2ddk5deg(d)(e)# which is known in lit-
erature ford52,3.

For the sake of consistency with our approximation,
have plotted the region of the phase diagram where the
ues ofŨ do not exceed the bandwidthD54td.

Notice the different behavior ofŨc in the two cases, in
particular for low temperatures. Indeed ind52 we have a
very sharp, cuspidlike shape at half-filling, while ind53 a
‘‘plateau’’ is obtained, meaning that the effective interacti
threshold is almost independent of the density of electron
the lattice for a rather wide range ofn. This effect is due to
the quite different behavior of the density of statesg(2) and
g(3). Indeed using the parametric form it is possible to sh
that at lowT’s the shape ofŨc in the neighborhood of half-
filling is governed by the behavior ofg(d) arounde50. In
fact, inserting Eq.~7! into Eq. ~8!, and making use of the
density of statesg(d)(e), it is possible to deduce that

FIG. 2. Phase diagram of thep phase ind52; the critical value

Ũc of the effective attractionŨ5U2qY is plotted versus the filling
for some values of the temperatureT. At a given T the p phase

exists for Ũ<Ũc ; here D58t is the bandwidth andq54 is the

number of nearest neighbors. The values ofŨ are negative becaus
the pair hopping term renormalizes the Coulomb repulsionU to a
negative regime. The curves are centered around half-filling; aT

50 a filling independent region exists forŨ<2D, like in AAS and
EKS models~see Fig. 1!.
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Ũc~n51!52S E
2emax

1emax
g(d)~e!pb~e! D 21

, ~9!

where pb(e)5bt/4 cosh22(bt/2e). This holds forany tem-
peratureT. In particular whenT→0 Eq. ~9! yields

Ũc~n51!52
1

g(d)~0!
. ~10!

Now, sinceg(3) is almost constant arounde50, when T
;0 Eq. ~8! gives

12n'E
2um̄u

1um̄u
g(3)~e!'22m̄g(3)~e!ue50 , ~11!

and using Eq.~7! we obtain thatŨc is actually independen
of n @indeed g(3)(0)50.1427 and so 1/0.142757.0078
which is just the value ofŨ around half-filling whenT50#.
It can also be proved that atT50 the plateau is slightly
concave, so that the highest value ofŨc is actually reached
away from half-filling, at the symmetric valuesn;0.4 and
n;1.6.

IV. THE NEXT-NEAREST-NEIGHBORS CONTRIBUTION

Let us now turn to the case when in the Hamiltonian~3! a
next-nearest-neighbors contribution is included in the h
ping term, which therefore becomes

2t(̂
i,j &

(
s

ci,s
† cj ,s2at (

^^ i,j &&
(
s

ci,s
† cj ,s . ~12!

The latter term breaks the particle-holecj
†→ei p• jcj symme-

try of the model. The dispersion relation reads nowek
5( i 51

d 2 coski1a(i,j<d4 coski coskj . As observed at the
end of Sec. II, the symmetryek52ep2k does not hold any-
more. This yields both mathematical and physical new f

FIG. 3. Phase diagram of thep phase ind53;D512t is the
bandwidth andq56 is the number of nearest neighbors. With r
spect to the cased52 ~see Fig. 2! the curves have a plateau aroun

half-filling; indeed atT50 the highest values ofŨc are reached a
the symmetric valuesn;0.4 andn;1.6. As the temperature i
increased, thehp pairs start breaking up and the extension of thep
phase reduces.
-

-

tures. In particular, the equation for the critical surface has
be given only in the parametric form~5! and~6!, m̄ being the
parameter.

We are here interested in the cased52. In this case the
density of states reads

ga
(2)~e!5

1

2p2A11ae
KS 12~e/42a!2

11ae D , ~13!

wherea is assumed to beuau<1/2, since the next-neares
neighbors term is expected to be small with respect to
nearest-neighbors one. Fora50 we recover the usual form
Notice that foraÞ0 the functionga

(2) is not even ine; in-

deed we havega
(2)(2e)5g2a

(2) (e). Thus the critical curveŨc

vs n acquires an asymmetric form, the highest value ofŨ
falling now at anmaxÞ1, as shown in Fig. 4. Moreover, at
given temperatureT, such a maximum of the critical curve i
shifted upward with respect to the curve of the casea50.
This means that at a givenT, the effect of the next-neares
neighbors term is toreducethe ‘‘optimal’’ effective attrac-
tion Ũ. In turn, this implies at a givenŨ the raising of the
highest critical temperature reachable by doping the syst

We have also studied hownmax depends ona. The rela-
tion is almost linear foruau<0.4, while it displays a sudden
increase of slope arounduau;0.45; in Fig. 5 we have ex-
tended the curve to the range 0<uau<1 ~which could be still
acceptable in principle! to show hownmax approaches the
limiting valuesn50 or n52. Notice that the curve is odd in
a; this is because the parametric Eqs.~5! and~6! are invari-
ant under the transformationm̄→2m̄;a→2a;Ũ→Ũ, and
therefore one can show, in agreement with Ref. 16, t
Tc(Ũ,n;a)5Tc(Ũ,22n;2a). It is possible to see that th
curve depends very weakly on the temperatureT.

FIG. 4. Thep phase diagram ind52 for different values of the
next-nearest-neighbors hopping amplitudea at the temperature
kBT/t50.1. Notice that whena is increased the superconductin

region rises up towards less negative values of theŨ5U2qY, and
its maximum is reached at anmax which moves away from half-
filling. This means that, at a given temperature, the next-near

neighbors interaction reduces the effective attractionŨ, yielding an
increase of the highest reachable critical temperature~see also Fig.
6!.
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Finally, we have plotted the phase diagram ofTc vs n at
fixed a, shown in Fig. 6. We can observe that the ne
nearest-neighbors term has mainly two effects. First it sh
away from half-filling the range of values ofn at which the
superconducting phase exists; this suggests that the sy
has to be doped in order to observe a superconducting
havior. Secondly, it raises the highest reachable critical t
perature with respect to the case where only a nearest ne
bors interaction is considered. Having in mind t
phenomenology of high-Tc materials, this study supports th
idea that the actual microscopic Hamiltonian should
particle-holenot-invariant.

FIG. 6. The critical temperature versus the filling ind52, for a

given valueŨ524t of the effective attraction. Herea is the pa-
rameter of the term ofnext-nearest-neighbors~NNN! hopping,
which breaks the particle-hole symmetry of the model. With resp
to the casea50, the NNN term yields both the increase of th
highest critical temperature and the displacement away from h
filling of the superconductingp phase. In fact the highestTc is
reached atn;1.3.

FIG. 5. The behavior ofnmax ~i.e., the point of maximum for the
curves of Fig. 4! as a function of the next-nearest-neighbors para
etera, at temperaturekBT/t50.1. The curve is odd. Notice that fo
uau<0.4 the behavior is almost linear; asuau is further increased,
nmax approaches 0 or 2, as one can also see in Fig. 4. This beh
of nmax depends very weakly on the temperatureT.
-
ts

em
e-
-
h-

e

V. DISCUSSION AND CONCLUSIONS

The phase diagrams obtained within the Hartree sche
can be given a more precise physical interpretation by co
paring them with the 1D exact results known for some ve
specific cases. Strictly speaking, such a comparison is o
possible forT50, since the phase diagram of these in
grable models is not known atTÞ0. In so doing, we observe
that at zero temperature our results in Fig. 2 and Fig. 3 h
the same structure as those in Fig. 1. One can recognize
distinct regions in the phase space. The first one is cha
terized by filling independentp phase. By reducing the ef
fective attractionŨ, one enters a second region in which t
existence of thep phase depends on the actual filling. F
nally, above the critical curve thep phase disappears.

Thus, the comparison with the exactly solved 1D cas
lead us to interpret the filling independent region as
phase in which all particles are paired inhp pairs~2!. This is
in agreement with known result ind.1.3 The second region
should be characterized by simultaneous presence of pa
unpaired electrons and empty sites, whereas in the third
no paired electrons could move.

Switching on the temperature, thermal fluctuations are
pected to break pairs. The dependence on the temperatu
our phase diagrams supports this idea. Actually for a giv
filling n, the greater becomesT, the greater must be the mag
nitude of the effective attractive interactionŨ in order to
keep thehp pairs bound together. In fact in Figs. 2 and 3 t
curves of higherT’s lay below the lowerT’s ones~this result
can be proved rigorously!. It is worth recalling that, thanks to
the presence of the pair-hopping term, an effective attrac
interactionŨ is consistent with a positive value of the Co
lomb interactionU. Hence the present Hartree treatment
the thermodynamics of the PKH model yields a structu
filling dependent superconducting phase even in presenc
repulsive on site Coulomb interaction between electrons.
fixed temperature, the actual border of suchp phase could be
eventually modified around half-filling due to the compe
tion with antiferromagnetic order. Finally, we stress that t
phase diagram in Fig. 6 —obtained by including the ne
nearest-neighbors hopping term—exhibits appealing f
tures: foraÞ0 the optimal doping of the superconductin
region is atnmaxÞ1, and the critical temperature is enhance
Moreover, with respect to the results reported in Ref. 16
the attractive Hubbard model, our figure shows that even
T50 the superconducting phase exists only for an appro
ate range of filling values,not including half-filling. We em-
phasize that the whole curve of the critical temperature
filling ~6! actually reminds the one obtained for high-Tc ma-
terials.

The study of the influence that particle-hole nonsymm
ric terms in the Hamiltonian have on the features of t
phase diagram has been worked out in 2D, the conductio
high-Tc superconducting materials typically taking pla
along the cuprate planes. As the Hartree approach is m
accurate the higher is the dimension, dealing with a 3D a
anisotropicorder parameter would possibly be more reliab
Work is in progress along these lines. At the same tim
since the results obtained here are encouraging, a nume
study of the temperature behavior of the present mode
d52 would be probative.
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